新型铁碳微电解填料制备与除磷性能评价

杜利军, 付兴民, 惠贺龙, 文洋, 王佳伟, 李松庚. 新型铁碳微电解填料制备与除磷性能评价[J]. 环境工程学报, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030
引用本文: 杜利军, 付兴民, 惠贺龙, 文洋, 王佳伟, 李松庚. 新型铁碳微电解填料制备与除磷性能评价[J]. 环境工程学报, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030
DU Lijun, FU Xingmin, HUI Helong, WEN Yang, WANG Jiawei, LI Songgeng. Preparation and phosphorus removal performance evaluation of new iron-carbon micro-electrolysis filler[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030
Citation: DU Lijun, FU Xingmin, HUI Helong, WEN Yang, WANG Jiawei, LI Songgeng. Preparation and phosphorus removal performance evaluation of new iron-carbon micro-electrolysis filler[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030

新型铁碳微电解填料制备与除磷性能评价

    作者简介: 杜利军(1994—),男,硕士研究生。研究方向:能源与环境。E-mail:alexcmd@126.com
    通讯作者: 惠贺龙(1983—),男,博士,副研究员。研究方向:能源与环境。E-mail:hlhui@ipe.ac.cn
  • 基金项目:
    美丽中国生态文明建设科技工程专项资助项目(XDA23030301);国家自然科学基金资助项目(21808229);国家重点研发计划资助项目(2018YFC1901300)
  • 中图分类号: X703.1

Preparation and phosphorus removal performance evaluation of new iron-carbon micro-electrolysis filler

    Corresponding author: HUI Helong, hlhui@ipe.ac.cn
  • 摘要: 针对传统铁碳填料处理污水活性低的问题,通过均质化-碳化-成型工艺制备新型铁碳微电解填料,采用SEM-EDS、XRD等方法对制备填料进行了表征,探讨了新型填料除磷机理;同时,开展了填料制备条件优化及生活污水除磷性能评价研究。结果表明,新型填料(Fe-C)由于焦油经高温碳化处理可在海绵铁表面及内部孔道形成大量铁碳微原电池,提高了电化学反应速率,其磷脱除率显著高于传统填料(Fe/C);在焦油/铁比(Tar/Fe)为0.3、碳化温度为950 ℃、恒温时间为0 min、黏结剂质量分数为30%、900 ℃焙烧90 min条件下,制备的填料除磷性能最佳,除磷效率达98%,可实现含磷废水达标排放。
  • 当前全球人口不断增长,但土壤质量却不断下降,现代文明再次面临粮食危机[1]。过去几十年,污水灌溉、采矿、冶炼、废弃物处理、以及农药、化肥大量使用等人类活动导致土壤重金属积累与超标[2-3],继而影响着农产品安全,威胁着人类健康。土壤治理方法中原位稳定化技术因其具有成本低、见效快、操作简便、对污染点位扰动较小等优势而得到了广泛应用 [4]。但该技术使用的常见修复剂大多存在一定的缺陷,如石灰类材料碱性太强,易造成土壤板结;含磷矿物材料使用不当会间接造成水体污染;黏土矿物成分单一、有效活性组分较低,存在施用量过大等问题 [5]。因此合理选择或开发高效、经济、环境友好的修复剂是原位稳定化技术的关键[6]

    近年来,水铁矿-腐殖酸(Fh-HA)复合材料的制备及应用受到了广大学者的研究[7-9]。相较于单一修复剂而言,复合材料更能满足各种不同要求[10]。多种材料在性能上相互取长补短, 产生协同效应,使复合材料的综合性能往往优于原组成材料[11]。腐殖酸的引入,增加了水铁矿的官能团种类,改变了比表面积,并增大了孔径尺寸;此外,水铁矿在此过程中晶格结构不变,没有向其他铁氧化物转变[12]。腐殖酸仅存在于水铁矿的晶格夹缝间,阻碍水铁矿结晶转化,同时也减缓自身在土壤中的矿化降解[13],因此Fh-HA在稳定土壤重金属方面具有优越的性能。但是腐殖酸在一定条件下,具有较高的溶解性 [14-15],重金属离子在Fh-HA复合物表面的吸附也受到腐殖酸溶解性的影响[16]。自然环境下的酸雨、水淹等现象都可能导致腐殖酸溶解,引起复合材料结构破坏,吸附的重金属再次活化。溶解性腐殖酸与水铁矿的相互作用也会明显增强水铁矿中重金属的释放[17]。若对腐殖酸进行高温改性可使其羟基和羧基等官能团发生脱水反应,增强疏水性,达到不溶的目的[18],从而提高复合材料的稳定性。虽然改性过程减少了腐殖酸可用于吸附重金属的酸性基团,但对于酸性基团的金属络合常数并没有影响[19]。马明广[20]、陈荣平[21]等制备热改性腐殖酸吸附水中重金属,均展现出了高吸附效率,并且不易损失、可以重复利用。由此本文提出一种将腐殖酸高温改性形成不溶性腐殖酸,再与水铁矿结合成更稳定的Fh-IHA复合材料的思路。

    目前Fh-IHA对自然环境下碱性土壤重金属的吸附性能以及土壤基本理化性质的影响鲜有研究。然而评价修复材料稳定污染土壤重金属的效果时,不仅要关注重金属有效性,还要关注其本身对土壤基本理化性质的影响。因此本研究以甘肃白银某Cd、Pb污染农田为试验区,进行田间稳定化试验,旨在为重金属污染防控提供一种环境友好的修复材料。主要内容如下:(1)采用高温改性腐殖酸与水铁矿制备成Fh-IHA复合材料,并通过扫描电子显微镜、X射线衍射、傅里叶红外光谱、比表面积与Fh-HA进行表面性能对比分析;(2)经田间稳定化试验,分析Fh-IHA对土壤pH值,有机质,铵态氮、速效磷、有效钾的影响;(3)根据改进BCR法,探讨处理后污染土壤中Cd、Pb的形态变化特征,掌握Fh-IHA对重金属Cd、Pb的稳定规律。

    不溶性腐殖酸:腐殖酸购买于山东西亚化学股份有限公司(C含量为52.9%),将其置于马弗炉,在400 ℃温度下加热1 h,待其自然冷却后用2 mol·L−1 CaCl2溶液浸泡处理,然后抽滤,再用1 mol·L−1 NaNO3溶液和蒸馏水反复洗涤,烘干。最终所得固体为不溶性腐殖酸,储存在密封玻璃瓶中待用[22]

    Fh-HA复合材料(C/Fe=0.5,物质的量比):将FeCl3·6H2O、腐殖酸分别溶于水、NaOH溶液,再将二者混合,然后通过NaOH溶液快速将混合溶液pH调节至7.5。搅拌2 h后,将混合物静置分层后虹吸除去上清液,沉淀物用去离子水清洗离心,最后用真空冷冻干燥机冷冻干燥48 h后密封冷藏于4 ℃条件下备用。

    Fh-IHA复合材料(C/Fe=0.5,物质的量比):采用不溶性腐殖酸,其余步骤与制备Fh-HA复合材料相同。

    试验田位于甘肃白银某Cd、Pb污染农田,土壤呈碱性,气温低、温差大、降水量少,其基本理化性质见表1。全铅含量为95.47 mg·kg−1,全镉含量为 10.93 mg·kg−1,与《土壤环境质量 农用地污染镉污染风险管控标准(试行)》(GB 15618—2018)相比,该农田属于重度Cd污染、轻微Pb污染。稳定试验在田间进行,分别处理3处半径为0.3 m、深0.6 m的土壤。空白对照(CK)为不添加钝化剂的混合土壤,#1、#2、#3为添加 3 % (W/W)Fh-IHA处理的不同点位土壤。土壤充分混匀后装于Ф10 cm×60 cm的有机玻璃土柱中置于田间稳定化 90 d,土柱上覆盖塑料膜(扎孔通气)进行保湿,期间分别在10、20、30、60、90 d采样,各处理一式三份,密封装袋带回实验室分析。

    表 1  土壤基本理化性质
    Table 1.  Basic physical and chemical properties of soil
    pH阳离子交换量/(cmol·kg-1)CEC有机质/(g·kg−1) OM铵态氮/(mg·kg−1)A-N有效磷/(mg·kg−1)A-P速效钾/(mg·kg−1)A-K镉/(mg·kg-1)Cd铅/(mg·kg-1)Pb
    8.158.837.5529.5742.70129.4210.9395.47
     | Show Table
    DownLoad: CSV

    Fh-HA与Fh-IHA的微观形貌通过低真空扫描电子显微镜(JSM-5600LV)在6000倍下观察;比表面积是以N2吸附/脱附的BET法用比表面积分析仪(ASAP 2020)测定;傅里叶变换红外光谱在扫描范围为400—4000 cm−1之间,分辨率为8 cm−1下用傅里叶变换红外光谱仪(NEXUS 670)分析;X射线衍射是将样品用玛瑙研钵研磨并过筛后放入药瓶槽内,以(2θ)0.02° 为增量,从(2θ)10° 到80° 用粉末X射线衍射仪(JSM-5600LV)扫描。

    土壤pH值采用电位法(HJ 962—2018)以水土比为1:2.5(W/V),室温下剧烈振荡2 min,静止30 min后用pH计测定;土壤有机质采用重铬酸钾滴定法(NY/T 1121.6—2006),以过量重铬酸钾-硫酸溶液氧化0.5 g土壤有机碳,然后用硫酸亚铁滴定消耗量计算;土壤铵态氮、有效磷、速效钾采用联合浸提比色法(NY/T 1848—2010),称取2.5 g风干土样,加入无磷活性炭与土壤联合浸提剂,在25 ℃、220 r·min−1下振荡 10 min过滤,滤液用于测定;土壤Cd和Pb总量是通过向土壤中按体积比5:1:1添加HNO3、HF和H2O2后用微波消解仪(MARS6)消解,然后将消解液用火焰原子吸收光谱仪(ZEEnitt700P)测定;土壤Cd、Pb酸可溶态、可还原态、可氧化态以及残渣态的测定是通过称取1 g风干土样按照改进BCR连续浸提法[23]分步提取。

    3次重复试验结果的平均值和标准偏差由Microsoft Office Excel 2010计算,并用Origin 2018进行作图。使用SPSS25.0软件进行单因素方差分析,当两组数据间存在显著性差异(P<0.05)时,采用最小显著性差异检验进行多重比较。

    Fh-IHA与Fh-HA的X射线衍射(XRD)图谱如图1所示。两种材料在2θ为35° 和62°附近显示出两个宽峰,与2-线水铁矿的标准衍射卡片(PDF 29—0712)基本一致,表明实验室制备的Fh-IHA与Fh-HA的晶体结构与2-线水铁矿的晶体结构相同,是一种低序的铁(氢)氧化物[24]。由图可以发现,制备的材料没有出现尖锐的衍射峰,峰型相对宽化,表明材料的结晶度较低,这也说明水铁矿没有发生结晶转化,腐殖酸与水铁矿成功复合。对比Fh-HA,Fh-IHA的衍射峰没有明显变化,也没有出现新的峰,说明热改性腐殖酸不会影响复合材料的晶体结构。该结果也得到了Shimizu [25]、Liang 等[26]的证实。经比表面积分析测定,Fh-HA的比表面积为258.9 m2·g−1,经过腐殖酸改性后Fh-IHA的比表面积增加到288.5 m2·g−1。观察扫描电子显微镜(SEM)图(图2)可以看出,比表面积的不同是由于两种复合材料的表面形貌具有明显差异导致。Fh-HA表面呈现出相对规则、光滑的形貌;而Fh-IHA表面更为粗糙,附着有不规则的细小颗粒,因此具有更大的比表面积。优化腐殖酸使复合材料具有更为优越的表面性质,相比凹凸棒石/纳米铁、沸石/纳米零价铁镍、腐殖酸/海泡石等复合材料[27-29],Fh-IHA的比表面积也更大。高比表面积可以使Fh-IHA复合材料暴露更多的功能基团,为重金属提供更多的物理吸附空间和化学吸附活性位点,从而增强吸附重金属的能力[30]

    图 1  Fh-HA 和 Fh-IHA的X射线衍射图谱
    Figure 1.  X-ray diffraction pattern of the Fh-HA and Fh-IHA
    图 2  Fh-HA和 Fh-IHA的扫描电镜图(×6000倍)
    Figure 2.  Scanning electron microscopy of the Fh-HA and Fh-IHA(×6000 times)

    土壤的基本理化性质对重金属的活性及植物生长发育起着至关重要的作用[31-32]。在酸性土壤中,常通过添加材料提高土壤pH值,来降低重金属的活性;而对于碱性土壤,pH提高过大会造成土壤过碱,不利于植物生长[33]。本研究中添加Fh-IHA复合材料处理 90 d后,3个土柱中土壤pH值总体上轻微降低。结果如图3a所示,稳定后3个土柱中土壤pH仍为碱性,相比土壤初始pH值,#1号土柱仅微弱变化了0.01个单位(P<0.05),#2、#3号土柱分别降低了0.06和0.16个单位(P<0.05),3个土柱中土壤pH值总体上呈现降低的趋势,但降低幅度相对较小。这一方面可能是由于土壤本身具有一定的酸碱缓冲性[34] ,另一方面主要是水铁矿对H+具有亲和力,而腐殖酸是一种带负电荷的胶体粒子,二者相互作用下一定程度上抵消了对土壤pH的影响[7],因此在碱性土壤中Fh-IHA复合材料不会因为改变土壤的酸碱环境而影响重金属的活性。

    图 3  Fh-IHA处理90 d后土壤pH值(a)、有机质含量(b)和养分含量(c)的变化
    Figure 3.  Changes of soil pH value, organic matter content and nutrient content after 90 days of treatment with Fh-IHA

    有机质是反映土壤肥力的重要特征。图3b显示了添加Fh-IHA复合材料处理90 d后,土壤中有机质含量的变化。与空白对照相比,#1、#2、#3土柱中土壤有机质含量显著变化(P<0.05), 从7.55 g·kg−1分别升高到了9.96、9.24、9.39 g·kg−1。这是因为不溶性腐殖酸本身属于有机物质,材料的添加增加了土壤中有机碳的含量;另一方面Fh-IHA特殊的表面性质可以吸附有机分子胶结土壤粘粒形成团聚体,减少微生物与有机质的接触,起到减缓土壤有机质的降解作用[35]

    Fh-IHA复合材料处理 90 d后,土壤中铵态氮、速效磷、有效钾含量的变化由图3c所示。与空白对照相比,3种养分均呈现出显著降低(P<0.05),3个土柱土壤中铵态氮分别从 29.57 mg·kg−1 降低为22.82、22.21、22.22 mg·kg−1,有效磷含量从42.70 mg·kg−1 降低为9.84、11.60、20.31 mg·kg−1,速效钾含量则由129.42 mg·kg−1 分别降低到82.11、78.08、84.80 mg·kg−1。铵态氮、速效钾中NH4+、K+能与Fh-IHA形成的土壤胶体进行阳离子交换,而有效磷在土壤中多以H2PO4形式存在,H2PO4也可通过取代-OH的配体交换而与腐殖酸-铁络合物结合,从而导致3种速效养分变成移动性较小、不易流失的缓效养分[36-37]。因此添加Fh-IHA后土壤中铵态氮、有效磷、速效钾含量呈现出了显著降低。但同时有研究显示在分泌有机酸的植物根系作用以及微生物的活动下,部分缓效养分又可被活化释放[38],表明添加Fh-IHA复合材料有利于土壤中养分的高效利用,促进植物的生长发育。

    土壤中重金属所赋存的化学形态影响着其迁移能力和生物活性,酸可溶态具有较高活性,容易被植物吸收,而残渣态则已经进入土壤晶体物质的晶格中,即使环境改变一般也难以活化[39],可氧化态与可还原态重金属往往只有在土壤性质发生重大变化时才能在土壤中释放 [40]。本试验研究区域位于西北干旱地区,土壤呈碱性,生物活性较低,自然环境相对稳定,由此本研究将可还原态、可氧化态与残渣态统一归为稳定态,以酸可溶态为活性态。添加Fh-IHA复合材料处理90 d后土壤中活性态Cd百分比含量明显降低,稳定态Cd含量升高,稳定效果显著(P<0.05)。具体结果如图4a所示,与空白对照相比,3个土柱中土壤活性态Cd百分比含量分别为45.2%、45.1%、51.1%,显著降低了25.9%—31.9%,降幅达到33.6%—41%;稳定态Cd百分比含量显著增加了22.1%—34.0%,增幅达到96%—148%。具体而言,未经处理情况下土壤中Cd化学形态主要集中在酸可溶态,占总Cd含量的77.0%。经Fh-IHA复合材料处理90 d后,各土柱Cd赋存形态具体表现为酸可溶态与可氧化态转化为可还原态与残渣态,可氧化态Cd由5.1%降低到了0.9%—1.4%,可还原态与残渣态Cd分别由9.7%、8.3%增加到了18.7%—19.2%与34.4%—38.5%。温鑫[41]研究了腐殖酸、有机肥、沸石、海泡石、硅藻土等多种材料单一以及组合添加处理Cd污染土壤,最佳效果为活性态Cd降低2.01%—3.35%,其中腐殖酸单一添加甚至对土壤Cd产生了活化作用。相比之下,Fh-IHA复合材料对土壤中Cd展现出更好的稳定效果,这可能是因为复合材料同时具有多重稳定机制,并且可以弥补单一或组配添加下材料本身存在的缺陷。而腐殖酸既能促进也能抑制土壤Cd的活性[14],这是因为腐殖酸含有多种活性官能团,可与重金属结合,但同时自然环境下腐殖酸不够稳定,容易被矿化分解为有机酸,即使在高pH下也能促进土壤中Cd的释放[42],这也正是腐殖酸需要进行改性的原因之一。

    图 4  稳定90 d后Fh-IHA对Cd(a)、Pb(b)含量的影响
    Figure 4.  The effects of content of Cd(a) and Pb(b) by Fh-IHA after 90 days of stabilization

    Fh-IHA复合材料处理90 d后土壤中活性态Pb百分比含量明显降低,稳定态Pb含量明显升高,稳定效果显著(P<0.05)。结果如图4b所示,与空白对照相比,3个土柱中活性态Pb百分比含量分别降低为7.4%、12.2%、6.4%,显著降低了9.2%—15%,降幅达到43.0%—70.1%;稳定态Pb百分比含量显著增加了15.6%—21.4%,增幅达到19.8—27.2%。具体而言,土壤中Pb各形态百分比含量与Cd展现出了不同的情形,在未经处理情况下,Pb主要集中在可还原态,占总含量的72.2%,而酸可溶态Pb仅占总含量的21.4%。经Fh-IHA复合材料处理90 d后,3个土柱具体表现为由酸可溶态与可还原态Pb转化为可氧化态与残渣态Pb,可还原态Pb由72.2%降低至46.8%—50.4%,可氧化态Pb呈现不规律的变化,残渣态Pb由1.8% 增加到了36.5%—39.4%。在土壤Pb稳定化方面,袁兴超等[43]分别在大田与盆栽环境下研究了钙镁磷肥、生物炭、石灰、腐殖酸、海泡石对Pb形态的影响,结果表明对残渣态Pb稳定效果较好的石灰与生物炭分别增加23.7%、20.8%。而本研究在Fh-IHA处理下残渣态Pb由1.8%显著增加到了36.5%—39.4%,表明Fh-IHA对Pb也同样具有较好的稳定效果,可同时应用于治理Cd、Pb复合污染土壤。Fh-IHA复合材料处理10 d后土壤Cd、Pb的各化学形态变化就基本稳定(图5),之后在长达90 d的监测中土壤Cd浓度保持不变,土壤Pb呈现出由活性态Pb向稳定态Pb轻微转化的趋势。 Cd、Pb均未见活化迹象,三个土柱表现基本一致。现阶段大量的重金属稳定研究监测时间在60 d以内[44-46],庞瑜[8]、赵立芳[47]分别在30和60 d的监测下验证了Fh-HA对土壤Cd、Pb的钝化效果,但部分处理出现了活化现象。这证明优化后的Fh-IHA复合材料具有较高的稳定性,充分表明了Fh-IHA可作为一种固定土壤中Cd、Pb重金属的理想稳定剂。

    图 5  各土柱Cd、Pb形态百分比随时间的变化趋势
    Figure 5.  The variation trend of Cd and Pb form percentage in each soil column over time

    傅里叶红外光谱(FTIR)可用来显示物质中涉及的主要键的特征吸收带,Fh-IHA复合材料的分析结果如图6所示。通过对比红外特征谱图库中化学键的特征波数,Fh-IHA在916.1 cm−1与692.3 cm−1处出现特征峰,这归因于Fe—OH和Fe—O键的伸缩振动,对应水铁矿表面羟基及氧配位根[48],而 539.9 cm−1 和 470.6cm−1处特征峰,则表明存在芳族C—H的平面外弯曲振动,1103.1 cm−1为羟基的C—O振动,1376.9 cm−1处为醇O—H的弯曲振动、1587.2 cm−1处为C=C伸缩振动,1701.1 cm−1处为羧基中的C=O伸缩振动,3403.8 cm−1、3695.4 cm−1处主要为O—H与N—H的伸缩振动。Fh-IHA复合材料相比水铁矿的红外光谱图[49]具有更多的特征峰,增加的特征峰主要由不溶性腐殖酸结构中羧基、醇羟基、酚羟基以及氨基等官能团结构上的特殊化学键产生,而活性官能团可通过吸附、络合等作用与环境中的重金属离子形成配位化合物[16]。不同的官能团与金属离子之间的结合能力不同,腐殖酸与重金属离子之间的作用基团,最主要的是酚羟基和羧基[50]。此外,铁(氢)化物表面大量的两性基团通过去质子化作用形成的可变电荷也可与重金属离子发生表面配合,产生吸附[16]。Fh-IHA复合材料由不溶性腐殖酸与水铁矿复合而成,因此能够实现两种交互作用方式,水铁矿、不溶性腐殖酸通过表面络合、静电吸附作用结合Cd2+、Pb2+,从而达到有效降低土壤中活性态Cd、Pb的目的。其可能的稳定作用过程由图7所示。

    图 6  Fh-IHA的FTIR光谱图
    Figure 6.  FTIR spectra of Fh-IHA
    图 7  Fh-IHA 稳定Cd、Pb的作用过程
    Figure 7.  Fh-IHA stabilizes the action process of Cd and Pb

    (1)Fh-IHA复合材料表面性质优越,是良好的重金属稳定材料。优化后的Fh-IHA仍保持2-线水铁矿的晶体特征,结构稳定。与Fh-HA相比,Fh-IHA具有更粗糙的表面和更大的比表面积,可以提供更多的吸附空间和活性位点,有利于稳定Cd、Pb重金属。

    (2)Fh-IHA复合材料添加到碱性重金属污染土壤中,有利于改善土壤理化性质。经田间试验显示,添加Fh-IHA后土壤pH轻微降低,土壤有机质含量显著提高,并促进土壤中铵态氮、有效磷、速效钾的固存,减少了土壤中速效养分的流失。

    (3)Fh-IHA复合材料能有效降低土壤中Cd、Pb重金属的活性,且见效快、稳定性高。Fh-IHA通过丰富的活性官能团与土壤中Cd2+、Pb2+发生表面络合、静电吸附作用,使得土壤中稳定态Cd、Pb百分比含量显著升高了22.1%—34.0%、15.6%—21.4%,可作为一种环境友好的土壤重金属污染修复材料。

  • 图 1  Fe-C、Fe/C和Fe磷脱除率对比

    Figure 1.  Comparison of phosphorus removal rate of Fe-C、Fe/C and Fe

    图 2  海绵铁碳化前、后SEM图

    Figure 2.  SEM images of sponge iron before and after carbonization

    图 3  Fe-C和Fe/C的SEM-EDS

    Figure 3.  SEM-EDS of Fe-C and Fe/C

    图 4  Tar/Fe对磷脱除率和铁、碳含量的影响

    Figure 4.  Effect of Tar/Fe on phosphorus removal rate and contents of Fe0 and C

    图 5  碳化温度对磷脱除率和铁、碳和Fe3C含量的影响

    Figure 5.  Effect of carbonizing temperature on phosphorus removal rate and contents of Fe0 and C and Fe3C

    图 6  碳化恒温时间对磷脱除率和铁、碳和Fe3C含量的影响

    Figure 6.  Effect of carbonizing time on phosphorus removal rate and contents of Fe0, C and Fe3C

    图 7  膨润土比例、焙烧温度和焙烧时间对磷脱除率的影响

    Figure 7.  Effect of bentonite percentage, roasting temperature and time on phosphorus removal rate

  • [1] 常邦, 胡伟武, 李文奇, 等. 新型铁碳微电解填料去除农村生活污水中的磷[J]. 水处理技术, 2017, 43(5): 48-51.
    [2] 刘钰, 刘飞萍, 刘霞, 等. 催化铁耦合生物除磷工艺中生物与化学除磷的关系[J]. 环境工程学报, 2016, 10(2): 611-616. doi: 10.12030/j.cjee.20160216
    [3] 马玉萍, 陈立爱, 叶勇, 等. 硫酸亚铁用于污水厂二沉池出水化学除磷[J]. 环境工程学报, 2015, 9(3): 1303-1307. doi: 10.12030/j.cjee.20150352
    [4] 刘志, 邱立平, 王嘉斌, 等. A/O交替运行钢渣基复合滤料生物滤池处理模拟生活污水脱氮除磷特性[J]. 中国环境科学, 2015, 35(6): 1756-1762. doi: 10.3969/j.issn.1000-6923.2015.06.019
    [5] 雷春生, 王桂玉, 王侃. Fe/C微电解法去除制药废水中磷试验研究[J]. 环境科学与技术, 2010, 33(10): 169-171.
    [6] 罗梅, 刘昔, 陈国梁, 等. 零价铁去除微污染水源水中磷的试验研究[J]. 环境科学与技术, 2015, 38(11): 154-158.
    [7] ZHU S, GAO J, BA K, et al. Removal of phosphorus from domestic sewage by iron-carbon micro-electrolysis under dynamic and continuous conditions[J]. Fresenius Environmental Bulletin, 2014, 23(4): 1006-1011.
    [8] WANG Y, FENG M, LIU Y. Treatment of dye wastewater by continuous iron-carbon microelectrolysis[J]. Environmental Engineering Science, 2016, 33(5): 333-340. doi: 10.1089/ees.2015.0341
    [9] 刘磊, 刘永红, 王利娜, 等. 微电解材料的制备及其废水连续化处理工艺研究[J]. 工业水处理, 2015, 35(2): 60-63. doi: 10.11894/1005-829x.2014.35(2).060
    [10] KHALIL A M E, ELJAMAL O, AMEN T W M, et al. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water[J]. Chemical Engineering Journal, 2017, 309: 349-365. doi: 10.1016/j.cej.2016.10.080
    [11] ZHANG D, WEI S, KAILA C, et al. Carbon-stabilized iron nanoparticles for environmental remediation[J]. Nanoscale, 2010, 2(6): 917-919. doi: 10.1039/c0nr00065e
    [12] 中华人民共和国工业和信息化部. 直接还原铁金属铁含量的测定三氯化铁分解重铬酸钾滴定法: YB/T 4509-2017[S]. 北京: 冶金工业出版社, 2018.
    [13] 李欣. 煤热解气直接还原铁矿石实验研究[D]. 北京: 中国科学院大学, 2014.
    [14] 国家环境保护总局, 北京市环保监测中心, 上海市环境监测中心. 水质总磷的测定钼酸铵分光光度法: GB 11893-1989[S]. 北京: 中国标准出版社, 1990.
    [15] 王萍. 海绵铁除磷技术研究[J]. 环境科学学报, 2000, 20(6): 798-800. doi: 10.3321/j.issn:0253-2468.2000.06.028
    [16] 陈勇, 李义久, 唐文伟. 铁炭微电解法预处理富马酸有机废水的研究[J]. 工业用水与废水, 2003, 30(6): 52-54. doi: 10.3969/j.issn.1009-2455.2003.06.016
    [17] 郭争争, 管俊芳, 陈菲, 等. 膨润土防水毯应用进展[J]. 硅酸盐通报, 2018, 37(11): 3449-3453.
  • 加载中
图( 7)
计量
  • 文章访问数:  6701
  • HTML全文浏览数:  6701
  • PDF下载数:  344
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-04
  • 录用日期:  2019-04-23
  • 刊出日期:  2020-06-01
杜利军, 付兴民, 惠贺龙, 文洋, 王佳伟, 李松庚. 新型铁碳微电解填料制备与除磷性能评价[J]. 环境工程学报, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030
引用本文: 杜利军, 付兴民, 惠贺龙, 文洋, 王佳伟, 李松庚. 新型铁碳微电解填料制备与除磷性能评价[J]. 环境工程学报, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030
DU Lijun, FU Xingmin, HUI Helong, WEN Yang, WANG Jiawei, LI Songgeng. Preparation and phosphorus removal performance evaluation of new iron-carbon micro-electrolysis filler[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030
Citation: DU Lijun, FU Xingmin, HUI Helong, WEN Yang, WANG Jiawei, LI Songgeng. Preparation and phosphorus removal performance evaluation of new iron-carbon micro-electrolysis filler[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030

新型铁碳微电解填料制备与除磷性能评价

    通讯作者: 惠贺龙(1983—),男,博士,副研究员。研究方向:能源与环境。E-mail:hlhui@ipe.ac.cn
    作者简介: 杜利军(1994—),男,硕士研究生。研究方向:能源与环境。E-mail:alexcmd@126.com
  • 1. 中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190
  • 2. 中国科学院大学化学工程学院,北京 100049
  • 3. 北京城市排水集团有限责任公司,北京 100124
  • 4. 北京市污水资源化工程技术研究中心,北京 100124
基金项目:
美丽中国生态文明建设科技工程专项资助项目(XDA23030301);国家自然科学基金资助项目(21808229);国家重点研发计划资助项目(2018YFC1901300)

摘要: 针对传统铁碳填料处理污水活性低的问题,通过均质化-碳化-成型工艺制备新型铁碳微电解填料,采用SEM-EDS、XRD等方法对制备填料进行了表征,探讨了新型填料除磷机理;同时,开展了填料制备条件优化及生活污水除磷性能评价研究。结果表明,新型填料(Fe-C)由于焦油经高温碳化处理可在海绵铁表面及内部孔道形成大量铁碳微原电池,提高了电化学反应速率,其磷脱除率显著高于传统填料(Fe/C);在焦油/铁比(Tar/Fe)为0.3、碳化温度为950 ℃、恒温时间为0 min、黏结剂质量分数为30%、900 ℃焙烧90 min条件下,制备的填料除磷性能最佳,除磷效率达98%,可实现含磷废水达标排放。

English Abstract

  • 生活污水磷超标是导致水体富营养化、引起水质恶化的重要原因。生活污水的含磷量(以P计)较低,一般为4~7 mg·L−1[1],为达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)A标准,须进行深度处理后控制出水含磷量低于0.5 mg·L−1。目前,污水除磷的方法主要包括化学沉淀法[2-3]和生物法[4]。通过化学沉淀法去除污水中磷的效果展现出效果稳定、抗冲击能力强的优势,但存在产泥不易处理、二次污染以及因使用酸碱化学药剂致使处理成本增加的缺陷。 生物法除磷工艺,受环境因素影响较大,且一般流程比较长,运行管理比较复杂[5]。而铁碳微电解技术因具备低成本、高稳定性且操作简易的特点已成为污水处理技术的研究热点。

    近年来,铁碳微电解技术已广泛地应用于处理水质磷污染,铁碳填料的制备技术也演变出多种方式,传统的制备方式有铁屑堆填、铁碳堆填、规整填料等,其中以规整填料方法使用较多。罗梅等[6]使用铁屑堆填的方式处理微污染含磷水源时,提出纯单一铁屑处理时间较长且易发生填料板结问题;ZHU等[7]使用铁碳堆填的方式处理含磷生活污水,通过添加碳源构成铁碳原电池获得良好的除磷效果,但随着处理时间的增加,会出现阴阳极分离和板结问题。WANG等[8]和刘磊等[9]利用黏合剂将炭粉、铁粉按照一定比例混合并通过烧制规整成型,规整后的填料通过强化阴阳极接触,有效避免分离和板结问题。烧结填料已发展成为目前主要的商业应用填料。

    然而,传统铁碳微电解填料的原电池应定性为一种宏电池或相对微电池,该种电池效率低,在污水除磷应用中效果不理想。已有研究[10-11]表明,通过降低铁碳原料的尺度可以提高单位空间内微原电池密度,采用纳米尺度铁碳材料处理污水时具有很高的反应活性和污染物脱除率。但目前对降低铁碳尺度的研究多集中在制备成本较高的纳米铁方面。本研究将以廉价的热解焦油作为碳源,开发并优化了均质化-碳化-成型制备铁碳填料的新工艺,初步揭示了新型填料高效除磷性能本质,并对比开展了新型填料与传统填料除磷性能评价。

  • 采用海绵铁(工业级,购自北京开碧源环境工程有限公司)作为制备铁碳填料的铁基材料,粒径小于74 μm,单质铁(Fe0)含量为56%;采用自制生物质热解焦油及活性炭(<74 μm,化学纯)分别作为新型和传统填料的碳基材料;采用膨润土(化学纯)作为铁碳填料黏结剂;采用磷酸二氢钾(KH2PO4,分析纯)配制模拟含磷生活废水,磷浓度为6 mg·L−1,pH为6.93。

  • 1)铁碳填料制备方法。本研究中的新型微电解填料依次经过均质化、碳化和成型处理获得,其中成型包括造粒和焙烧过程。首先将一定当量配比的焦油与海绵铁的物理混合物(焦油/海绵铁质量比Tar/Fe为0~0.8)在预热条件下超声、搅拌处理20 min,均质化处理后于碳化炉内在设定温度(650~950 ℃升温,速率15 ℃·min−1)和恒温时间(0~60 min)下进行绝氧碳化处理,得到铁基材料碳化物(碳化材料);将上述碳化材料与膨润土搅拌混匀(膨润土质量分数为20%~50%),采用盘式造球机造粒,筛选3~5 mm颗粒于马弗炉内,在设定温度(600~900 ℃,升温速率15 ℃·min−1)和恒温时间(30、60、90 min)下进行绝氧焙烧处理,最终制得新型铁碳微电解填料。

    填料性能对比实验中填料制备条件包括3种。1) 新型填料(Fe-C):Tar/Fe=0.3,碳化温度为950 ℃、恒温时间为0 min;膨润土质量分数为30%,焙烧温度为800 ℃、恒温时间为60 min。2)空白对比(Fe):将海绵铁与膨润土直接搅拌混匀、成型后制备得到(未经碳化处理)。3)传统填料(Fe/C):直接将海绵铁、活性炭与膨润土搅拌混匀、成型后制备得传统填料。其中,空白与传统填料的成型条件均与新型填料相同。

    2)除磷性能评价方法。在对Fe-C、Fe/C和Fe不同填料除磷性能的对比评价实验中,采用具有曝气功能静态反应器(300 mL),每次实验固液比控制为1∶4、填料装填量为50 g、曝气量为40 mL·min−1,在设定时间内间歇取样,测量磷浓度。

    采用单因素法进行碳化和成型条件优化实验,以磷脱除率作为评价指标,研究焦油比、温度及恒温时间,以及黏结剂配比等参数对填料除磷性能的影响。其中,碳化条件优化实验采用具有搅拌装置的静态反应器(100 mL),每次实验固液比控制为1∶50,碳化材料装填量为1 g,反应时间为30 min。反应结束后,取滤液进行磷浓度测量;成型条件优化所用的实验方法与填料性能对比评价实验方法相同。

  • 铁碳填料中碳、单质铁(Fe0)及Fe3C的含量分别采用元素分析仪(vario MACRO cube型,德国元素分析系统公司)、三氯化铁分解-重铬酸钾滴定法[12]及XRD图谱利用比强度法[13](Smartlab(9)型,日本株式会社理学)进行定量测定;采用热场发射扫描电子显微镜与能谱分析仪(JSM-7001F+INCA X-MAX型,日本电子株式会社),基于二次电子模式(SEI)和背散射电子模式(BSE)对铁碳填料表面微观形貌及截面成分构成进行分析。采用热重差热综合热分析仪(Netzsch STA 449型,德国Netzsch公司)测定膨润土热失重(TG-DTG)。

    采用钼酸铵分光光度法[14]测定评价实验前后污水溶液中总磷(TP)。在一定浓度范围内,溶液中磷的浓度与溶液吸光度呈线性关系,磷脱除率计算方法如式(1)所示。

    式中:R为磷脱除率;A0Ai分别为实验前、后溶液的吸光度。

  • Fe、Fe/C和Fe-C除磷性能的差异对比结果如图1所示,在本研究考察时间范围内,3种填料的除磷效率为Fe-C>Fe/C>Fe。反应初期(15 min),除磷性能差异最为显著,Fe-C(63.74%)的磷脱除率为Fe/C(30.96%)和Fe(23.07%)的2倍之多;在60 min评价实验后,Fe-C达到86.60%,而相应Fe/C和Fe分别只有55.55%和48.09%。以上结果表明,通过焦油碳化沉积与铁形成一体化的新型填料较传统铁碳物理混合填料及单一铁基填料表现出优异的除磷性能。

    以上结果主要归因于:新型填料由于海绵铁表面碳化产生积碳,形成铁碳微原电池,而传统填料通过铁碳物理混合,同样构成铁碳微原电池;且2种填料在碳存在下,可将海绵铁中高价铁还原为单质铁(Fe0),进一步提高了作为腐蚀电极的阳极铁数量(2种填料中Fe0含量较Fe填料(40.45%)提高了约10%)。因此,2种填料较单一铁基填料表现出更高的磷脱除率。但是,Fe-C与Fe/C填料构成基本相同(Fe0含量分别为49.39%、51.05%,碳含量分别为4.82%、5.19%),却在除磷性能上表现出较大差异,故进一步对2种填料微观形貌进行了对比分析。图2为海绵铁碳化前后表面及截面SEM表征结果。对比表面形貌可见,高温碳化处理后,焦油发生热裂解,形成大量积碳碎片,使得海绵铁表面由光滑变得粗糙;海绵铁碳化处理前后截面BSE图显示,在海绵铁(浅色区域)内部孔道亦存在沉积碳(深色区域)。以上结果表明,碳化处理可使得海绵铁表面及内部孔道均形成沉积碳,碳微粒广泛附着于海绵铁表面以形成大量微原电池[11],这是碳化材料对磷的脱除率提高的可能原因。

    对比分析Fe-C和Fe/C成型铁碳填料截面SEM-EDS图(图3)可知,碳化成型的Fe-C填料中海绵铁(白色区域)颗粒周围及内部孔道均分布有尺度较小的碳微粒(黑色区域),可增大铁与碳的有效接触面积;而传统Fe/C填料中海绵铁颗粒被膨润土(灰色区域)包覆,与尺度较大的活性炭有效接触面积降低,从而导致微电解性能降低,且较大颗粒结合应用过程易发生铁碳分离导致失活,这也很好地解释了填料构成基本相同的Fe-C为何较Fe/C具有更高的磷脱除率。

  • 图4反映了在碳化温度800 ℃、恒温时间30 min条件下制备的碳化材料Tar/Fe质量比对铁、碳含量及磷脱除率的影响规律。结果表明,随着Tar/Fe的增加,碳化材料的磷脱除率表现为先增加后降低。采用未经碳化处理的海绵铁(Tar/Fe=0)处理污水,虽然海绵铁中有高含量单质铁和少量杂质存在,在水溶液中能够形成微原电池而发生原电池反应[15],但单一海绵铁的磷脱除率仍然较低(60%)。分析认为,由于碳化处理提高了材料中单质铁比例,利于材料中原电池的数量的增加,进而使磷脱除率增加。但当Tar/Fe增加至0.5及以上时,磷脱除率并不再随着Fe0的增加而有所上升 。究其原因主要归因于以下2个方面:一方面,碳化过程中因焦油用量的增加导致单质铁的增加不明显(Tar/Fe 0.5增加到0.8,Fe0只增加了2.8%),阳极增加较少;另一方面,随着Tar/Fe的增加,碳的含量线性上升,不仅导致Fe0的相对含量下降,而且过多的沉积碳可能导致Fe0与水的接触面积减少,抑制了原电池反应的进行,不利于磷脱除率的提高。以上结果表明,当Tar/Fe=0.3时,可取得最佳处理效果。因此,选择Tar/Fe=0.3作为最优焦油用量,并在此条件下进行后续的研究。

    在Tar/Fe为0.3,碳化时间为30 min条件下,进一步考察了碳化材料除磷效果受碳化温度的影响情况,结果如图5所示。碳化材料磷脱除率随温度升高而增加。对比碳化温度对铁碳和Fe3C质量分数影响规律发现,当碳化温度低于800 ℃时,温度升高能够促进铁氧化物的还原进而增加了原电池的铁阳极,以提高原电池的数量;当碳化温度升至800 ℃后,继续升高温度会降低材料碳含量,同时将铁氧化物深度碳化形成Fe3C相。一方面,Fe3C可以作为原电池的阴极,保证原电池的数量[16];另一方面,表面C的减少利于提高活性Fe0与污水接触面积,以促进电化学反应速率,使得整体原电池效率得到提高。因此,本研究选择950 ℃作为最优的碳化温度。

    固定Tar/Fe和碳化温度分别为0.3 ℃和950 ℃,进一步考察恒温时间对碳化材料除磷性能的影响(图6)。结果表明,碳化材料的磷脱除率随着恒温时间的延长而略有下降。对比分析碳化材料中Fe、Fe3C质量分数随碳化时间的变化规律可看到,若使恒温时间延长,碳化程度会越高,这导致了作为阳极的单质铁不断下降,也就导致了材料可能偏离了最优的铁碳比。故最佳的碳化恒温时间为0 min。

  • 采用最优碳化条件(Tar/Fe=0.3、碳化温度950 ℃、恒温时间0 min)下制得的碳化材料,进一步开展了成型条件优化的实验。分别考查了膨润土配比、焙烧温度和恒温时间对成型填料除磷性能的影响规律,结果如图7所示。图7(a)为焙烧温度800 ℃,焙烧时间30 min条件下,不同含量的膨润土对成型填料磷脱除率的影响规律。对于120 min的评价实验,随着膨润土含量增加,填料的磷去除率呈整体下降趋势。其主要原因是:填料中碳化材料是构成原电池的有效组分,随着膨润土比例的上升,单位体积内碳化材料比重降低,导致除磷效果变差;另外,作为填料中的黏合剂和骨架,膨润土比例不宜过低,否则不易成球。综合考虑,应选择膨润土质量比在30%。

    图7(b)给出了膨润土质量比为30%,焙烧30 min条件下焙烧温度对填料磷脱除率的影响规律。由图7(b)可知,磷脱除率随着焙烧温度的升高而呈现上升的趋势,当温度从600 ℃升至700 ℃时,磷脱除率上升更加显著(填料在焙烧15 min后磷脱除率提高22%)。该趋势变化可能与温度变化影响填料中膨润土渗透性能有关。膨润土颗粒在水的作用下膨胀和分散,能够像胶体一样把碳化材料连接在一起,但是这种水化膨胀形成的均匀密实胶体系统,具有高黏性低渗透系数的特点,不利于水的通过[17],制约了填料有效组分与污水的接触,因此,在600 ℃低温焙烧下的填料脱磷效率明显低于高温条件。这主要由于热处理导致膨润土发生晶格水脱失,脱水程度随处理温度的升高而增加,700 ℃以上基本完全脱水,开始发生晶体结构的转化,降低了其在水体中的水化能力,致渗透系数增加以降低传质阻力,从而提高了填料的整体磷脱除率,且随温度升高,磷去除率提高越显著。在所考察的条件范围内,确定最优的焙烧温度为900 ℃。

    在膨润土质量比为30%,焙烧温度为900 ℃的条件下,进一步考察了不同焙烧恒温时间的成型填料的除磷效果,结果如图7(c)所示。在考察的时间范围内,提高焙烧恒温时间,利于增加填料的磷脱除率。主要原因在于长时间焙烧处理能够提高膨润土的渗透性能,利于碳化材料与水接触,从而保证原电池反应的正常进行,焙烧时间为90 min时,填料的除磷效果最好。焙烧时间为90 min的填料在与污水反应2 h后,其磷脱除率可达98%,出水磷含量为0.12 mg·L−1,达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)A类标准。

  • 1)SEM-EDS表征结果表明,焦油碳源经高温碳化处理,可产生碳微粒,附着于海绵铁表面及内部孔道,以形成大量铁碳结合结构的微原电池,提高微原电池数量,可增加铁碳有效接触面积。因此,较传统填料,其表现出较高的除磷性能。

    2)碳化处理可还原铁氧化物,利于增加填料中单质铁的含量,进一步提高微原电池数量,但过量Tar/Fe可能导致积碳覆盖铁活性位点,降低与水中污染物接触面积;热失重分析显示,焙烧温度高于700 ℃,膨润土晶体结构发生转变,渗透性能得到改善,利于铁碳与污水接触,提高处理效率。

    3)铁碳填料制备条件优化结果表明,在Tar/Fe=0.3、碳化温度为950 ℃、恒温时间为0 min、黏结剂为30%、焙烧温度为900 ℃、焙烧时间为90 min的最佳制备条件下,所获得填料的磷脱除率可达98%,出水磷浓度达到GB 18918-2002中的A类城镇污水排放标准要求。

参考文献 (17)

返回顶部

目录

/

返回文章
返回