盐酸改性松针生物炭对磺胺甲噁唑的吸附性能

王楠, 吴玮, 杨春光, 黄天寅, 陈家斌, 杨晶晶. 盐酸改性松针生物炭对磺胺甲噁唑的吸附性能[J]. 环境工程学报, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002
引用本文: 王楠, 吴玮, 杨春光, 黄天寅, 陈家斌, 杨晶晶. 盐酸改性松针生物炭对磺胺甲噁唑的吸附性能[J]. 环境工程学报, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002
WANG Nan, WU Wei, YANG Chunguang, HUANG Tianyin, CHEN Jiabin, YANG Jingjing. Adsorption performance of hydrochloric acid-modified pine needle biochar on sulfamethoxazolef[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002
Citation: WANG Nan, WU Wei, YANG Chunguang, HUANG Tianyin, CHEN Jiabin, YANG Jingjing. Adsorption performance of hydrochloric acid-modified pine needle biochar on sulfamethoxazolef[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002

盐酸改性松针生物炭对磺胺甲噁唑的吸附性能

    作者简介: 王楠(1994—),女,硕士研究生。研究方向:污水处理与回用技术。E-mail:1020207024@qq.com
    通讯作者: 吴玮(1974—),女,博士,副教授。研究方向:污水处理与回用技术。E-mail:wuwei@usts.edu.cn
  • 基金项目:
    苏州市科研计划资助项目(SS201722);国家自然科学基金资助项目(51778391)
  • 中图分类号: X703

Adsorption performance of hydrochloric acid-modified pine needle biochar on sulfamethoxazolef

    Corresponding author: WU Wei, wuwei@usts.edu.cn
  • 摘要: 以松针为原料,使用盐酸活化制备获得松针生物炭(PBC),将其用于吸附去除水体中的磺胺甲噁唑(SMX)。分别考察了投加量、pH、吸附时间、阴离子浓度等因素对PBC吸附性能的影响,采用吸附动力学模型和吸附等温模型对吸附过程进行了拟合分析。FT-IR、SEM和BET表征结果证明,经盐酸活化后的松针生物炭表面疏松多孔,含有羧基和羟基等含氧官能团。吸附实验结果表明:当PBC投加量为0.4 g·L−1时,吸附60 min后SMX去除率可达97.1%;当pH为4.0~8.0时,随着pH升高,PBC对SMX的去除率下降;CO23HCO3对吸附反应起抑制作用,CO23抑制作用更强,SO24对吸附过程影响较小;PBC对SMX的吸附可用准二级动力学方程来描述,与Freundlich等温方程式拟合度更好(R2>0.98);热力学数据表明PBC对SMX的吸附过程是自发的吸热反应;5次实验后PBC对SMX的去除率仍在40%以上。考虑到PBC吸附效果好,可重复利用,说明PBC具有良好的应用前景,研究可为水污染治理的应用提供参考。
  • 新疆维吾尔自治区南疆地区地处西北极端干旱沙漠区,近年来,随着该区农业生产水平不断提高,生产规模随之扩大,对水资源和氮磷资源的需求量呈逐年上升趋势。氮磷资源的大量使用,一方面致使氮磷资源短缺的问题不断加剧,另一方面诱发了各种各样的环境问题[1]。在农业生产过程中,畜牧业作为新疆南疆最具特色的传统基础产业之一,在蓬勃发展的同时,各种各样的问题也接踵而至。其中,养殖废水中污染物的不合理排放导致了该区资源的严重浪费和塔里木河流域的局部地区污染。养殖废水中含有大量氮、磷,若处置不恰当,将导致氮、磷资源的流失,加剧水体富营养化[2]。此外,土壤盐渍化也是南疆地区典型的环境问题之一,盐渍化土壤水相中富集大量盐分离子,主要包括K+、Ca2+、Na+、Mg2+CO23HCO3SO24、Cl8种离子[3],离子含量随地区变化呈现不同的分布特征,其中主要以氯化物或硫酸盐-氯化物为主[4]。由于南疆农田土壤盐分含量较高,需定期进行灌溉排盐才能满足植物的生长需要,这进一步导致了塔里木河中盐分离子的持续升高。因此,养殖废水的氮磷污染问题和高浓度的农田盐碱排水问题的双重叠加效应对南疆生态环境造成了极大的压力,亟需寻找一种既能够减少水体污染又能回收氮磷资源的有效方法。

    国内外对磷回收方式包括化学沉淀法和结晶法等传统方法,还有源分离技术[5]、吸附/解吸法[6]和滤池过滤回收法[7]等物化回收技术及生物质磷回收技术、膜生物反应器(membrane bio-reactor, MBR)工艺和强化生物除磷(enhanced biological phosphorus removal, EBPR)工艺等生物回收技术[8]以及最近研究聚焦的污泥回收磷技术[9-10]和纳米技术[11]等。每种方法均有各自的优缺点。吸附/解吸附法中常用的吸附剂有水化硅酸钙、明矾污泥等,但由于吸附剂吸附容量较小,存在毒理性危害,限制了吸附/解吸附法在回收磷方面的应用。另外,目前一些新兴吸附剂如改性生物炭等也逐渐引起了研究者的注意[12]。上述这些新兴技术大多处在研究阶段,回收成本较高,还未大规模使用[14]。相比之下,化学沉淀法具备迅速将高浓度磷酸盐去除回收的特点,当与其他工艺结合起来时,不仅有化学沉淀量大、沉淀效果好的特点,还具备其他工艺的优势[13-14]。鸟粪石沉淀法(MAP)又称磷酸铵镁沉淀法[15],是化学沉淀法的典型代表,作为一种成熟、可靠、高效的磷回收技术,近年来受到越来越多的关注。原理是将Mg、N、P按照一定摩尔比,在碱性环境下生成鸟粪石(MgNH4PO4·6H2O),以此来实现氨氮和磷的同步回收。该方法生成的目标产物是一种良好的氮磷缓释肥,被广泛应用于农业生产,可获得经济效益[16-19]。鸟粪石沉淀法的主要反应如式(1)~式(3)所示。

    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)

    镁源是制约MAP沉淀法大规模使用的重要因素。常用的镁源主要是MgCl2、MgSO4、MgO等溶解性化合物[20-21],这些镁化合物造价较为昂贵,将其作为镁源会大大提高MAP沉淀法的成本。因此,寻求低成本镁源是提高MAP沉淀法经济效益的有效途径[22]。很多学者之前已经采用海水、苦卤水[23-25]作为廉价镁源回收磷,并取得了较好的回收效果。由于新疆南疆农田土壤盐渍化极其严重,排水中的盐分含量较高,总盐质量浓度高达3~4 g·L−1[26],这为养殖废水中氮磷回收提供了潜在的镁源。如果能够将其加以利用,不仅能够回收养殖废水中氮磷污染物并加以资源化,还能够有效降低排入水体中的盐分离子及引发次生盐渍化。海水中Mg2+质量浓度约为1.2 g·L−1,相比之下,渍化土壤排水中Mg2+占总盐含量的6%~20%,为0.2~0.6 g·L−1[3-4],Mg2+含量略低于海水中的含量。由于渍化土壤排水中离子种类比海水少,开发难度相对较低,新疆地区每年需进行的春灌和冬灌为获得大量的渍化土壤排水提供了可行条件,因此,将盐渍化土壤水体作为镁源在技术和经济上具有可行性[27]

    本研究结合新疆养殖业的氮磷污染和盐渍化问题,利用农田高盐排水作为镁源对氮磷废水中的磷进行回收,通过对比实验、正交实验和干扰离子影响实验,综合分析了高盐排水回收磷的回收效果和经济可行性;将治理盐渍化问题与磷回收结合起来,开发了氮、磷回收利用与污染控制相结合的集成技术模式,所得结果对提升现行养殖废水处理技术水平,实现社会效益、经济效益和环境效益三者的统一具有重要意义。

    供试试剂:氯化铵、磷酸氢二钠、六水氯化镁、酒石酸钾钠、酒石酸锑氧钾、过硫酸钾、纳什试剂、氨基磺酸、抗坏血酸、磷酸二氢钾、硝酸钾、钼酸铵、氢氧化钠、盐酸、硫酸、氯化钙、氯化钠、氯化钾、硫酸钠、碳酸氢钠,供试试剂均为分析纯,购自国药集团化学试剂有限公司。

    实验仪器:循环水式多用真空泵(SHB-III,郑州预科仪器有限公司)、集热式磁力搅拌器(DF-101B,金坛友联仪器研究所)、紫外可见分光光度计(UV-5500,上海元析仪器有限公司)、pH计(FiveEasy PlusTM FE28,上海全脉科学仪器有限公司)、自热恒温培养箱(HPX-9162MBE,上海赫田仪器有限公司)、电热鼓风干燥箱(GZX-9146MBE,上海百典仪器设备有限公司)、手提式压力蒸汽灭菌器(YXQ-SG46-280S,上海博讯仪器有限公司)、全温振荡器(BS-2F,上海荣计达实验仪器有限公司)。

    养殖废水中氮主要以氨态氮、硝态氮等形式存在,总氮质量浓度为200~2 000 mg·L−1;总磷质量浓度为50~800 mg·L−1[28-29]。对样品进行离心、过滤[30]等前处理后,进一步对其进行各项指标的测定。实验所需的养殖废水取自阿拉尔市十四团宏盛牧歌养殖有限公司,废水为一级厌氧消化后的处理物,主要物理化学指标如下:总磷为(205.00±2.50) mg·L−1、氨氮为(408.46±6.34) mg·L−1、含盐量为0.66%、电导率为12.18±3.44、pH为7.18±0.80。依据上述养殖废水中的氨氮、总磷含量配制相应的模拟废水。具体配置方法如下:取1.187 7 g NH4Cl溶于去离子水中,配制氨氮质量浓度为400 mg·L−1的标液,并按照n(N)∶n(P)=1∶1,准确称取7.950 7 g Na2HPO4溶于去离子水中配置磷质量浓度为668 mg·L−1的磷标液,以便后续易控制实验中氮磷摩尔比。

    本研究通过土壤振荡淋洗法获得高盐水样,实验土样取自阿拉尔十团棉田,并收集了棉田周边沟渠的农田排水。南疆地区农田排水中的镁离子质量浓度为0.2~0.6 g·L−1[31]。本研究为了考察不同质量浓度的高盐排水对磷回收的影响和满足后续研究需要,对农田排水进行了离子富集处理。具体步骤为:称取100 g盐渍土,放入500 mL三角瓶中,按1∶5的土水比加入500 mL去离子水,标记此时液面位置。为了防止在振荡过程中溶液损失,提前用保鲜膜和锡箔纸封口。将三角瓶放入BS-2F全温振荡器中,温度调至25 ℃,以180 r·min−1振荡30 min。之后,将获得的水土混合液用真空抽滤泵进行抽滤,实现上清液和固体颗粒物分离。继续称取100 g盐渍土样,将过滤后的上清液与100 g盐渍土混合,为了保证土水比始终为1∶5,加水至标记位置,此为1个循环,共计5个循环。用密封性好的试剂瓶将滤液储存。测定滤样中的离子成分,并与农田水样离子成分进行对比。

    设计2组对比实验。第1组考察MgCl2和高盐排水的回收磷的效果:首先,配制Mg2+质量浓度为0.2、0.4、0.6、0.8、1.0 g·L−1梯度的MgCl2溶液;再用去离子水将制备的高盐排水进行稀释,稀释至与上述MgCl2溶液对应的5个Mg2+浓度,并将15 mL氨氮标液和15 mL磷标液进行混合。将上述5份Mg2+高盐排水和5份不同浓度的MgCl2溶液分别投加到上述氮磷混合液中,反应pH、N∶P摩尔比、温度、转速和反应时间分别设置为9、1∶1、25 ℃、100 r·min−1和20 min,并设置3个平行组。反应过程中实时检测pH变化,反应20 min后测定反应前后磷的变化量,计算磷回收率。

    第2组实验主要考察pH对高盐排水回收磷效果的影响。选择Mg2+浓度梯度为上述实验中磷回收率最高的1组,探究在其余条件不变的情况下,当pH为7、8、9、10和11时磷的回收率。

    在南疆的农田排水中,Mg2+、K+、Ca2+、Na+CO23HCO3SO24和Cl等离子的占比较高[32],可能会对磷回收产生一定的影响。因此,本研究进一步探讨了干扰离子对高盐排水回收磷的影响。高盐排水中除Mg2+外还有K+、Ca2+和Na+等金属阳离子,他们之间存在一定的化学相似性。因此,与阴离子相比,金属阳离子对氮磷回收反应的干扰性较大,应优先考虑金属阳离子对高盐排水回收磷的影响。分别配制浓度为0.001 mol·L−1和0.01 mol·L−1的KCl、CaCl2、和NaCl溶液,氮磷标液的配制同上,Mg2+浓度的选择1.4中磷回收率较高的一组。具体实验操作如下:以K+为例,取15 mL氨氮标液和15 mL磷标液配制成2份氮磷混合标液,分别加入15 mL 0.001 mol·L−1、0.01 mol·L−1的KCl溶液,再加入15 mL MgCl2溶液,反应pH、N∶P摩尔比、温度、转速和反应时间分别设置为9、1∶1、25 ℃、100 r·min−1和20 min,并设置3个平行组;Ca2+和Na+实验设置同上。由于农田排水中的CO23含量较低[33],本研究未考虑CO23对磷回收的影响,阴离子仅探讨HCO3SO24和Cl对磷回收的影响。分别配制0.001 mol·L−1和0.01 mol·L−1 2个质量浓度梯度的 Na2SO4、NaHCO3和NaCl溶液,其余反应条件同上,反应20 min后测定反应前后磷的变化量,计算磷回收率。

    由于影响氮磷回收的因素较多,本实验设置了三因素四水平正交实验(L34)[34]探讨pH(8、9、10、11)、Mg∶P(1.0、1.5、2.0、2.5)和N∶P(1.0、1.5、2.0、2.5)摩尔比对磷回收的影响(表1),以获得最优的反应条件。其中,反应温度设置25 ℃、转速100 r·min−1,反应时间20 min。实验过程中,通过改变pH、Mg∶P摩尔比和N∶P摩尔比的不同组合探究对磷回收率的影响。

    表 1  高盐排水回收氮磷影响因素正交实验表
    Table 1.  Orthogonal experiment table of influencing factors of nitrogen and phosphorus recovery by high salt drainage
    实验号pHMg∶PN∶P
    ABC
    181.01.0
    291.51.5
    3102.02.0
    4112.54.0
     | Show Table
    DownLoad: CSV

    土壤和水体中的盐分离子测定方法如下:采用EDTA络合滴定法测定Ca2+和Mg2+[35];采用火焰光度法测定K+和Na+[36];采用双电极法测定CO23HCO3[37];采用硝酸银滴定法测定Cl [38];采用EDTA间接滴定法测定SO24[39]

    MgCl2和高盐排水对磷的回收效果用TP回收率表示,TP根据式(4)进行计算。

    stringUtils.convertMath(!{formula.content}) (4)

    式中:Re为TP回收率;C1为溶液中初始磷质量浓度,mg·L−1C2为反应溶液中磷剩余质量浓度,mg·L−1

    溶液中的TP浓度采用钼锑抗分光光度法进行测定[40];溶液pH采用FiveEasy PlusTM FE28 pH计测量;反应沉淀物置于50 ℃烘箱中干燥3 h,采用扫描电镜(SEM-EDS)、X射线衍射(diffraction of x-rays, XRD)分析沉淀物形态特征及元素组成。

    利用IBM SPSS Statistics(23,IBM,美国)进行数据分析,分析过程中出现的Ki为表中各列因素水平i(1,2,3,4)的磷回收率之和后的均值,Kij为在j(A,B,C)因素下i的磷回收率之和后的均值,极差R为每列因素Ki中最大值和最小值之差;采用Origin(2019b,OriginLab,美国)、Excel(2020,微软,美国)进行数据绘图;采用Jade(6.5,MDI,美国)进行XRD衍射图谱分析。

    农田排水中SO24含量最高,Na+和Cl居于其次,金属阳离子含量适中,CO23HCO3占比较低(表2),这主要与新疆地区特殊的土壤条件有关[41]。为了满足实验需求,本实验对土壤淋洗液采用离子富集方法进行了处理。由表2可知,经过5次浓缩处理后,金属阳离子、SO24和Cl浓度显著提高,其中Mg2+质量浓度更是达到了2.14 g·L−1。本实验制备的高盐排水中Mg2+质量浓度达到了2.14 g·L−1,Mg2+质量浓度低于吕媛等[24]实验所使用的海水水样(7.00 g·L−1),但高于张萍等[23]使用的海水水样(1.22 g·L−1)。HCO3稳定性较差,经过振荡操作后,样品中HCO3以CO2形式逸出,致使其含量降低。

    表 2  高盐排水主要离子成分及含量
    Table 2.  Main ion composition and content of high salt drainage mg·L−1
    排水Ca2+Mg2+Na+K+
    高盐排水1 532.00±287.002 136.00±565.3455 461.58±1024.221 006.56±105.25
    农田排水512.10±101.68366.10±93.761 071.28±206.39176.98±20.13
    排水CO23HCO3ClSO24
    高盐排水未检出164.57±20.3571 680.80±787.4527 058.75±458.54
    农田排水23.43±4.72316.66±75.441 422.70±351.882 331.84±301.03
     | Show Table
    DownLoad: CSV

    高盐排水中Mg2+质量浓度约为0.2~0.6 g·L−1,为了提高Mg2+质量浓度,可以对高盐排水进行浓缩(膜蒸馏、浸渍)处理。为满足实验需求,采用了多次浸渍制得Mg2+质量浓度为2.14 g·L−1高盐排水。多次浸渍可以有效提高高盐排水中Mg2+含量,以此来降低高盐排水的投加量,可避免二次污染现象的发生。

    在投加MgCl2溶液和投加高盐排水的2个实验组中,TP平均回收率均随Mg2+质量浓度升高呈现递增的趋势(图1图2)。当Mg2+质量浓度为1.0 g·L−1时,在投加MgCl2溶液的实验组中,TP平均回收率达到84.15%;在投加高盐排水的实验组中,TP的回收率为83.65%,比前者略低。对于同一Mg2+质量浓度下的MgCl2溶液和高盐排水,当n(Mg)∶n(P)<1.9时,高盐排水的TP平均回收率近似或略高于MgCl2溶液。其原因可能是,高盐排水成分较为复杂,除Mg2+外还含有大量的K+、Ca2+、Na+CO23HCO3SO24和Cl等离子,正是由于这些离子的存在,与反应溶液中的Mg2+进行竞争[42],其争夺磷的能力要强于单纯的MgCl2溶液,促进了磷的回收。以最典型Ca2+为例,钙镁离子在元素周期表中位列同一族,化学性质极其相似,Ca2+易与溶液中的磷酸根离子反应,生成难溶于水的羧基磷灰石(Ca5OH(PO4)3)和磷酸钙等物质。当钙镁摩尔比不同时,对反应的影响也不同,具体分析在干扰离子实验中说明。另外,当Mg2+质量浓度低于0.6 g·L−1时,溶液中n(Mg)∶n(P)<1,两者的磷回收率较低;随着Mg2+质量浓度的提高,溶液中n(Mg)∶n(P)接近1,TP回收速率有了较为显著的提升。当Mg2+质量浓度达到1.0 g·L−1,溶液中n(Mg)∶n(N)∶n(P)=1.9:1∶1,此时,磷的平均回收率能够达到83.85%。

    图 1  投加不同镁源对总磷回收效果
    Figure 1.  Effect of adding different magnesium sources on total phosphorus recovery
    图 2  pH环境对不同镁源回收总磷的影响
    Figure 2.  Effect of pH environment on total phosphorus recovery from different magnesium sources

    图2反映出常规MgCl2和高盐排水的TP回收率均随pH升高整体呈现先升高后降低的趋势。当pH为7时,MgCl2和高盐排水对TP的回收率最低,分别为13.21%和14.61%,表明中性环境不利于反应的进行;当溶液环境逐渐转变为碱性时,TP回收率逐渐升高,并在pH为10时TP的回收率分别达到临界值86.42%和87.19%;临界值过后,两者的TP回收率随pH升高急剧降低,当pH为11时,两者的TP回收率仅为13.69%和26.21%。MgCl2溶液在pH为9时的TP回收率为85.49%,接近临界值86.42%;相比之下,此时高盐排水对TP回收率仅为81.61%;当pH为11时,高盐排水对TP回收率比MgCl2溶液高。反应结束后,溶液中高盐排水中TP剩余质量浓度要高于MgCl2,且在Mg2+质量浓度为0.2 g·L−1时最为显著。造成这些现象的原因可以归结于高盐排水复杂的离子环境。由于共存离子的存在,一方面使反应所需的pH提高;另一方面,当Mg2+浓度较低时,会使NH4+、PO42-与Mg2+的碰撞概率降低,降低反应速率[43]。吴健等[19]、鲍小丹等[44]发现,生成鸟粪石的最适pH为9.0;李洪刚等[17]、畅萧等[45]发现,当pH为9.5时,有利于鸟粪石的回收;李爱秀等[46]在优化猪场沼液氮磷工艺参数时得出最适pH为10。这些研究结果与本研究获得的结果一致。

    图3表明,干扰离子对磷回收产生了不同程度的影响。TP初始质量浓度为172 mg·L−1,当溶液中只有Mg2+存在时,反应后溶液中TP剩余量53.83 mg·L−1。当金属阳离子浓度为0.001 mol·L−1时, K+、Ca2+、Na+实验组中TP剩余量依次为59.40、55.69、58.16 mg·L−1;当离子浓度上升至0.01 mol·L−1时,K+、Ca2+、Na+实验组中TP剩余量分别为50.74、28.46、55.07 mg·L−1(图3(a))。这表明Ca2+含量对磷的回收产生了较大影响。当Ca2+离子浓度较低时,反应溶液中磷剩余量与不存在干扰离子的对照组相比略高,此时Ca2+造成的影响较弱;随离子浓度的升高,Ca2+对反应的影响逐渐增强。Ca2+浓度提升10倍,溶液中TP剩余量由55.69 mg·L−1下降至28.46 mg·L−1。TP含量的降低表明,Ca2+浓度的升高对磷的回收起到了显著的促进作用。当溶液中n(Ca)∶n(Mg)<0.5时,反应以Mg2+消耗为主,反应主产物为MgNH4PO4·6H2O;当n(Ca)∶n(Mg)>0.5时,反应朝Ca2+与磷酸根离子结合的方向进行,此时的反应产物主要是磷灰石和磷酸钙等钙形式的化合物[47-48]。如果单从回收磷的角度考虑,新产物的生成进一步促进了磷的回收,但这会对氮磷回收产物中鸟粪石的纯度产生不利影响。生成的磷酸钙沉淀附着在鸟粪石表面,会抑制鸟粪石的生长,降低鸟粪石的纯度[49]。与Ca2+相比,K+、Na+质量浓度对磷的回收影响较小。

    图 3  金属阳离子及阴离子对磷剩余量的关系
    Figure 3.  Relationship between metal cations and anions on residual phosphorus

    磷初始质量浓度为172 mg·L−1,加入MgCl2反应20 min,反应后溶液中磷剩余量54.45 mg·L−1;而分别投加0.001 mol·L−1 SO24HCO3和Cl的实验组磷剩余量依次为63.96、60.60和58.34 mg·L−1(图3(b));当干扰离子浓度上升至0.01 mol·L−1时,SO24HCO3和Cl的实验组磷剩余量分别为64.50、64.93和55.11 mg·L−1。在投加0.001 mol·L−1和0.01 mol·L−1SO24HCO3实验组中,磷剩余量均高于对照组,投加Cl的实验组磷剩余量变化不大。以上结果表明,阴离子的存在对磷的回收产生了抑制作用。导致TP剩余量略高的主要原因如下:SO24带负电,易与金属离子或铵根结合,使溶液中Mg∶P和N∶P摩尔比降低,抑制反应进行[50]HCO3属于弱酸根离子,无法与大量OH共存,当溶解pH较高时,为了维持溶液中的离子平衡,反应向生成CO2和H2O方向进行,溶液中大量OH被消耗使得溶液pH降低,同样会抑制反应进行[51],而Cl影响甚微。因此,阴离子的存在对磷回收也存在一定干扰,这种干扰表现为抑制作用,并且这种抑制作用不会随离子浓度的升高对磷回收产生较大的影响。因此,按照磷剩余量由高到低将各离子对氮磷回收的影响大小排序如下:当离子强度较低时,SO24>HCO3>K+>Na+>Cl>Ca2+;离子强度较高时,HCO3>SO24>Na+>Cl>K+>Ca2+

    对三因素四水平正交实验的极差分析。由表3K1K2K3K4值可以看出,随着Mg∶P和N∶P摩尔比的增大,磷回收率有所提高,并在n(Mg)∶n(P)=2.5∶1、n(N)∶n(P)=4∶1时磷回收率达到最高。KiB由31.08增加至71.37,与Kic相比,KiBK值间增幅较大,这表明Mg∶P对磷回收影响要大于N∶P。当pH在8~10,磷回收率随pH升高而升高,当pH超过11时,K值由K3A的77.33骤降到K4A的19.04,表明磷回收率急剧降低。因此,pH为10是高盐排水回收磷的最适值,稍高于其他文献利用纯MgCl2回收氮磷获得的最适pH(9.5)[52]。当超过最适值时,pH会对高盐排水回收磷的效率产生较大影响,不利于磷的回收。R值的排序为RA>RB>RC,表明pH是决定高盐排水回收磷效率的首要因素,Mg∶P、N∶P摩尔比位居其次,这与前面对于K值的分析结果一致。由图4可见,3条数据线的峰值分别对应pH=10、n(Mg)∶n(P)=2.5∶1、n(N):n(P)=4∶1,该组合即为极差分析得出的最佳反应组合。

    表 3  高盐排水磷平均回收率主体间效应检验
    Table 3.  Inter subject effect test of average phosphorus recovery rate by high salt drainage
    实验号pHMg∶PN∶P磷回收率/%
    ABC
    181.001.0028.51
    281.501.5039.25
    382.002.0063.76
    482.504.0079.50
    591.001.5042.04
    691.501.0078.92
    792.004.0080.14
    892.502.0091.83
    9101.002.0049.33
    10101.504.0085.27
    11102.001.0088.88
    12102.501.5085.83
    13111.004.004.42
    14111.502.0020.44
    15112.001.5022.95
    16112.501.0028.33
    K152.7631.0856.16
    K273.2355.9747.52
    K377.3363.9356.34
    K419.0471.3762.33
    R58.2940.2914.81
    SS8 512.333 679.26446.06
     | Show Table
    DownLoad: CSV
    图 4  Kij与总磷回收率的关系
    Figure 4.  Relationship between Kij and total phosphorus recovery

    采用SPSS软件对实验数据进行了进一步分析,处理因素pH、Mg∶P摩尔比、N∶P摩尔比分别用A、B、C表示,并按顺序输入数值,建立对应数据库[53]。分析结果如表4所示。

    表 4  高盐排水磷平均回收率主体间效应检验
    Table 4.  Inter subject effect test of average phosphorus recovery rate by high salt drainage
    来源平方和自由度均方F显著性
    修正模型12 637.6491 404.1833.680.000
    截距49 439.52149 439.521 185.650.000
    A8 512.3332 837.4468.050.000
    B3 679.2531 226.4229.410.001
    C446.063148.683.570.087
    误差250.19641.70
    总计62 327.3516
    修正后总计12 887.8315
     | Show Table
    DownLoad: CSV

    表4中的方差分析结果可以看出,A和B 2个因素对实验结果有显著影响(P<0.001),即pH和Mg∶P摩尔比对磷回收的影响显著。N∶P(P>0.05)对磷回收无显著影响。处理因素影响顺序为A>B>C,这与前面极差分析得出的结论一致。SPSS单变量方差分析结果表明,当pH=10、n(Mg):n(P)=2.5∶1、n(N):n(P)=4∶1时,对应的磷回收率分别为77.33%、71.37%和62.33%,该组合即为最佳组合,该分析结果与极差分析结果一致。

    采用XRD和扫描电镜对反应产物进行了表征分析[54-55]图5(a)为pH=9、n(Mg)∶n(N)∶n(P)=1∶1∶1、转速100 r·min−1、反应时间20 min和温度25 ℃时,以MgCl2(图5(a))和高盐盐水(图5(b))分别作为镁源的沉淀产物扫描电镜图。由图5(a)可以发现,MgCl2作为镁源的沉淀产物晶体呈轴状,长度为100~200 μm,沉淀整体直观呈白色,有玻璃光泽,质地较脆,与卜凡等[56]和ZHANG等[57]对鸟粪石的表征结果相符。后续经XRD分析后,证明该沉淀物为鸟粪石[58-59]图5(b)为n(Mg)∶n(N)∶n(P)=1∶1∶1时高盐盐水的沉淀产物电镜图。由图5(b)中可以看到许多长条状结构,结构较紧密,与MgCl2镁源沉淀产物相比,该结构更为细长,放大观察发现表面附着许多细小的颗粒,具备鸟粪石基本结构。这些长条状结构周围有较多板快结构,初步断定为反应副产物[60]。除此之外,由图5(b)中还观测到“晶体粘连”现象,可推断是有机物的粘附作用所致[44]图5(c)为n(Mg)∶n(N)∶n(P)=1.9∶1∶1时高盐排水沉淀产物电镜图。由图5(c)中已经看不到“粘连”现象,生成的鸟粪石晶体形态优于镁磷摩尔比为1:1时的沉淀产物,更加与鸟粪石的形态吻合,印证了Mg2+含量对鸟粪石形态的影响。在图5(c)中还能观测到较多的不定形的磷酸钙晶体。其产生原因是,由于实验采用的高盐排水中Ca2+、Mg2+摩尔比为0.46,随反应进行会产生不定形的磷酸钙晶体,后续XRD衍射图谱中出现的宽峰同样证明了磷酸钙的存在。K+在高盐排水中占比较高,与Mg2+PO24PO42-结合生成MgKPO4·6H2O(MKP)[57]

    图 5  不同Mg∶P摩尔比条件下,不同镁源沉淀产物电镜图
    Figure 5.  SEM images of phosphorus precipitates from different magnesium sources under different Mg∶P molar ratios

    图6n(Mg)∶n(N)∶n(P)=1.9∶1∶1时的沉淀产物XRD图。在MgCl2作为镁源的沉淀产物XRD衍射图谱中,(016)、(021)、(027)、(032)和(033)几个尖峰位置与标准衍射图谱(图6(c))中尖峰位置基本一致(图6(b)),整体走势相似,可确定反应产物为鸟粪石。高盐排水镁源沉淀产物的XRD图谱整体走势与标准比对卡大致相似(图6(a)),但也存在着局部差异。尖峰出现的位置表明,沉淀产物中有鸟粪石的存在;但尖峰最高点比标准衍射图谱略高,一方面说明晶体状态较好,另一方面表明反应沉淀物中存在其他物质,尖峰(027)比标准衍射图谱中高许多,经分析为SiO2。其原因是,由于农田排水中粒径细小的粘土颗粒以硅酸盐矿物的形式附着在鸟粪石表面,致使其在沉淀物中被检测到。(021)~(033)处宽峰出现的位置也证明了该反应存在其他产物。通过Jade 6.5软件分析,20°~40°处出现的宽峰主要为钙的化合物,大量钙化合物的生成,致使20°~40°处宽峰的峰高急剧升高[54]。此现象产生的原因是:由于钙镁离子是同族元素,化学性质极其相似,与磷酸根结合生成磷酸钙、磷灰石等不溶于水的物质[47,59]。前述结果再一次验证了钙离子对磷的回收产生了较大的影响。从XRD和扫描电镜联合检测结果可推测,高盐盐水镁源沉淀产物主要为鸟粪石,并伴有磷酸钙、磷灰石和硅酸盐矿物等物质生成。

    图 6  MgCl2镁源和高盐排水镁源回收磷沉淀产物的XRD衍射图谱
    Figure 6.  XRD patterns of phosphorus precipitates recovered by magnesium sources of MgCl2 and high salt drainage

    以上研究结果表明,采用高盐排水为镁源可以实现与传统化学镁源相似的氮磷回收效率,磷回收率均在80%以上,所需高盐排水与模拟养殖废水体积之比约为1∶8,因此,不会产生严重的二次污染。目前,国内外对于MAP沉淀法相关研究多数集中在探究反应条件方面[8,13-15],对改善镁源方面的研究较少。本研究以寻求廉价镁源为出发点,与新疆高盐排水问题相结合,既充分利用了盐渍水中的镁源,又回收了养殖废水中的氮磷,所得鸟粪石可以制成肥料返入棉田,是一种可行的废物资源化利用模式。本研究得出的最佳组合为pH=10、n(Mg)∶n(P)=2.5、n(N):n(P)=4∶1。养殖废水中氨氮含量往往比磷含量高出2倍以上,可满足n(N)∶n(P)生成鸟粪石的基本要求,同时可以通过改变高盐排水投加量和投加浓度控制适宜的Mg与P的摩尔比。另外,根据中国化工网查询到工业级六水合氯化镁市价为300~900元·t−1不等。按照均价600元·t−1n(Mg)∶n(P)=1.9,处理1 m3磷含量为200 mg·L−1养殖废水,需投加2.46 kg MgCl2·6H2O,可生产1.59 kg鸟粪石,氯化镁成本为1 500元·t−1。相比之下,高盐排水成本低廉,回收鸟粪石价格在5 000~38 000元·t−1不等,TP回收率在85%以上时可产生较大的经济效益。综上所述,在新疆南疆地区以农田高盐排水为替代镁源回收养殖废水中氮磷具有广阔的应用前景。

    1) 当pH=9、温度25 ℃、n(N)∶n(P)=1∶1、转速100 r·min−1n(Mg)∶n(N)∶n(P)=1.9∶1∶1时,高盐排水对TP回收率可达83.85%;在相同质量浓度的Mg2+下,随pH升高,两者对TP回收率逐渐升高,并在pH为10时回收率均达到最大值,分别为86.42%和87.19%;高盐排水和MgCl2对TP的回收效果相似,但高盐排水回收磷所需的体系pH比MgCl2溶液略高。

    2) HCO3SO24对磷回收表现为抑制作用,Ca2+对磷回收表现为促进作用,K+、Na+、Cl对磷回收的影响较小。

    3) pH、Mg∶P摩尔比、N:P摩尔比是高盐排水回收磷的重要因素,影响的主次因素为RPH>RMg∶P>RN∶P。本研究中高盐排水回收磷的最佳组合条件为pH=10、n(Mg)∶n(P)=2.5、n(N)∶n(P)=4。

    4) 不同Mg2+含量的农田排水镁源对氮磷的回收产物中均观测到了鸟粪石晶体的存在。与MgCl2镁源的沉淀产物相比,含低浓度Mg2+的农田排水回收产物中晶体呈细长轴状,存在有机物的粘连现象;而含高浓度Mg2+的农田排水回收产物中鸟粪石晶体形态与MgCl2镁源相似。因此,采用农田高盐排水回收养殖废水中的氮磷,可为替代MAP沉淀法中大规模使用的商业镁源产品提供一种新思路,也可在一定程度上缓解水体盐渍化的环境问题。

  • 图 1  PBC改性前后傅里叶红外光谱(FT-IR)图

    Figure 1.  Fourier transform-infrared (FT-IR) spectra of PBC before and after the modification

    图 2  PBC的SEM图

    Figure 2.  SEM images of PBC

    图 3  PBC投加量对SMX去除的影响

    Figure 3.  Effect of PBC dosage on SMX removal

    图 4  pH对去除SMX的影响

    Figure 4.  Effect of pH on SMX removal

    图 5  PBC的pHpzc测定

    Figure 5.  pHpzc measurement of PBC

    图 6  吸附时间对去除SMX的影响

    Figure 6.  Effect of adsorption time on SMX removal by BC and PBC

    图 7  阴离子对去除SMX的影响

    Figure 7.  Effect of coexistence anions on SMX removal

    图 8  PBC对SMX的吸附动力学模型

    Figure 8.  Kinetic model for SMX adsorption on PBC

    图 9  PBC重复使用对吸附SMX的影响

    Figure 9.  Effect of the regeneration of PBC on SMX removal

    表 1  PBC的比表面积与孔径结构分析

    Table 1.  Analysis of specific surface area and pore structure of PBC

    样品SBET/(m2·g−1)Vt/(cm3·g−1)Vmic/(cm3·g−1)dp/nm
    吸附前391.00.194 60.113 11.990 7
    吸附后273.20.104 70.098 01.963 8
    样品SBET/(m2·g−1)Vt/(cm3·g−1)Vmic/(cm3·g−1)dp/nm
    吸附前391.00.194 60.113 11.990 7
    吸附后273.20.104 70.098 01.963 8
    下载: 导出CSV

    表 2  PBC对SMX的吸附动力学拟合参数

    Table 2.  Kinetics parameters for SMX adsorption on PBC

    样品准一级动力学方程准二级动力学方程颗粒内扩散方程
    qe/(mg·g−1)k1/min−1R2kF/(mg·g−1)n/(g·(mg·min)−1)R2k3/(mg·(g·min1/2)−1)R2
    BC7.552.72×10−20.956 613.877.21×10−20.999 11.230.992 4
    PBC11.691.56×10−20.861 024.794.03×10−20.997 72.830.972 1
    样品准一级动力学方程准二级动力学方程颗粒内扩散方程
    qe/(mg·g−1)k1/min−1R2kF/(mg·g−1)n/(g·(mg·min)−1)R2k3/(mg·(g·min1/2)−1)R2
    BC7.552.72×10−20.956 613.877.21×10−20.999 11.230.992 4
    PBC11.691.56×10−20.861 024.794.03×10−20.997 72.830.972 1
    下载: 导出CSV

    表 3  PBC对SMX的吸附等温线拟合参数

    Table 3.  Isotherms parameters for SMX adsorption on PBC

    T/℃Langumuie模型Freundlich模型
    qm/(mg·g−1)kL/(L·mg−1)R2KF/(mg·g−1)nR2
    28343.432.030.874 719.444.280.980 2
    29844.592.280.893 222.624.150.983 2
    31345.792.410.874 324.574.030.980 6
    T/℃Langumuie模型Freundlich模型
    qm/(mg·g−1)kL/(L·mg−1)R2KF/(mg·g−1)nR2
    28343.432.030.874 719.444.280.980 2
    29844.592.280.893 222.624.150.983 2
    31345.792.410.874 324.574.030.980 6
    下载: 导出CSV

    表 4  PBC对SMX的吸附热力学参数

    Table 4.  Thermodynamic parameters of SMX adsorption on PBC

    温度/KΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(J·(K·mol)−1)
    283−6.985.7745.14
    298−7.73
    313−8.33
    温度/KΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(J·(K·mol)−1)
    283−6.985.7745.14
    298−7.73
    313−8.33
    下载: 导出CSV
  • [1] LIU L, HU S, SHEN G, et al. Adsorption dynamics and mechanism of aqueous sulfachloropyridazine and analogues using the root powder of recyclable long-root, Eichhornia crassipes[J]. Chemosphere, 2018, 196(3): 409-417.
    [2] 杨帅, 余晓敏, 郭学博, 等. 二氧化氯对典型磺胺类抗生素的降解机制[J]. 环境化学, 2019, 38(1): 38-45.
    [3] 陈哲, 吴立明, 苏怡. 生活饮用水中磺胺类抗生素污染现状及其控制的研究进展[J]. 上海预防医学, 2018, 30(5): 80-83.
    [4] 吴娜娜, 钱虹, 李亚峰. 水中磺胺类抗生素去除技术研究进展[J]. 建筑与预算, 2017, 10(6): 43-50.
    [5] QIU J R, ZHAO T, LIU Q Y, et al. Residual veterinary antibiotics in pig excreta after oral administration of sulfonamides[J]. Environmental Geochemistry & Health, 2016, 38(2): 549-556. doi: 10.1007/s10653-015-9740-x
    [6] LI X D, YU H X, XU S S, et al. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage[J]. Ecotoxicology and Environmental Safety, 2013, 92(3): 297-302.
    [7] 郑吉, 周振超, 陈芳, 等. 3种常规消毒方法对磺胺类抗性基因削减效果的比较[J]. 环境科学, 2017, 38(4): 1497-1505.
    [8] LEVCHU I, RUEDA M J J, SILLANPÄÄ M. Removal of natural organic matter (NOM) from water by ion exchange: A review[J]. Chemosphere, 2017, 192: 90-104.
    [9] 刘吉开, 万甜, 程文, 等. 饮用水中典型磺胺类抗生素的深度处理工艺对比[J]. 净水技术, 2018, 37(7): 44-49.
    [10] WANG C, YAO X, WANG P, et al. Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation[J]. Journal of Alloys & Compounds, 2018, 748(5): 314-322.
    [11] ZHANG C, LAI C, ZENG G M, et al. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution[J]. Water Research, 2016, 95(14): 103-112.
    [12] RUI L, ZHANG Y L, CHU W L, et al. Adsorptive removal of antibiotics from water using peanut shells from agricultural waste[J]. RSC Advances, 2018, 24(8): 13546-13555. doi: 10.1039/C7RA11796E
    [13] 王栋纬, 宋燕西, 冶晓凡, 等. 氧化石墨烯对磺胺甲恶唑和磺胺甲基嘧啶的吸附性能研究[J]. 分析化学, 2018, 46(2): 211-216. doi: 10.11895/j.issn.0253-3820.171279
    [14] WU J, ZHAO H, CHEN R, et al. Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater[J]. Journal of Chromatography B, 2016, 1029-1030: 106-112. doi: 10.1016/j.jchromb.2016.07.018
    [15] NAM S W, JUNG C, LI H, et al. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution[J]. Chemosphere, 2015, 136(3): 20-26.
    [16] MOUNI L, MERABET D, BOUZAZA A, et al. Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone[J]. Desalination, 2013, 276(1): 148-153.
    [17] AHMAD M, LEE S, RAJAPAKSHA A, et al. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures[J]. Bioresource Technology, 2013, 143(1): 615-622.
    [18] FENG Z, ZHU L. Sorption of phenanthrene to biochar modified by base[J]. Frontiers of Environmental Science & Engineering, 2018, 12(2): 1.
    [19] ZHANG S, ZHANG H, CAI J, et al. Evaluation and prediction of cadmium removal from aqueous solution by phosphate-modified activated bamboo biochar[J]. Energy & Fuels, 2017: 32(4): 4469-4477.
    [20] 张江, 孙宁宁, 张景环, 等. 改性石墨烯-生物炭复合材料对磺胺类抗生素的吸附[J]. 山东化工, 2017, 46(23): 39-39. doi: 10.3969/j.issn.1008-021X.2017.23.016
    [21] 房聪, 房烽, 张黎明, 等. 秸秆活性炭活化过一硫酸盐降解酸性橙7[J]. 环境科学学报, 2018, 38(1): 242-250.
    [22] 朱青. 改性生物炭对水中磺胺嘧啶的去除试验研究[D]. 济南: 山东师范大学, 2018.
    [23] CICEK F, DURSUN O, AHMET O, et al. Low cost removal of reactive dyes using wheat bran[J]. Journal of Hazardous Materials, 2007, 146(1): 408-416.
    [24] LUCIDA H, PARKIN J E, UNDERLAND V B. Kinetic study of the reaction of sulfamethoxazole and glucose under acidic conditions: I. Effect of pH and temperature[J]. International Journal of Pharmaceutics, 2000, 202(1): 47-62.
    [25] ZHENG H, WANG Z Y, JIAN Z, et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181(56): 60-67.
    [26] TEIXIDÓ M, PIGNATELLO J J, BELTRÁN J L, et al. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar)[J]. Environmental Science & Technology, 2011, 45(23): 10020-10027.
    [27] CHIOU C T, MALCOML R L, BRINTON T I, et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids[J]. Environmental Science & Technology, 1986, 20(5): 502-508.
    [28] TAQVI S I H, HASANY S M, BHANGER M I. Sorption profile of Cd (II) ions onto beach sand from aqueous solutions[J]. Journal of Hazardous Materials, 2007, 141(1): 37-44. doi: 10.1016/j.jhazmat.2006.06.080
    [29] DANMALIKI G I, SALEH T A. Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels[J]. Journal of Cleaner Production, 2016, 117: 50-55. doi: 10.1016/j.jclepro.2016.01.026
    [30] 吕迪. 改性活性炭吸附水中内分泌干扰物双酚A的研究[D]. 杭州: 浙江工业大学, 2017.
    [31] LIU T, XIE Z, ZHANG Y, et al. Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water[J]. RSC Advances, 2017, 61(7): 38279-38286. doi: 10.1039/C7RA06730E
  • 加载中
图( 9) 表( 4)
计量
  • 文章访问数:  7938
  • HTML全文浏览数:  7938
  • PDF下载数:  170
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-01
  • 录用日期:  2019-10-18
  • 刊出日期:  2020-06-01
王楠, 吴玮, 杨春光, 黄天寅, 陈家斌, 杨晶晶. 盐酸改性松针生物炭对磺胺甲噁唑的吸附性能[J]. 环境工程学报, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002
引用本文: 王楠, 吴玮, 杨春光, 黄天寅, 陈家斌, 杨晶晶. 盐酸改性松针生物炭对磺胺甲噁唑的吸附性能[J]. 环境工程学报, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002
WANG Nan, WU Wei, YANG Chunguang, HUANG Tianyin, CHEN Jiabin, YANG Jingjing. Adsorption performance of hydrochloric acid-modified pine needle biochar on sulfamethoxazolef[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002
Citation: WANG Nan, WU Wei, YANG Chunguang, HUANG Tianyin, CHEN Jiabin, YANG Jingjing. Adsorption performance of hydrochloric acid-modified pine needle biochar on sulfamethoxazolef[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1428-1436. doi: 10.12030/j.cjee.201908002

盐酸改性松针生物炭对磺胺甲噁唑的吸附性能

    通讯作者: 吴玮(1974—),女,博士,副教授。研究方向:污水处理与回用技术。E-mail:wuwei@usts.edu.cn
    作者简介: 王楠(1994—),女,硕士研究生。研究方向:污水处理与回用技术。E-mail:1020207024@qq.com
  • 1. 苏州科技大学环境科学与工程学院,苏州 215009
  • 2. 同济大学环境科学与工程学院,上海 200092
基金项目:
苏州市科研计划资助项目(SS201722);国家自然科学基金资助项目(51778391)

摘要: 以松针为原料,使用盐酸活化制备获得松针生物炭(PBC),将其用于吸附去除水体中的磺胺甲噁唑(SMX)。分别考察了投加量、pH、吸附时间、阴离子浓度等因素对PBC吸附性能的影响,采用吸附动力学模型和吸附等温模型对吸附过程进行了拟合分析。FT-IR、SEM和BET表征结果证明,经盐酸活化后的松针生物炭表面疏松多孔,含有羧基和羟基等含氧官能团。吸附实验结果表明:当PBC投加量为0.4 g·L−1时,吸附60 min后SMX去除率可达97.1%;当pH为4.0~8.0时,随着pH升高,PBC对SMX的去除率下降;CO23HCO3对吸附反应起抑制作用,CO23抑制作用更强,SO24对吸附过程影响较小;PBC对SMX的吸附可用准二级动力学方程来描述,与Freundlich等温方程式拟合度更好(R2>0.98);热力学数据表明PBC对SMX的吸附过程是自发的吸热反应;5次实验后PBC对SMX的去除率仍在40%以上。考虑到PBC吸附效果好,可重复利用,说明PBC具有良好的应用前景,研究可为水污染治理的应用提供参考。

English Abstract

  • 近年来,随着我国医疗、畜禽和水产养殖等行业快速发展,抗生素的用量日益增加。磺胺甲噁唑(sulfamethoxazole, SMX)作为一种人工合成的广谱抗菌药物,频繁被用作渔药、兽药等大量排入环境水体中[1-3]。有关磺胺甲噁唑在不同水体环境中对不同对象造成的影响已有相关报道[4-6]。长期摄入SMX会损伤机体免疫力、影响动物发育、对地表水和地下水产生不可修复的损坏,严重破坏生态环境。

    有研究表明,在废水处理中,传统的水处理技术如臭氧法[7]、离子交换法[8]对SMX的去除效果并不理想,光催化降解、生物降解等处理方法尽管已被证实能够有效去除SMX,但其价格昂贵且会生成中间产物[9-10]。吸附法是一种成熟的水处理方法,因吸附剂具有简单高效、可以重复利用等特点,故其应用较为广泛,被认为是能有效去除SMX的方法之一[11-12]。常见的吸附剂有活性炭、石墨烯、碳纳米管等,对污染物具有良好的吸附去除效果[13-14]。NAM等[15]用经过超声处理后的氧化石墨烯吸附磺胺甲噁唑,去除率约为30%。MOUNI等[16]用硫酸氧化改性杏壳活性炭吸附水溶液中Pb2+,最大吸附量为21.38 mg·g−1。但吸附剂的经济性、环保性是影响其广泛应用的首要条件,因此,将廉价易得的生物质制备成生物炭材料近年来广受关注。

    松针作为生物炭材料的一种,具有四季均可采收、高产出量的特点,将废弃的松针用于磺胺甲恶唑的去除,既为水处理技术提供了一种新思路,又完成了废弃松针的资源化转化。AHMAD等[17]利用在300、500、700 ℃下制备得到的松针生物炭吸附三氯乙烯,结果表明,700 ℃制备得到的松针生物炭表面疏水性高、表面积大、有利于吸附,其对三氯乙烯的去除效果最好。改性会使生物炭的孔隙结构、比表面积等发生改变,合适的改性方法对废水中污染物的去除有实际应用意义。改性方法有许多,包括金属负载改性和氧化改性等[18]。常用的氧化剂有盐酸、硝酸、氢氧化钠、过氧化氢等。ZHANG等[19]用磷酸盐改性后的竹炭生物炭,其吸附Cd(Ⅱ)能力较原始竹炭提高近10倍,对Cd(Ⅱ)的去除率可达85.78%。张江等[20]使用海藻酸钠和氯化铁溶液制备改性石墨烯-生物炭复合材料吸附磺胺嘧啶,平衡时吸附量在20 mg·kg−1以上。本研究以常见的松针为原料,利用盐酸制备出松针生物炭,吸附去除水体中的磺胺甲噁唑,通过FT-IR、SEM、BET对其进行了微观表征,分别考察了PBC投加量、pH、阴离子等对SMX去除效果的影响,并采用吸附等温模型和吸附动力学模型进行分析研究,从而探讨了其吸附机制,为生物炭的实际应用提供参考。

    • 松针收集于苏州某公园内,磺胺甲噁唑(C10H11N3O3S)购于Sigma-Aldrich,盐酸(HCl)、硫酸(H2SO4)、氢氧化钠(NaOH)均为分析纯,实验中用水为超纯水。

    • 将松针剪至3 cm左右,在已有研究[21]的基础上改进后,用超纯水将表面杂质洗净,至上清液出水澄清,在100 ℃烘箱中干燥后取出备用。将干燥后的松针经10% HCl浸泡12 h进行改性处理,并将其超声清洗15 min,再以超纯水反复清洗至中性,再将干燥的松针置于恒温鼓风烘箱中,200 ℃下预氧化2 h,最后于箱式气氛炉中700 ℃条件下活化60 min,活化时通入氮气加以保护。冷却至室温后,将其取出并研磨,筛选>100目粒径,将其密封保存,记为PBC。

    • 在进行吸附实验时,室温下,向100 mL浓度为0.04 mmol·L−1的SMX溶液中迅速加入0.04 g PBC,在磁力搅拌器上启动反应,并记为反应开始时间,在预定时间快速取样,经0.22 μm滤膜过滤。过滤液用高效液相色谱仪(HPLC)测定其浓度。采用NaOH和H2SO4调节溶液初始pH。

      在进行重复利用实验时,准确称取0.2 g PBC,加入浓度为0.2 mmol·L−1的SMX溶液中,实验结束后过滤材料,烘干称重。根据实验后PBC剩余量,按照PBC与SMX质量比4∶1确定下一次实验中SMX浓度,重复吸附实验,实验共进行5次。

    • SMX浓度利用美国Agilent公司1260型高效液相色谱仪测定。流动相为乙酸(1‰)和甲醇,具体配比为60∶40,流速为1.0 mL·min−1,色谱柱为C18柱(4.6 mm×250 mm,5 μm),检测波长为225 nm,进样量为40 µL。采用美国FEI Quanta 250扫描电子显微镜(SEM)测定材料表面形貌特征;用美国Micromeritics ASAP2020全自动比表面积测定仪(BET)分析材料比表面积及孔隙结构;采用美国Thermo公司Nicolet 6700型傅里叶变换红外光谱仪(FT-IR)测定PBC表面活性官能团。

    • 1)傅里叶红外光谱(FT-IR)分析。PBC改性前后的红外光谱如图1所示。可以看出,PBC在改性前后特征吸收峰的位置基本相同。在3 435 cm−1处的吸收峰为O—H的伸缩振动吸收峰;位于1 632 cm−1处的吸收峰可归于羧基的碳氧双键(C=O)产生的;在1 106 cm−1处为C—O对称伸缩振动峰。改性后在3 435、1 632和1 106 cm−1处吸收峰强度均有所增强,这说明改性有利于使PBC表面活性官能团含量增多。由此可见,PBC中主要含有羧基和羟基等含氧官能团,可以与SMX中的苯环电子形成氢键[22],有利于吸附的发生。

      2)扫描电镜(SEM)分析。图2(a)图2(b)分别为PBC改性前后的SEM图。由图2(a)可见,改性前的松针生物炭表面光滑,无明显孔隙结构;改性后的松针生物炭表面更加疏松、凹凸不平(图2(b)),颗粒物破碎程度加深,孔隙结构更加复杂,这些特征均有利于吸附反应的进行。

      3)比表面积(BET)分析。比表面积和孔径结构测定结果见表1。由表1可知,PBC的比表面积在吸附前为391.0 m2·g−1,吸附后较吸附前降低了30.1%,PBC吸附后的微孔体积及平均孔深较吸附前也均有所降低。原因可能是吸附后的SMX附着在PBC表面,占据了PBC的吸附点位,堵塞了PBC的一些微孔。

    • 图3为PBC投加量对SMX去除效果的影响结果。分别选取0.1、0.2、0.3、0.4、0.5、0.6 g·L−1 PBC,反应达平衡后测得SMX平衡吸附量及SMX去除率。结果表明,在不同投加量条件下,PBC对SMX的去除率有所不同。随着PBC投加量的增加,对SMX的去除率呈先显著增大后逐渐趋于平衡的趋势。当投加量为0.5 g·L−1时,去除率可达到99.5%;当投加量继续增加到0.6 g·L−1时,去除率可高达100%,但在吸附过程中单位吸附量逐渐减少。其原因可能是,提高PBC投加量可降低吸附剂和吸附质之间的浓度梯度[23]。在PBC投加量较低时,PBC表面的吸附点位得到充分利用,PBC对SMX有较高的吸附量。随着投加量的增加,大量的吸附剂使SMX迅速吸附到PBC表面,导致溶液周边的SMX浓度降低,单位吸附容量下降。因此,选择0.4 g·L−1作为PBC最适投加量进行后续的实验。

    • 考察了初始pH(4.0~8.0)对PBC吸附SMX的影响,结果如图4所示。由图4可知:当pH为4.0~8.0时,随着pH升高,SMX去除率下降;当pH为4.0时,去除率达96.5%;当pH为8.0时,去除率降至76%。这可能与SMX的pKa有关。有研究[24]表明,SMX的pKa1为1.7,pKa2为5.6,当溶液pH小于pKa1时,SMX表面带正电荷;当pKa1<pH<pKa2时,SMX表面所带正电荷减少;当溶液pH>pKa2时,SMX以阴离子形态存在。PBC的零点电荷测定值为pHpzc=2.09(如图5所示),当溶液pH>pHpzc时,PBC表面带负电荷;当溶液pH为6.0、7.0和8.0时,pH>pKa2,此时SMX分子会与PBC发生静电排斥作用,故不利于吸附。因此,当溶液pH为4.0时,PBC对SMX的吸附效果最好。随着pH的增加,静电相互作用增强,吸附容量减弱,去除率也随之降低。有研究[25-26]也表明,溶液中pH的增加会降低黑碳对磺胺类抗生素的吸附能力。

    • PBC对SMX的去除效果与吸附时间有关。为了使吸附反应彻底,实验须进行240 min,结果如图6所示,在0~60 min内,吸附容量和去除率都随时间增加明显增大,且吸附速率很快。当吸附60 min时,PBC对SMX去除率达97.1%,吸附容量为24.73 mg·g−1。当60 min以后,PBC去除率再无变化,证明吸附完全。当吸附时间为180 min时,吸附容量和去除率均无变化,说明吸附达平衡。可以解释为起初PBC表面的活性点位较多,使得SMX向PBC表面扩散速度很快。随着吸附时间的增加,吸附剂孔隙中的活性点位被SMX占据不断减少,吸附速率下降,从而使吸附过程趋于平衡。

    • 在实际应用中,天然水体中含有的CO23SO24HCO3等阴离子可对材料的吸附性能造成不同程度的影响。本研究选用Na2CO3、Na2SO4和NaHCO3,考察了其在不同离子浓度下对PBC吸附SMX效果的影响,结果如图7所示。由图7可知,当CO23HCO3浓度从0 mol·L−1升高至0.1 mol·L−1时,SMX去除率分别降低了9.57%和8.56%,随CO23HCO3浓度的增加,PBC对SMX的去除率逐渐降低,这说明CO23HCO3浓度升高会抑制吸附反应的进行,CO23抑制作用略强于HCO3。抑制原因可能归为2个方面:一方面,CO23HCO3阴离子会占据PBC表面的活性点位,阻碍吸附反应的进行;另一方面,CO23HCO3在水溶液中呈碱性。而有研究[27]表明,碱性环境不利于磺胺类抗生素的吸附,SO24浓度增加对去除率影响变化不大,这可能因为SO24在水溶液中是中性的,故就整个吸附进程来说,其对去除率的影响较小。

    • 研究吸附动力学是了解吸附机制的重要途径。为了研究PBC对SMX吸附的动力学行为,分别利用准一级和准二级动力学模型对实验获得的吸附数据进行动力学拟合分析(图8)。准一级和准二级动力学模型拟合结果如图8(a)图8(b)所示。表2列出了利用准一级和准二级动力学模型对实验数据进行拟合的结果,准二级动力学模型对SMX的实验数据拟合的可决系数较高(R2>0.99),且应用准二级动力学方程得出的qe的计算值与测得结果更为接近,这说明使用准二级动力学模型可以更好地描述此吸附过程。由表2可知,PBC对SMX的吸附量为24.79 mg·g−1,约为改性前的2倍。颗粒内扩散模型结果见图8(c)。由图8(c)可以看出,吸附过程分为2个阶段:第1阶段的斜率大,说明吸附速率快,原因是SMX分子直接在PBC表面占据其吸附位点;第2阶段直线缓慢上升,可能是由于PBC表面的吸附位点被占据,使得SMX分子只能在粒子内部扩散作用下进入到PBC内部占据其微孔点位[28]。拟合曲线不通过原点,表明表面扩散和颗粒内部扩散共同控制吸附进程。

    • 吸附等温线模型反映了吸附平衡时吸附质分子在液相和固相间的分配情况,是描述吸附剂性能的重要指标。PBC对SMX的吸附过程可用2种吸附等温线模型描述。将等温吸附实验数据分别与Langmuir模型和Freundlish模型进行拟合,所得相关参数如表3所示。由表3可知,Freundlish模型的可决系数(R2>0.98)高于Langmuir模型的可决系数(R2>0.87),由此可见,PBC对SMX的吸附过程用Freundlish模型拟合效果更好。Freundlish模型描述了吸附质吸附于吸附剂表面的非均相多层吸附假设[29],模型参数n>1[30],说明PBC和SMX间有较强的吸附力。KF随温度升高而增加,说明此吸附过程为吸热过程。

    • 在不同温度下PBC对SMX的吸附热力学参数如表4所示。由表4可知,3个温度条件下标准吉布斯自由能变(ΔG)均小于零,且随温度的升高,ΔG的绝对值增大。这说明PBC对SMX的吸附过程是自发进行的,且温度升高,自发趋势增大。焓变(ΔH)大于零,表明PBC对SMX的吸附反应为吸热反应,且升高温度有利于吸附反应进行。熵变(ΔS)大于零,这说明吸附体系的混乱程度增加, 吸附反应发生在固液两相界面上。

    • 吸附剂的重复利用性能是衡量其经济价值的重要指标[31],通过5次实验考察了PBC的重复利用效果。由图9可知,PBC在第1、2和3次使用时,对SMX的去除率分别为96.9%、91.3%和77.1%。虽然PBC对SMX的吸附量和去除率均随着使用次数的增加在逐渐减少,但其仍具有较好的吸附效果。从第4次开始,PBC吸附性能明显有所下降,原因可能是PBC表面的吸附点位被SMX逐渐占据至饱和所致。但5次实验结束后,PBC吸附量仍为14.45 mg·g−1,去除率为43.4%,且保持稳定。由此可见,PBC是一种可回收、高效的吸附剂。

    • 1)经盐酸改性后PBC表面更加粗糙疏松。经盐酸改性后的松针生物炭对SMX的吸附量约为改性前的2倍,这说明盐酸改性后的PBC对SMX的吸附性能具有显著提升。

      2)在pH为4.0时,吸附剂对SMX的吸附效果最好;CO23HCO3对SMX的去除起抑制作用,CO23抑制作用更强;SO24对吸附反应影响较小。

      3) PBC对SMX的吸附过程更符合准二级动力学模型学模型和Freundlish等温线吸附模型,吸附热力学参数表明PBC对SMX的吸附为自发的吸热反应。

      4) PBC在循环使用5次后,对SMX的去除率仍在40%以上,依然维持着良好的吸附去除效果。因其具有吸附效果好、成本低、可回收等优点,因此,可以认为经盐酸活化后的松针炭可能是去除水中SMX最佳的吸附剂之一。

    参考文献 (31)

返回顶部

目录

/

返回文章
返回