基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析

郭志, 刘志敏. 基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析[J]. 环境工程学报, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008
引用本文: 郭志, 刘志敏. 基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析[J]. 环境工程学报, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008
GUO Zhi, LIU Zhimin. Desulfurization performance test and analysis of aerodynamic swirl tower based on gas-liquid suspension swirling cutting mixing[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008
Citation: GUO Zhi, LIU Zhimin. Desulfurization performance test and analysis of aerodynamic swirl tower based on gas-liquid suspension swirling cutting mixing[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008

基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析

    作者简介: 郭志(1987—),男,硕士,工程师。研究方向:固废处理与资源化等。E-mail:guozhikd@126.com
    通讯作者: 郭志, E-mail: guozhikd@126.com
  • 基金项目:
    天津市科技计划项目(17ZXSTSF00030, 18YFYSZC00070, 19ZXSZSN00050)
  • 中图分类号: X701.3

Desulfurization performance test and analysis of aerodynamic swirl tower based on gas-liquid suspension swirling cutting mixing

    Corresponding author: GUO Zhi, guozhikd@126.com
  • 摘要: 为了研制低运行能耗和高脱硫效率的新型脱硫塔,以满足国家最新环保超低排放标准,采用基于气液悬浮旋切掺混的气动旋流塔脱除燃煤烟气中的SO2污染物,对其内部气动旋流单元的强化传质脱硫性能进行探究,考察了空塔喷淋段和气动旋流段的喷淋层位置和液气比对脱硫效率及系统阻力的影响,并对气动旋流单元的脱硫效率进行了理论计算模拟。结果表明:喷淋层距浆液池高度越高,液滴在吸收区停留的时间越长,脱硫效率越高,系统运行阻力也越大;增加液气比,可显著提高系统的脱硫效率,单层喷淋层阻力约为150 Pa;在低pH工况下,SO2吸收过程为液膜控制,气动旋流单元的脱硫效率较低;随着pH的增大,SO2吸收过程逐渐由液膜控制转变为双膜甚至气膜控制,气动旋流单元的脱硫效率逐渐增强;当pH=5时,液气比=25 L·m−3,5层喷淋层运行工况下的脱硫效率高达99.82%。气动旋流单元的脱硫效率模拟计算结果表明:在高pH下,气动旋流单元的脱硫效率更高;当pH=5.5时,气动脱硫单元的脱硫效率为62.56%,阻力为360 Pa,实验数据与理论计算曲线吻合较好。以上研究结果可为新型高效燃煤机组脱硫超低排放改造技术的开发及其在环境污染控制领域的应用提供参考。
  • 城市污水处理厂进水碳源不足是一个普遍存在的问题,导致后续脱氮效率较低。目前,解决该问题的主要方法之一是外加部分碳源,如甲醇和乙酸钠等。但添加的物质部分还有毒性,而且药剂成本较高。如何以较低的成本提高脱氮效率是低碳氮比污水生物脱氮亟待解决的问题,寻找合适的外加碳源成为目前关注的热点[1]。水解酸化是把污泥中的大分子有机物分解成小分子有机物,得到挥发性脂肪酸(VFAs)的过程。而VFAs中的乙酸和丙酸是增强生物脱氮的有利碳源,其反硝化速率比甲醇和乙醇更高[2]

    超磁分离水体净化工艺是近年来发展起来的一种物化水处理技术。磁分离技术借助外加磁场强化固液分离效率,较生物吸附技术处理效率高,较膜分离技术能耗低,能弥补现有碳源浓缩技术各自的劣势,满足节能降耗需求[3-5]。其能快速有效的去除生活污水中的大部分有机物,COD分离去除率约为75%,SCOD的分离去除率超过60%,TP去除率接近90%[6]。本研究所采用的超磁分离设备的进水为生化处理前的污水,所以超磁分离污泥类似于初沉污泥。而初沉污泥中含有大量的有机物,是很好的发酵底物[7]。目前,国内外有许多关于初沉污泥[7],剩余污泥[8],以及两者混合污泥[9]的水解产酸的研究报道。但是对于超磁分离污泥与剩余污泥协同水解酸化的相关研究,还很少见。现有研究发现在不调控pH,温度为30 ℃的反应条件下,即可以为生化系统提供更多的SCOD,又可以避免系统过高的N、P负荷[10]

    本研究在温度维持30 ℃,不调控pH下,选取了2种超磁分离后污泥(R1、R2)、剩余污泥(W1、W2),设置R1、W1为一组,R2、W2为一组,进行了超磁分离污泥、混合污泥以及剩余污泥3种不同类型污泥水解酸化的对比研究,其中混合污泥为超磁分离污泥以及剩余污泥按不同比例混合后的污泥(5组)。探究了污泥性质的差异对水解酸化及酸化产物组分的影响,为污水厂通过污泥产酸发酵获得碳源进行污泥种类的选择提供思考。

    R1、W1分别为污水处理厂停产前超磁分离污泥以及含水率为80%的脱水污泥;R2、W2分别为污水处理厂停产后超磁分离污泥以及某强化生物除磷(EBPR)中试工艺的二沉池中的剩余污泥。其中R1所用污水取自东坝污水处理厂细格栅之后,R2所用污水取自污水处理厂进水井(粗格栅之前)。实验前,将W1用蒸馏水稀释,将W2在4 ℃下浓缩24 h,然后排出上清液。以期达到与超磁分离污泥相似的VSS。实验前,取1 d内不同时段的污泥,混合后接种。4种污泥特征(至少经过3次重复测定取平均值),结果见表1。R1、W1、R2、W2的初始pH为7.55、7.68、6.85和6.91,含水率为0.984 7、0.982 2、0.968 3和0.977 2。投加比例见表2(1~7号投加的比例以剩余污泥的体积和VSS计,其中1号为超磁分离污泥,7号为剩余污泥,2~6号为投加了不同比例的剩余污泥,投加比例见表2)。

    表 1  4种污泥的主要理化指标
    Table 1.  Main physical and chemical indicators of four types of sludge
    污泥类型 TCOD SCOD SS VSS -N TN TP
    R1 14 004.3 388.63 16 280 9 980 26.86 35.55 0.97
    W1 13 476.3 32.10 23 900 15 240 0 1.95 1.09
    R2 36 270.3 444.42 32 480 18 350 36.025 48.33 1.74
    W2 25 893.8 208.76 22 980 15 700 17.092 33.24 42.27
     | Show Table
    DownLoad: CSV
    表 2  实验设计污泥投加量
    Table 2.  Experimental designed sludge dosages
    污泥类型 1号 2号 3号 4号 5号 6号 7号
    R1、W1(以体积计) 0 4 8 12 16 20 100
    R1、W1(以VSS计) 0 6.1 12.2 18.3 24.4 30.5 100
    R2、W2(以体积计) 0 8 16 24 32 40 100
    R2、W2(以VSS计) 0 6.8 13.6 20.5 27.4 34.2 100
     | Show Table
    DownLoad: CSV

    超磁分离污泥水解酸化的批次实验在恒温培养箱中进行,实验装置如图1所示,采用7个2 L的反应器,接种污泥体积为1.8 L。实验开始前曝氮气3 min以驱除反应器中的氧气,然后使用橡胶塞密封,橡胶塞上开2个孔,分别是氮气袋,以及取样口,反应器采用磁力搅拌器搅拌。

    图 1  实验装置示意图
    Figure 1.  Schematic diagram of the test device

    本研究在首创东坝污水处理厂现场进行,每天早晚各取反应器的出水进行相关指标的测定。由于水解消化后污泥脱水性能变差,因此,各指标测定前需要对样品进行预处理。预处理主要包括离心及过滤2个过程。离心采用100 mL的离心管,设置转速为5 000 r·min−1,离心45 min。然后将上清液用0.45 μm的微孔滤膜过滤,去除上清液中小颗粒物质,避免阻塞测定仪器并确保测量精度。

    常规分析参考水和废水监测分析方法,其中TCOD、SCOD采用重铬酸钾法,TN采用过硫酸钾氧化紫外分光光度法,TP采用过硫酸钾氧化钼酸铵分光光度法,SOP采用钼酸铵分光光度法,NH+4-N采用纳氏试剂光度法,VSS和SS采用重量法[11]。pH采用HACH HQ40d测定仪测定。VFAs采用瑞士万通883型离子色谱仪测定。

    污泥的水解特征可以用SCOD浓度的改变来表示[9]。2种剩余污泥在不同接种比例下对超磁分离污泥水解酸化的影响如图2所示。从图2(a)图2(b)可见,2种超磁分离污泥(R1、R2)自然水解产生的SCOD均在第4天达到峰值,分别为1 118.68 mg·L−1和2 063.50 mg·L−1;虽然两者水解得到的SCOD不同,但是从图2(c)可以看出,其SCOD/VSS的变化规律是一致的,最高值均出现在第4天,为110 mg·g−1。说明2种超磁分离后的污泥水解产酸的效果基本是一致的。

    图 2  不同比例的剩余污泥对水解程度的影响
    Figure 2.  Effect of different proportions of excess sludge on hydrolysis

    剩余污泥(W1、W2)自然水解产生的SCOD均在第7天达到峰值,分别为1 599.88 mg·L−1和4 954.80 mg·L−1。从图2(a)可以看出,2号和3号的SCOD最大值均出现在第4天,分别为1 196.80 mg·L−1与1 248.40 mg·L−1;4号的SCOD最大值出现在第5天,为1 262.57 mg·L−1;5、6和7号的SCOD最大值均出现在第7天,分别为1 443.68、1 493.96和1 599.88 mg·L−1。随着剩余污泥比例的增加,不仅可以增加SCOD的析出量,还可以延长其达到最大值的时间;与R1&W1水解不同的是,从图2(b)可以看出,2~7号的SCOD最大值均在第7天,并且其随着接种比例的增加而增大,分别为2 435.30、2 622.70、2 668.80、3 151.00、3 423.20和4 954.80 mg·L−1。这与苏高强等[12]的研究结果相似。

    W1、W2产SCOD出现如此大的差异,推测其原因是:一方面,W1为脱完水后的污泥,其中PAM(聚丙烯酰胺)存在增加了分子间的团聚性,进而减少了发酵微生物与消化基质的接触[13],从而减少了SCOD的产量;另一方面,W2为某稳定运行的EBPR系统,污泥中微生物的含量较W1要多,水解酸化菌通过对污泥中微生物细胞壁破坏从而促使细胞内容物释放[14]

    水解酸化过程中产生的VFAs主要是由发酵产酸菌对可溶性有机物的吸收转化。实验发现,3种污泥产生的酸主要是乙酸、丙酸、正丁酸、异丁酸和正戊酸,将其乘以相应的系数换算成COD后相加,和为挥发性有机酸量[8]。在此选取R1、W1进行分析,污泥水解过程中VFAs的生成情况如图3所示。从图3可以看出,VFAs的变化规律与SCOD是一致的,均是先增大后减少的趋势。1号(超磁分离污泥)自然水解VFAs的峰值出现在第4天,为353.54 mg·L−1,与SCOD的变化趋势相同的是,混合污泥2~6号分别在第4、4、5、7和7天水解液中产生的VFAs达到最大值,分别为399.98、436.52、449.03、520.05和556.97 mg·L−1,7号(剩余污泥)自然水解产生的VFAs的峰值出现在第7天,为477.52 mg·L−1。从图3中还来可以看出,接种剩余污泥能提高VFAs的产生量,并且随着接种剩余污泥的增加,也能延长其VFAs达到峰值的时间。

    图 3  不同比例的剩余污泥对VFAs的影响
    Figure 3.  Effect of different proportions of excess sludge on VFAs

    在初始阶段污泥中易降解颗粒物质首先被水解酸化菌转化为VFAs,随着反应的进行,易降解物质被消耗完全,水解酸化菌开始利用较难降解的颗粒及大分子物质,这样导致VFAs的产速变慢[15]。从图3中可以看出:混合污泥与超磁分离、剩余污泥比较,更易酸化产VFAs。这是因为一方面混合污泥吸附大量胶体和易降解有机物,水解酸化菌能有效利用;另一方面,超磁分离污泥中虽然有机物含量很高,但多数属于慢速降解碳源;剩余污泥中的有机物主要存在其细胞内和胞外聚合物中,不经过有效预处理水解酸化菌难以利用。

    SCOD向VFAs的转化率能直接用来反应污泥的产酸效果[16]。在此选取R1、W1进行分析,从图4可以看出,在前4 d,VFAs∶SCOD均逐渐变大,混合污泥VFAs∶SCOD比值一直领先超磁分离、剩余污泥。1~7号的VFAs∶SCOD分别在第4、4、4、5、7、7和7天达到最大值分别为0.316、0.334、0.350、0.360、0.361、0.373和0.299。所以仅从VFAs∶SCOD来看:混合污泥较之于超磁分离具有较高的产酸优势;且剩余污泥接种量的增加加快了水解酸化的速率,从而加深了酸化的程度。

    图 4  不同比例的剩余污泥对VFAs:SCOD的影响
    Figure 4.  Effect of different proportions of excess sludge on VFAs: SCOD

    ELEFSINIOTI等[17]指出,反硝化优先利用乙酸,其次为丁酸(包括异丁酸和正丁酸)和丙酸,最后是戊酸(包括异戊酸和正戊酸)。CHEN等[18]发现,适宜作为除磷碳源的2种有机酸为乙酸和丙酸,从短期看乙酸作为碳源除磷效果较好,而从长期看丙酸作为碳源要比乙酸作为碳源的除磷效果好。可见SCFAs的组成情况对其作为碳源被利用具有重要的影响。

    由于超磁分离污泥SCOD在第4天即达到最大值,所以此时选取R1、W1进行分析,结果如图5所示。实验中污泥水解酸化主要生成5种挥发性脂肪酸,分别为乙酸、丙酸、正丁酸、异丁酸和正戊酸。超磁分离污泥中5种酸的含量大小为乙酸>正戊酸>正丁酸>异丁酸>丙酸,而剩余污泥种5种酸的含量大小为乙酸>丙酸>正戊酸>正丁酸>异丁酸。混合污泥中随着剩余污泥占比的增加,丙酸和异丁酸的含量也有不同程度的增加,正丁酸出现了下降的趋势,而正戊酸的变化不大。从图5中易看出,各种污泥产VFAs中,乙酸均具有明显优势。这与苏高强等[9]、刘绍根等[1]、吴昌生等[19]的研究结果是一致的。乙酸之所以占比例最高,其主要原因为:一方面,水解产物被产酸菌降解为乙酸,且乙酸可以直接从碳水化合物和蛋白质的水解酸化得到;另一方面,其他的有机酸(丙酸、丁酸或戊酸等)在某些胞内酶的作用下也可进一步生成乙酸[20]

    图 5  VFAs各组分所占百分比
    Figure 5.  Percentage of VFAs components

    超磁分离污泥以及剩余污泥中含有大量的蛋白质,所以水解酸化过程中除了有VFAs、SCOD等有机物溶出以外,还会伴随着N元素的释放。本研究主要以NH+4-N和TN为考察对象。以往对于污泥厌氧发酵的研究中,都出现了不同程度的N元素的释放[1, 9, 10, 19]。对于R1、W1,由图6(a)可知,3种不同的污泥的NH+4-N都呈现出了逐渐增长的趋势。并且随着剩余污泥接种量的增加,NH+4-N的增加量也越大。反应进行到第4天时,1~7号的增加量分别为78.79、85.97、91.11、94.68、97.28、115.32、115.91 mg·L−1

    图 6  不同比例的剩余污泥对N元素的影响
    Figure 6.  Effect of different proportions of excess sludge on N element

    对于R2、W2,由图6(b)可知,3种不同的污泥呈现出了与R1、W1一样的变化规律,不同于R1、W1的是,其NH+4-N的增加量更大。第4天时1~7号NH+4-N的增加量分别为127.34、147.56、153.53、176.34、206.19、244.41、399.83 mg·L−1。由于剩余污泥主要是由一些活性生物絮体组成,故含有较多的蛋白质,蛋白质水解能释放出大量的氨氮。

    由于系统中的TN主要是以NH+4-N的形式存在的,所以从图6(c)图6(d)中可以看出,TN具有和NH+4-N相似的变化规律。剩余污泥接种量的增加加快了N元素的溶出,含有大量氮元素的水解酸化液若投加到脱氮系统中,势必是增加系统的N负荷。因此,剩余污泥的接种量应该综合考虑氮元素的释放对于整个系统后续的脱氮除磷的影响。

    污泥的厌氧消化过程中,随着污泥的解体和细胞的破壁,会有大量的磷释放到水解酸化液中。如果将水解酸化液直接用于脱氮除磷的碳源,会增加后续处理的磷负荷。所以,在此之前都会进行前处理,对氮磷进行部分回收。因此,监测P的溶出情况很有必要[21]

    在以往对于污泥水解酸化的研究中,随着时间的延长,都在不同程度上伴随着磷元素的析出。吴昌生等[19]在对碱预处理絮凝污泥水解酸化影响的研究中发现:在25 ℃时,磷酸盐浓度在第480 min达到峰值,为7.65 mg·L−1;在35 ℃时,在第480 min达到峰值,为15.23 mg·L−1。苏高强等[9]发现混合污泥厌氧发酵在第6天时磷酸盐的释放量为120 mg·L−1。由于超磁分离在污水处理前端就已经去除了系统中绝大多数的磷酸盐,减轻了后续的处理压力,所以对于超磁分离污泥的水解酸化,并不希望有P元素的析出。

    对比2种超磁分离污泥(R1、R2)P的释放情况,由图7可知,不管是TP还是SOP,其值较初始值都没有较大的变化,并没有P的析出(其中7号的浓度均为右侧坐标轴的数值)。推测可能是由于超磁分离污泥中有PAC(聚合氯化铝),抑制了磷酸盐的释放。对比两种剩余污泥(W1、W2)的TP,由图7(b)可知,TP的浓度在前5 d逐渐升高,第5天达到峰值,为24.15 mg·L−1,此后逐渐降低。由图7(a)可知,2~6号TP的浓度稳定在1~2 mg·L−1,并没有很明显的磷的析出;由图7(d)可以看出,TP的浓度在第3天即达到峰值,为385.11 mg·L−1,此后浓度稳定在390 mg·L−1左右,由图7(c)可知,2~6号TP的浓度在3 d后分别稳定在4.31、9.61、16.96、32.81、57.50 mg·L−1左右。2种剩余污泥释磷情况有巨大的差异,推测其原因是:W1来源的东坝污水处理厂采用前端化学除磷工艺,所以污泥中几乎没有P的富集;而W2取自某稳定运行的EBPR中试实验的二沉池污泥,其出水能稳定满足京标B甚至京标A出水标准,因此,其二沉池中污泥富集了大量的磷酸盐,污泥水解酸化时,在厌氧条件下导致了剩余污泥中的聚磷菌的释磷。单从P元素的释放情况来看,W2显然不适合用作接种污泥。

    图 7  不同比例的剩余污泥对P元素的影响
    Figure 7.  Effect of different proportions of excess sludge on P element

    污泥水解酸化旨在获取较多可利用碳源,但同时也存在着氮元素的释放。较高的氮释放势必会增加系统的氮负荷,同时加剧对碳源的竞争,最终降低系统的脱氮效率[22, 9]。因此,在污泥水解酸化反应获得较多碳源的同时尽量减少总氮的释放,即达到较高的ΔSCOD/ΔTN值。由于超磁分离后的污泥水解产酸在第4天达到最大值,所以考察了第4天时各污泥的ΔSCOD/ΔTN值。从图8(a)可以看出,第4天时,3号的ΔSCOD/ΔTN值最大,为9.80,此时,剩余污泥的投加比例为12.2%。从图8(b)可以看出,第4天时,3号的ΔSCOD/ΔTN值最大,为9.86,此时,剩余污泥的投加比例为13.6%。由此可见,在只考虑N元素的影响时,2种剩余污泥虽然来源不同,但是其在第4天达到最大值时的污泥接种比例是相近的。综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。

    图 8  ΔSCOD/ΔTN随水解时间的变化规律
    Figure 8.  Variation of ΔSCOD/ΔTN with hydrolysis time

    1) 2种超磁分离污泥(R1、R2)自然水解产生的SCOD均在第4天达到峰值,剩余污泥(W1、W2)自然水解产生的SCOD均在第7天达到峰值,随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加。

    2)对R1、W1进行产酸分析发现:剩余污泥接种量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并且会促进丙酸的累积。

    3)对VFAs:SCOD值的分析结果表明,混合污泥较之于超磁分离、剩余污泥具有快速、高效的产酸优势,且剩余污泥接种量的增加加快了水解酸化的速率并且加深了酸化的程度,但是会延长其达到峰值的时间。

    4)污泥产酸发酵的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,N元素的释放更明显;对比2种剩余污泥(W1、W2),W1作为接种污泥时,并没有明显的P元素的释放,当W2作为接种污泥时,伴随着比较明显的P元素的释放。

    5)综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。

  • 图 1  气动旋流单元示意图

    Figure 1.  Diagram of aerodynamic swirl unit

    图 2  脱硫塔物料衡算示意图

    Figure 2.  Diagram of material balance calculation in desulfurization tower

    图 3  工程装置流程

    Figure 3.  Flow chart of engineering device

    图 4  脱硫效率随浆液pH的变化

    Figure 4.  Variation of desulfurization efficiency with desulfurization solution pH

    图 5  系统阻力随时间的变化

    Figure 5.  Variation of system resistance with time

    图 6  脱硫效率随浆液pH的变化关系(工况4)

    Figure 6.  Variation of desulfurization efficiency with desulfurization solution pH (operating condition 4)

    图 7  脱硫效率随浆液pH的变化(工况5)

    Figure 7.  Variation of desulfurization efficiency with desulfurization solution pH (operating condition 5)

    图 8  系统阻力随时间的变化

    Figure 8.  Variation of system resistance with time

    图 9  脱硫效率随浆液pH的变化

    Figure 9.  Variation of desulfurization efficiency with desulfurization solution pH

    图 10  系统阻力随时间的变化

    Figure 10.  Variation of system resistance with time

    图 11  脱硫效率随浆液pH的变化

    Figure 11.  Variation of desulfurization efficiency with desulfurization solution pH

    图 12  系统阻力随时间的变化

    Figure 12.  Variation of system resistance with time

    图 13  脱硫效率随浆液pH的变化

    Figure 13.  Variation of desulfurization efficiency with desulfurization solution pH

    图 14  气动旋流单元脱硫效率随浆液pH的变化

    Figure 14.  Variation of desulfurization efficiency of pneumatic swirl unit with desulfurization solution pH

    图 15  脱硫效率随浆液pH的变化

    Figure 15.  Variation of desulfurization efficiency with desulfurization solution pH

  • [1] 石敬华, 刘常永, 刁鸣雷, 等. 运用SPSS统计分析影响大型火电机组SO2排放量因素的研究[J]. 环境科学与管理, 2019, 44(10): 123-128. doi: 10.3969/j.issn.1673-1212.2019.10.024
    [2] 牛拥军, 宦宣州, 李兴华. 燃煤电厂烟气脱硫系统运行优化与经济性分析[J]. 热力发电, 2018, 47(12): 22-28.
    [3] 郝润龙, 赵毅, 郭天祥. 燃煤烟气湿法脱硫系统模型及优化运行[J]. 动力工程学报, 2016, 36(10): 822-826. doi: 10.3969/j.issn.1674-7607.2016.10.009
    [4] 赵汶, 陈武. 石灰石-石膏湿法脱硫过程中浆液液滴及细颗粒物迁移转化特性研究[J]. 动力工程学报, 2019, 39(3): 242-247.
    [5] 靳会宁. 基于偏最小二乘法的石灰石-石膏湿法脱硫效率预测模型[J]. 资源节约与环保, 2016(3): 15-16. doi: 10.3969/j.issn.1673-2251.2016.03.013
    [6] 张真. 石灰石-石膏湿法烟气脱硫新型增效剂的实验研究[D]. 武汉: 华中科技大学, 2018.
    [7] 李存杰, 张军, 张涌新, 等. 基于pH值分区控制的湿法烟气脱硫增效研究[J]. 环境科学学报, 2015, 35(12): 4081-4087.
    [8] 李兴华, 何育东. 燃煤火电机组SO2超低排放改造方案研究[J]. 中国电力, 2015, 48(10): 148-151.
    [9] 杜乐, 黄建国, 殷文香. 一种提高石灰石-石膏法脱硫效率的方法: 托盘塔[J]. 环境与发展, 2014, 26(3): 196-198. doi: 10.3969/j.issn.1007-0370.2014.03.069
    [10] 望西萍. 湿法烟气脱硫超低排放节能工艺优化及工程应用研究[D]. 北京: 清华大学, 2017.
    [11] 卢晗, 郑鑫, 李薇, 等. 燃煤电厂脱硫技术及超低排放改造费效分析[J]. 环境工程, 2018, 36(1): 97-102.
    [12] 刘风伟, 张连红, 刘晓玉. 旋流板塔在烟气脱硫中的研究状况[J]. 当代化工, 2013, 42(11): 1599-1601. doi: 10.3969/j.issn.1671-0460.2013.11.036
    [13] 高向胜, 刘德宏, 吴林虎. 影响石灰石-石膏法烟气脱硫效率的因素分析[J]. 能源研究与利用, 2015(2): 46-49. doi: 10.3969/j.issn.1001-5523.2015.02.020
    [14] 陈文通. 石灰石-石膏湿法脱硫效率分析及系统优化[J]. 设备管理与维修, 2015(9): 90-92.
    [15] 曹洋, 赵建业, 刘军辉, 等. 吸收塔入口烟气参数对石灰石-石膏湿法脱硫效率的影响[J]. 煤炭加工与综合利用, 2019(6): 107-109.
    [16] 禾志强, 祁利明. 石灰石/石膏法脱硫效率分析[J]. 电站系统工程, 2009, 25(6): 51-52. doi: 10.3969/j.issn.1005-006X.2009.06.020
    [17] 祝杰, 吴振元, 叶世超, 等. 石灰石-石膏湿法喷淋脱硫模型研究[J]. 高校化学工程学报, 2015, 29(1): 220-225. doi: 10.3969/j.issn.1003-9015.2015.01.34
    [18] 陈尔鲁. 湿法烟气脱硫过程建模与优化[D]. 杭州: 浙江大学, 2016.
    [19] 孙庆龙. 湿法脱硫效率影响因素及喷淋塔数值模拟[D]. 济南: 山东大学, 2014.
    [20] 何思程, 袁惠新, 付双成. 旋流板塔内气相流场的速度及压降的数值模拟[J]. 化工进展, 2019, 30(11): 2399-2403.
    [21] 潘卫国, 郭瑞堂, 冷雪峰, 等. 大型燃煤电站锅炉脱硫塔脱硫效率的数值模拟[J]. 动力工程学报, 2011, 31(4): 306-311.
    [22] 李守信, 纪立国, 于军玲, 等. 石灰石-石膏湿法烟气脱硫工艺原理[J]. 华北电力大学学报, 2002, 29(4): 91-94.
    [23] 周至祥, 段建中, 薛建明, 等. 火电厂湿法烟气脱硫技术手册[M]. 北京: 中国电力出版社, 2006.
    [24] 郭东明. 脱硫工程技术与设备[M]. 2版. 北京: 化学工业出版社, 2007.
  • 期刊类型引用(2)

    1. 齐亚兵,唐承卓,贾宏磊. 工业烟气湿法脱硫技术的发展现状及研究新进展. 材料导报. 2022(S1): 88-96 . 百度学术
    2. 郭志,刘志敏. pH分区供浆模式强化气动旋流塔湿法脱硫效率. 环境工程学报. 2021(02): 635-642 . 本站查看

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.9 %DOWNLOAD: 1.9 %HTML全文: 89.2 %HTML全文: 89.2 %摘要: 8.9 %摘要: 8.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 85.4 %其他: 85.4 %Anwo: 0.1 %Anwo: 0.1 %Ashburn: 0.1 %Ashburn: 0.1 %Beijing: 6.5 %Beijing: 6.5 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.2 %Changsha: 0.2 %Chiguayante: 0.2 %Chiguayante: 0.2 %Chongqing: 0.1 %Chongqing: 0.1 %Dongguan: 0.1 %Dongguan: 0.1 %Gulan: 0.1 %Gulan: 0.1 %Hangzhou: 0.6 %Hangzhou: 0.6 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Kunshan: 0.1 %Kunshan: 0.1 %New Taipei: 0.5 %New Taipei: 0.5 %Shanghai: 0.2 %Shanghai: 0.2 %Suzhou: 0.1 %Suzhou: 0.1 %Taiyuan: 0.1 %Taiyuan: 0.1 %Tianjin: 0.2 %Tianjin: 0.2 %Xiangtan: 0.1 %Xiangtan: 0.1 %Xintai: 0.1 %Xintai: 0.1 %XX: 3.7 %XX: 3.7 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhangguizhuang: 0.1 %Zhangguizhuang: 0.1 %上海: 0.1 %上海: 0.1 %北京: 0.3 %北京: 0.3 %扬州: 0.1 %扬州: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.2 %深圳: 0.2 %郴州: 0.1 %郴州: 0.1 %阳泉: 0.1 %阳泉: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他AnwoAshburnBeijingChang'anChangshaChiguayanteChongqingDongguanGulanHangzhouJinrongjieKunshanNew TaipeiShanghaiSuzhouTaiyuanTianjinXiangtanXintaiXXYunchengZhangguizhuang上海北京扬州武汉济南深圳郴州阳泉齐齐哈尔Highcharts.com
图( 15)
计量
  • 文章访问数:  3386
  • HTML全文浏览数:  3386
  • PDF下载数:  39
  • 施引文献:  3
出版历程
  • 收稿日期:  2019-11-02
  • 录用日期:  2019-12-30
  • 刊出日期:  2020-05-01
郭志, 刘志敏. 基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析[J]. 环境工程学报, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008
引用本文: 郭志, 刘志敏. 基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析[J]. 环境工程学报, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008
GUO Zhi, LIU Zhimin. Desulfurization performance test and analysis of aerodynamic swirl tower based on gas-liquid suspension swirling cutting mixing[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008
Citation: GUO Zhi, LIU Zhimin. Desulfurization performance test and analysis of aerodynamic swirl tower based on gas-liquid suspension swirling cutting mixing[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008

基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析

    通讯作者: 郭志, E-mail: guozhikd@126.com
    作者简介: 郭志(1987—),男,硕士,工程师。研究方向:固废处理与资源化等。E-mail:guozhikd@126.com
  • 航天环境工程有限公司,天津 300301
基金项目:
天津市科技计划项目(17ZXSTSF00030, 18YFYSZC00070, 19ZXSZSN00050)

摘要: 为了研制低运行能耗和高脱硫效率的新型脱硫塔,以满足国家最新环保超低排放标准,采用基于气液悬浮旋切掺混的气动旋流塔脱除燃煤烟气中的SO2污染物,对其内部气动旋流单元的强化传质脱硫性能进行探究,考察了空塔喷淋段和气动旋流段的喷淋层位置和液气比对脱硫效率及系统阻力的影响,并对气动旋流单元的脱硫效率进行了理论计算模拟。结果表明:喷淋层距浆液池高度越高,液滴在吸收区停留的时间越长,脱硫效率越高,系统运行阻力也越大;增加液气比,可显著提高系统的脱硫效率,单层喷淋层阻力约为150 Pa;在低pH工况下,SO2吸收过程为液膜控制,气动旋流单元的脱硫效率较低;随着pH的增大,SO2吸收过程逐渐由液膜控制转变为双膜甚至气膜控制,气动旋流单元的脱硫效率逐渐增强;当pH=5时,液气比=25 L·m−3,5层喷淋层运行工况下的脱硫效率高达99.82%。气动旋流单元的脱硫效率模拟计算结果表明:在高pH下,气动旋流单元的脱硫效率更高;当pH=5.5时,气动脱硫单元的脱硫效率为62.56%,阻力为360 Pa,实验数据与理论计算曲线吻合较好。以上研究结果可为新型高效燃煤机组脱硫超低排放改造技术的开发及其在环境污染控制领域的应用提供参考。

English Abstract

  • 我国燃煤火电机组排放烟气中含有大量SO2污染物,据统计,2017年全国因煤炭燃烧产生的SO2排放总量为8.754×106 t[1]。在众多脱硫技术中,石灰石-石膏湿法烟气脱硫技术是我国燃煤电厂应用最广泛的烟气脱硫工艺[2-4],约占燃煤电厂烟气脱硫装置技术总量的90%[5]。石灰石-石膏湿法烟气脱硫技术成熟、脱硫效率高,但同时也存在系统复杂、能耗高、运行成本高、对煤种适应性差等缺点。此外,2014年9月,《煤电节能减排升级与改造行动计划(2014—2020年)》中要求,新建燃煤发电机组大气污染物排放浓度应基本达到燃气轮机组排放限值(即在基准氧含量 6%条件下,SO2排放浓度≤35 mg·m−3)。因此,在国家倡导节能环保的前提下,脱硫系统的节能降耗和低运行能耗、高脱硫效率的新型脱硫塔的研制将社会具有重要意义。

    为了满足国家最新的环保超低排放标准,多数火电机组亟需切实可行、经济有效的脱硫提效改造方案。如何提高现有石灰石-石膏湿法烟气的脱硫效率,成为国内众多学者的研究热点。张真[6]通过添加脱硫复合增效剂提高了脱硫效率。李存杰等[7]研究了基于pH分区控制的新型双循环湿法脱硫系统,获得了较高的污染物去除率。李兴华等[8]对喷淋空塔、托盘塔、单塔双循环和串联塔等改造工艺进行了对比:入口烟气SO2浓度<3 500 mg·m−3时,应优先采用单塔单循环技术;入口烟气SO2浓度>4 000 mg·m−3时,应优先采用单塔双循环或串塔技术。杜乐等[9]对比了托盘塔和喷淋空塔2种塔型,发现托盘塔具有效率高、低能耗、易检修等优点。望西萍[10]针对传统空塔喷淋层改造、托盘塔和双塔双循环等主流超低排放技术特点,得出系统总电耗影响最大的是循环泵,而引风机和氧化风机影响最小的结论。卢晗等[11]通过构建石灰石-石膏湿法脱硫费效计算模型得出,托盘塔超低排放改造技术费效比<1,托盘塔技术经济可行。刘风伟等[12]针对旋流板塔在烟气脱硫中的应用进行了探讨,但此种旋流塔在大容量烟气中的应用受到限制。此外,许多研究人员[13-16]对石灰石-石膏湿法烟气脱硫系统的影响因素和系统优化进行了分析与探讨,建立了脱硫模型[17-19]。综上可知,现有脱硫提效改造研究主要集中在添加增效剂、pH分区控制、设置托盘、单塔双循环、串联塔等方向,对托盘以外具有强化吸收传质元件的新型脱硫塔研究较少。

    本研究依托实际工程系统,测试了基于气液悬浮旋切掺混的新型气动旋流塔脱硫性能,在脱硫性能测试基础上,对气动旋流单元的脱硫效率进行了理论计算模拟,研究结果可为新型高效燃煤机组脱硫超低排放改造技术的开发及其在环境污染控制领域的应用提供参考。

  • 气动旋流单元由下至上主要由导流尾罩、旋流子和悬浮筒组成,一组气动旋流单元通过上下封板组合为气动旋流单元组件,并将其放置在脱硫塔2层喷淋层之间,如图1所示。烟气从单元下方进入,在旋流子作用下,形成向上的旋转气流;浆液从上端注入并被旋转气流托住,反复旋切,形成一段动态稳定的液粒悬浮层。气液悬浮旋切掺混具有掺混强度大和传质效率高的特点。

    气液悬浮旋切掺混脱硫机理可用双膜理论来解释,相界面方程见式(1)。吸收区物料衡算示意图如图2所示,传质速率方程[17]如式(2)所示,以气相为基准的总传质系数如式(3)所示,式(3)中的增强因子E和气、液传质系数kgkl分别见式(4)~式(6)。

    式中:cso2为相界面气相中的SO2浓度,mol·m−3Hso2为SO2的亨利常数;xso2为相界面液相中的SO2浓度,mol·m−3G为SO2传质速率,mol·s−1Kg为总传质系数,m·s−1a为传质比表面积,m2·m−3c为气相主体SO2的浓度,mol·m−3xso2为液相主体SO2的浓度,mol·m−3D为塔直径,m;z为液滴距喷嘴出口的垂直高度,m;kg为气相传质系数,m·s−1kl为液相传质系数,m·s−1E为增强因子;DCa2+为液相中钙离子的扩散系数,m2·s−1Dso2,p为液相中SO2的扩散系数,m2·s−1xCaCO3为液相中CaCO3的浓度,mol·m−3Re为雷诺数;Sc为施密特数;Dso2,g为气相中SO2扩散系数,m2·s−1dp为平均液滴直径,m;ur,t为相对速度,m·s−1CD为曳力系数;ρg为气相密度,kg·m−3ρp为液相密度,kg·m−3

    气动旋流单元的流通截面积相对空塔截面较小,烟气在单元内流速升高并在旋流子的作用下形成旋转上升气流。何思程等[20]研究发现,在气流平均速度为4.22 m·s−1的情况下,叶片上方最大气速可达到10.2 m·s−1。旋转气流与上端注入的浆液相遇,从而形成悬浮旋切的强化传质效果。因此,气动旋流单元一方面增大了气相湍流度,另一方面,也破碎了液滴,缩小了液滴尺寸,最终使得气相传质系数增大。此外,气液悬浮旋切掺混作用能够增大传质比表面积a和浆液与气体的接触时间。因此,气动旋流塔能够在低液气比下实现高脱硫效率。

  • 以文登热电厂240 t·h−1高温高压煤粉锅炉配套烟气脱硫工程为例,该工程采用石灰石-石膏湿法脱硫工艺,脱硫塔采用气动旋流塔,工程装置流程如图3所示。

    浆液循环泵共计5台,单台循环泵对应气动旋流塔内单层喷淋层。喷淋层由下至上依次编号为1#~5#,对应循环泵依次为1#泵~5#泵,其流量均为1 672 m3·h−1

    为了防止塔内浆液沉积结垢,气动旋流塔配3台搅拌器。氧化空气喷枪安装在3台搅拌器附近,利用搅拌器的剧烈搅动,破碎氧化空气。气动旋流塔配2台罗茨风机,1用1备,单台氧化风机风量为4 830 m3·h−1 (标准状况下)。

    气动旋流塔按功能分区,由下至上依次为贮浆段、空塔喷淋段、气动旋流段、除雾段。如图3所示,贮浆段设有搅拌器、氧化空气喷枪、循环泵吸入口和浆液外排口等;空塔喷淋段设有1#喷淋层、2#喷淋层和3#喷淋层;气动旋流段设有4#喷淋层、气动旋流单元、5#喷淋层;除雾段设有2层屋脊式除雾器。

    实验调整不同喷淋层的运行组合和浆液的pH,脱硫效率和系统阻力计算方法见式(7)和式(8)。

    式中:η为脱硫效率;cso2,in为测试入口的SO2浓度,mg·m−3cso2,out为测试出口的SO2浓度,mg·m−3Δp为系统阻力,Pa;pg,in为入口的烟气压力,Pa;pg,out为出口烟气压力,Pa。

  • 空塔喷淋段设有1#、2#和3#喷淋层,3层喷淋层的安装位置依次升高,喷淋层距浆液池的距离越长,液滴在吸收区停留时间越长,脱硫效率越大。潘卫国等[21]的研究结果也证实了这一结论,在单层喷淋层运行工况下,距离浆液池越远的喷淋层,其脱硫效率越高。空塔喷淋段的实验结果如图4所示。实验结果与潘卫国[21]的研究结论相同,当pH>5.1,液气比=20 L·m−3时,脱硫效率大小顺序为工况1(2#+3#+4#+气动旋流单元+5#)>工况2(1#+3#+4#+气动旋流单元+5#)>工况3(1#+2#+4#+气动旋流单元+5#),但脱硫效率整体相差不大。

    系统阻力随时间的变化趋势见图5。喷淋层的位置对系统运行阻力影响不大,系统阻力维持在1 400 Pa左右。系统运行阻力测试结果与脱硫效率测试结果相同,工况1(2#+3#+4#+气动旋流单元+5#)液滴在吸收区的停留时间最长,对应的系统阻力最大,工况3(1#+2#+4#+气动旋流单元+5#)的运行阻力最低。

  • 液气比指单位时间内单位体积烟气量对应的浆液喷淋量,是湿法脱硫系统重要的运行参数[2]。液气比能显著影响气液之间的传质性能,液气比越大,气液之间的传质面积就越大,传质速率加快;同时,在相同烟气量条件下,增大液气比,也增大了浆液的总碱度,最终显著提高脱硫效率[2]。本研究在工况4(1#+2#,液气比=10 L·m−3)和工况5(1#+2#+3#,液气比=15 L·m−3)的运行条件下,探讨脱硫效率、塔入口SO2浓度和塔出口SO2浓度随浆液pH的变化情况,实验结果如图6图7所示。由图6可知,在工况4下,入口SO2浓度为2 500 mg·m−3,pH=5.0,脱硫效率为80%;由图7可知,在工况5下,入口SO2浓度为2 500 mg·m−3,pH=5.5,脱硫效率为97.3%。李存杰等[7]在液气比为15 L·m−3,入口SO2浓度为2 500 mg·m−3时,得到的脱硫效率约为97.2%,此结果与本研究的结果相接近。由此可见,增加喷淋空塔脱硫系统液气比,脱硫效率随之提高。

    增大液气比,脱硫塔内浆液的循环量随之增加,吸收区的液滴总量也随之增大,因此,系统阻力也随之变大。图8给出了系统阻力随时间的变化情况。由图8可知,工况5的系统阻力约为870 Pa,工况4的系统阻力约为720 Pa。由此可见,3#喷淋层所产生的阻力约为150 Pa。

  • 4#喷淋层位于气动旋流单元下方,浆液由下至上喷入气动旋流单元内;5#喷淋层位于气动旋流单元上方,浆液由上至下喷入气动旋流单元内。实验在3种工况条件下考察喷淋层位置对脱硫效率的影响。这3种工况包括工况1(2#+3#+4#+气动旋流单元+5#,液气比=20 L·m−3)、工况6(1#+2#+3#+气动旋流单元+5#,液气比=20 L·m−3)、工况7(1#+2#+3#+4#+气动旋流单元,液气比=20 L·m−3)。3种工况下脱硫效率随浆液pH的变化情况如图9所示。脱硫效率测试结果由高到低依次为工况1>工况6>工况7。由此可见,5#喷淋层引起的浆液由上至下喷入气动旋流单元内,产生的气液悬浮旋切掺混作用使得脱硫效率更高。在较低的pH下,SO2吸收过程为液膜控制[22-23],气动旋流单元的脱硫效率较低,4#喷淋层所引起的气液悬浮旋切掺混作用渐渐抵消。结果表明:当pH<4.8时,工况1与工况6的脱硫效率逐渐趋于一致;随着pH的逐渐增大,增强因子E急速增加[24],SO2吸收过程逐渐由液膜控制转变为双膜甚至气膜控制,气动旋流单元的脱硫效率逐渐增强,由4#和5#所引起的气液悬浮旋切掺混作用差别逐渐减小;当pH>5.4时,工况6和工况7的脱硫效率趋于一致。这些实验结果与理论分析相一致。

    系统阻力随时间的变化情况如图10所示。可以看出,工况1和工况6的系统阻力相接近,可见4#喷淋层所产生的系统阻力与1#喷淋层一致。工况7的系统阻力明显低于工况1和工况6。这主要是由于在5#喷淋层投运后,气动旋流单元由单一气体运行工况变为气液固多相流运行工况,5#喷淋层注入的浆液在通过气动旋流单元时,其与旋转上升的气流相互作用,而旋转上升气流须克服液滴的重力,形成气液悬浮旋切掺混作用,最终导致脱硫塔运行阻力升高。工况1和工况6的系统阻力约为1 460 Pa,工况7的系统阻力约为1 100 Pa。因此,气动旋流单元阻力约为360 Pa。

  • 为了更全面地测试气动旋流塔的脱硫效率,我们研究了不同液气比下气动旋流塔的脱硫效率和系统阻力。实验采取工况1(2#+3#+4#+气动旋流单元+5#,液气比=20 L·m−3)、工况8(1#+2#+3#+4#+气动旋流单元+5#,液气比=25 L·m−3)、工况9(3#+4#+气动旋流单元+5#,液气比=15 L·m−3)3种工况。3种工况下的脱硫效率随浆液pH的变化如图11所示,系统运行阻力随运行时间的变化如图12所示。结果表明,液气比越大,脱硫效率越高,系统运行阻力也越大。当pH=5.0时,工况8的脱硫效率高达99.82%,系统阻力为1 613 Pa;工况1的脱硫效率为99.26%,系统阻力为1 454 Pa。随pH的逐渐增加,脱硫效率高于99.5%,1#喷淋层投运引起的脱硫效率增量逐渐被掩盖,与工况1下的脱硫效率趋于一致。当pH=5.6时,工况9的脱硫效率为99.1%,系统运行阻力为1 320 Pa。由图7可知,在液气比和喷淋层数相同、pH=5.6的条件下,工况5(1#+2#+3#,液气比=15 L·m−3)的脱硫效率为97.4%。可见,在相同液气比下,气动旋流塔的脱硫效率明显高于喷淋空塔,即气动旋流塔能够在较低的pH下得到较高的脱硫效率。浆液在低pH下运行,可增大系统的Ca/S比,提高浆液中Ca2+的溶解率,可有效避免系统结垢[2]。但是过大的液气比会增大浆液循环泵的流量,从而增加了循环泵的能耗,同时还会提高系统的运行阻力,增加了风机能耗。因此,气动旋流塔液气比应选择一个恰当的数值。

  • 气动旋流单元的气液悬浮旋切掺混作用能显著增大气膜传质系数,提高脱硫效率。因此,随着pH的逐渐增大,SO2吸收过程逐渐由液膜控制转为双膜甚至气膜控制,气动旋流单元的脱硫效率会逐渐增大。气动旋流单元的脱硫效率通过工况5(1#+2#+3#,液气比=15 L·m−3)和工况10(1#+2#+气动旋流单元+5#,液气比=15 L·m−3)进行研究。气动旋流单元的脱硫效率计算方法如式(9)所示。

    式中:η2-2为气动旋流单元脱硫效率;η1为工况1的脱硫效率;η2为工况2的脱硫效率。η2η2-1(1#+2#+5#喷淋层的脱硫效率)和 η2-2(气动旋流单元的脱硫效率)2部分构成,忽略喷淋层位置对脱硫效率影响的因素,可得η1=η2-1

    2种运行工况下脱硫效率随浆液pH的变化情况如图13所示。气动旋流单元的脱硫效率计算结果如图14所示。可以看出,气动旋流单元的脱硫效率随浆液pH的增加逐渐增大。由此可见,气动旋流单元能显著提高气膜传质系数,在高pH的气膜控制区内,气动旋流单元脱硫效率更高,实验结果与理论分析相一致。计算结果表明,当pH=5.5时,气动脱硫单元的脱硫效率为62.56%。

    为将气动旋流单元脱硫效率模拟计算结果与实验数据进行比对,本研究选取新的运行模式下脱硫效率的实测数据,结果见图15。工况1(2#+3#+4#+气动旋流单元+5#,液气比=20 L·m−3)和工况7(1#+2#+3#+4#,液气比=20 L·m−3)的脱硫效率差别恰好为气动旋流单元的脱硫效率。根据气动旋流单元的数据拟合计算结果,采用脱硫效率叠加原理,得到脱硫效率的理论计算曲线(工况7+气动旋流单元)。实验数据与理论计算曲线结果如图15所示,可以看出,实验数据与理论计算曲线吻合较好。

  • 1)喷淋层距浆液池的距离越长,液滴在吸收区停留的时间亦越长,因而脱硫效率越高,系统运行阻力越大。

    2)增加液气比可显著提高系统的脱硫效率,工况5(1#+2#+3#,液气比=15 L·m−3)下,入口SO2浓度为2 500 mg·m−3,在pH=5.5,脱硫效率为97.3%,3#喷淋层所产生的阻力约为150 Pa。

    3)在较低的pH下,SO2吸收过程为液膜控制,气动旋流单元的脱硫效率较低;随着pH的逐渐增大,SO2吸收过程逐渐由液膜控制转变为双膜甚至气膜控制,气动旋流单元的脱硫效率逐渐增强,气动旋流单元阻力为360 Pa。

    4)气动旋流塔能在低液气比下可得到较高的脱硫效率,是一种经济可行的脱硫超低排放技术。当pH=5.0,液气比=25 L·m−3时,工况8(1#+2#+3#+4#+气动旋流单元+5#)的脱硫效率为99.82%。

    5)气动旋流单元能显著提高气膜传质系数,在高pH的气膜控制区,其脱硫效率更高,实验数据与理论计算曲线吻合较好。当pH=5.5时,气动脱硫单元的脱硫效率为62.56%。

参考文献 (24)

返回顶部

目录

/

返回文章
返回