-
透水铺装是低影响开发常用技术措施之一,通常应用在非机动道路、广场、停车场等,在铺装面层、找平层、基层或土基层应用透水性能良好、空隙率较高的材料,使雨水进入铺面后直接渗入土基或通过铺面内部的排水管排出,从而达到雨水渗入地下、减少地表径流等目的,并可有效缓解不透水铺装对环境造成的影响[1-4]。透水铺装对雨水径流有较好的控制效果,FASSMAN等[5]的研究表明,透水铺装延迟出流时间可达2.4 h,峰值流量平均削减率为83%;WATANABE[6]研究发现,透水铺装可削减15%~20%的径流峰值量;COLLINS等[7]监测了透水联锁砖、混凝土网格砖和现浇透水混凝土的径流控制效果,结果表明,3种铺装对雨水径流的平均削减率为98.17%~99.86%,各种透水铺装系统对雨水径流水量均有良好的控制效果。
根据透水铺装面层的材料组成,可将透水铺装分为透水砖、透水混凝土和透水沥青混凝土[8-9]。透水砖是人行道、停车场、公园等透水性铺装应用最为广泛的面层材料,其根据透水原理可分为2种:一种是利用砖体材料本身的孔隙结构实现雨水下渗的普通透水砖;另一种是砖体材料本身不透水,或透水能力很小,主要靠砖体外观的异型结构将雨水径流导入基层的构造透水砖,如常见的嵌草砖等,构造透水砖与普通透水砖相比,具有不易堵塞、雨水下渗速度快等特点。目前,关于构造透水砖和普通透水砖水量控制效果的比较尚未见报道,在实际工程应用中缺乏对透水砖选择的科学依据。针对此现状,本研究选用海绵城市建设中2种具有代表性的普通透水砖与构造透水砖,人工模拟重现期分别为1、3、5和10 a的降雨,研究了2种不同透水砖在不同降雨条件下的水量控制效果,为不同类型透水砖在工程的应用提供参考。
不同类型透水砖对雨水径流水量的控制效果
Effect of different types of permeable brick on the stormwater runoff quantity control
-
摘要: 透水铺装是目前海绵城市建设中应用较广泛的技术措施之一,对雨水径流的促渗减排发挥着重要作用。选择2种不同类型透水砖为研究对象,采用人工模拟降雨实验方法,研究了降雨重现期分别为1、3、5、10 a条件下,2种不同类型透水砖对雨水径流总量控制、峰值削减和峰值延迟等方面的控制效果。结果表明:在降雨重现期小于10 a的条件下,构造透水砖和普通透水砖的场次降雨总量控制率平均值均超过95%;峰值流量均随着重现期的增加而增大,构造透水砖的峰值削减效果优于普通透水砖,平均峰值削减率提高了8.6%;构造透水砖和普通透水砖的出流延迟时间平均值分别为11.3 min和13.8 min,平均峰值延迟时间分别为6.3 min和16.3 min。构造透水砖对径流总量、峰值流量的控制效果要优于普通透水砖,因此,在透水铺装应用中,应结合项目设计目标和当地的水文地质条件,宜优先考虑采用构造透水砖铺装方式。Abstract: Permeable pavement is one of the most widely used technologies in the construction of sponge cities, and plays an important role in promoting the penetration and reducing stormwater runoff. In this study, two different types of permeable bricks were selected as the research objects, and the artificial rainfall simulation method was used to investigate the stormwater runoff control effects of two different types of permeable bricks under different return periods of 1, 3, 5 and 10 years, including the quantity control, the peak reduction, the peak delay and so on. The results showed that the average control rates of event rainfall quantity for the structural permeable brick and ordinary permeable brick were all over 95% at the rainfall return period less than 10 years, respectively. The peak flow increased with the increase of the return period. The peak reduction effect of the structural permeable brick was better than that of the ordinary permeable brick, and the average peak reduction rate increased by 8.6%. The average outflow delay times of the structural permeable brick and ordinary permeable brick were 11.3 min and 13.8 min, and the average peak delay times were 6.3 min and 16.3 min, respectively. The control effects of the total quantity and peak flow for the structural permeable brick were better than those of the ordinary permeable brick. Therefore, the application of permeable pavement should combine the project design goals, local hydrological and geological conditions, and the structural permeable brick should be in priority.
-
Key words:
- permeable pavement /
- permeable brick /
- stormwater runoff /
- quantity control
-
表 1 不同类型透水砖及铺装参数
Table 1. Parameters of different types of permeable brick and pavement surface
面层砖类型 尺寸/mm 砖体渗透系数/
(mm·s−1)铺装结构整体渗透
系数/(mm·s−1)长 宽 高 普通透水砖 200 100 60 0. 15 0.026 构造透水砖 250 250 120 — 0.059 表 2 基层碎石粒径级配
Table 2. Base gravel gradation
序号 筛孔尺寸/mm 通过率/% 1 26.5 100 2 19 85~90 3 13.2 65~80 4 9.5 55~71 5 4.75 8~16 6 2.36 0~7 7 0.075 0~3 表 3 2种不同类型透水砖实验结果的比较
Table 3. Comparison of experimental results of two different types of permeable bricks
透水砖 重现期/a 出流延迟时间/min 峰值延迟时间/min 峰值流量/(mL·s−1) 总量控制率/% 渗透系数/(mm·s−1) 普通透水砖 1 15 10 7.9 100 0.026 3 15 15 9.5 100 5 15 20 9.7 100 10 10 20 10.2 93.2 构造透水砖 1 15 10 8.7 100 0.059 3 10 5 11.8 100 5 10 5 12.3 100 10 10 5 12.5 100 -
[1] 王波, 霍亮, 高建明. 透水性地砖蒸发试验研究[J]. 四川建筑科学研究, 2004(3): 102-104. doi: 10.3969/j.issn.1008-1933.2004.03.035 [2] ABBOTTC C L, COMINO-MATEOS L. In-situ hydraulic performance of a permeable pavement sustainable urban drainage system[J]. Water & Environment Journal, 2010, 17(3): 187-190. [3] YONG C F, DELETIC A, FLETCHER T D, et al. Hydraulic and treatment performance of pervious pavements under variable drying and wetting regimes[J]. Water Science & Technology, 2011, 64(8): 1692-1699. [4] 李美玉, 张守红, 王玉杰, 等. 透水铺装径流调控效益研究进展[J]. 环境科学与技术, 2018, 41(12): 105-112. [5] FASSMAN E A, BLACKBOURN S. Urban runoff mitigation by a permeable pavement system over impermeable soils[J]. Journal of Hydrologic Engineering, 2010, 15: 475-485. doi: 10.1061/(ASCE)HE.1943-5584.0000238 [6] WATANABE S. Study on storm water control by permeable pavement and infiltration pipes[J]. Water Science & Technology, 1995, 32(1): 25-32. [7] COLLINS K A, HUNT W F, HATHAWAY J M. Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern north Carolina[J]. Journal of Hydrologic Engineering, 2008, 13(12): 1146-1157. doi: 10.1061/(ASCE)1084-0699(2008)13:12(1146) [8] KOBAYASHI T, KAGATA T, KODAMA T, et al. Development of environment-friendly hybrid permeable concrete pavement[J]. Transactions of the Japan Concrete Institute, 2001, 39(3): 36-43. [9] WANG J, MENG Q, TAN K, et al. Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment[J]. Building & Environment, 2018, 140: 184-193. [10] AL-RUBAEI A M, VIKLANDER M, BLECKEN G T. Long-term hydraulic performance of stormwater infiltration systems[J]. Urban Water Journal, 2015, 12(8): 1-12. [11] 中华人民共和国住房和城乡建设部. 透水砖路面技术规程: CJJ/T 188-2012[S]. 北京: 中国建筑工业出版社, 2012. [12] 赵亮. 城市透水铺装材料与结构设计研究[D]. 西安: 长安大学, 2010. [13] 北京市水利科学研究所. 透水砖路面施工与验收规程: DB11/T 686-2009[S]. 北京, 2009. [14] BROWN C R. Characterization of solids removal and clogging processes in two types of permeable pavement[D]. Canada: University of Calgary, 2007.