Bardenpho镶嵌MBBR工艺用于北方某污水厂抗冲击性能

黄青, 周家中, 吴迪, 韩文杰. Bardenpho镶嵌MBBR工艺用于北方某污水厂抗冲击性能[J]. 环境工程学报, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108
引用本文: 黄青, 周家中, 吴迪, 韩文杰. Bardenpho镶嵌MBBR工艺用于北方某污水厂抗冲击性能[J]. 环境工程学报, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108
HUANG Qing, ZHOU Jiazhong, WU Di, HAN Wenjie. Shock-loading resistance of Bardenpho-embeded MBBR process in a WWTP of northern China[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108
Citation: HUANG Qing, ZHOU Jiazhong, WU Di, HAN Wenjie. Shock-loading resistance of Bardenpho-embeded MBBR process in a WWTP of northern China[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108

Bardenpho镶嵌MBBR工艺用于北方某污水厂抗冲击性能

    作者简介: 黄青(1976—),男,本科,高级工程师。研究方向:污水处理工艺。E-mail:hqyb@163.com
    通讯作者: 周家中(1990—),男,硕士,工程师。研究方向:水污染防治技术。E-mail:zhoujiazhong@qdspr.com
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2017ZX07106005);青岛市民生科技计划项目(18-6-1-100-nsh)
  • 中图分类号: X703

Shock-loading resistance of Bardenpho-embeded MBBR process in a WWTP of northern China

    Corresponding author: ZHOU Jiazhong, zhoujiazhong@qdspr.com
  • 摘要: 采用Bardenpho镶嵌MBBR工艺对北方某污水厂进行提标改造,考察了在进水有机物长期超标冲击情况下的运行效果。通过对该污水厂近一年的运行数据进行分析发现,在进水BOD和TN超标的情况下,出水TN、BOD、NH+4-N分别为(7.75±2.67)、(2.82±0.34)、(2.43±1.04) mg·L−1,稳定达到一级A标准,通过后缺氧区的设置,破除了回流比对TN去除的限制,使系统在进水TN超标的情况下同样能够稳定达标,TN去除率均值达到88%。硝化小试研究结果表明,在有机物冲击前后,悬浮载体的硝化速率没有受到影响,容积负荷分别为0.108 kg·(m3·d)−1和0.109 kg·(m3·d)−1,而冲击后活性污泥的硝化速率则较冲击前降低了44%。通过对生化段沿程各功能区断面出水测定发现,好氧MBBR区对NH+4-N的去除率超过90%,保障了出水氨氮的稳定达标。微生物高通量测序结果显示,MBBR悬浮载体对硝化细菌的筛选和富集具有重要作用,悬浮载体上硝化菌含量是活性污泥的5倍,为MBBR的抗冲击性能提供了微观保证。采用Bardenpho镶嵌MBBR工艺进行提标改造后,系统抗冲击性能较强,运行效果稳定,适用于污水厂升级改造。
  • 抗生素应用于多个领域,主要涉及医药和畜牧饲料行业。由于抗生素的滥用,导致环境中抗生素污染问题普遍存在[1-3],目前,在水环境[4-6]、土壤[7-9]、水产动物[10]和植物[11]中均检测到了多种抗生素。青霉素G(PCN)是由青霉菌产生的一种β-内酰胺类水溶性抗生素[12],其可阻止肽聚糖的产生从而破坏细菌细胞壁的合成[13],是最具抗菌活性的抗生素,现已被广泛用于治疗人类和动物的疾病中[14]。PCN具有难以降解且含有生物毒性的特性,传统水处理方法难以完全对其产生作用,如果直接将其排放到水环境中,将会对生态环境以及人类构成较大威胁[15-16],因此,探索去除水环境中PCN的新方法十分必要。

    O3氧化是一种清洁的水处理技术,且具有无二次污染和经济可行等特点[17],可作为强氧化剂,对污水中的难降解有机物进行降解[18]。有学者用O3氧化降解垃圾渗滤液[19]、有机氯农药[20]和布洛芬[21]等难降解有机物,结果表明,降解效果均十分明显。有研究[22-24]表明,将H2O2与O3联合时,H2O2会促进HO·的产生,从而使O3的利用率以及降解效果均可得到显著提升。陈炜鸣等[23]在采用O3降解垃圾渗滤液浓缩液的过程中,发现添加0.13 mol·L−1 H2O2能显著提升有机物的去除效果,且O3利用率提升了22.29%,同时废水可生化性得到了明显改善,BOD5/COD值由0.01提高到0.43。LI等[25]采用O3预处理氢化可的松制药废水,在H2O2/O3的摩尔比为0.3的条件下,反应15 min后,COD去除率可达67%,COD去除率相对于单一O3氧化体系提升了23%,证明添加适量H2O2可显著提高降解效果。虽然众多研究已经证明了O3和O3/H2O2法对难降解有机物的降解效果显著,但目前许多研究倾向于对工艺条件的优化,而对降解过程中的中间产物分析和降解规律的研究却相对较少。

    基于此,本研究以难降解有机物PCN为目标,对其在O3/H2O2体系中的降解规律及其相关的机理进行研究,对降解过程中的中间产物及可能的降解路径进行探讨,并根据实验数据对降解动力学过程进行分析,为该法处理水中PCN的工程应用提供参考。

    实验试剂包括PCN(1 650 U·mg−1,阿拉丁)、H2O2(分析纯)、淀粉(分析纯)、甲酸(色谱级)、乙腈(色谱级)、NaOH(分析纯)、Na2S2O3(分析纯)、KI(分析纯)。

    自制反应器、微波快速消解COD测定仪(GZ-WXJ-Ⅲ)、pH计(pHS-3C)、液相色谱仪(Agilent-1200,美国Agilent公司)、液质联用色谱仪(WATERS TQD,美国waters公司)、精密分析天平(FA1004)、傅里叶红外光谱仪器(Nicolet Nexus 410,美国Nicolet公司)、真空冷冻干燥机(LFD-56D10S)等。

    自制有机玻璃材质反应器高度为200 mm,内径为90 mm,O3由臭氧发生器(JZ110B-SJG)供给,采用微孔石英砂芯底层曝气,通过转子流量计控制流量,同时O3产量使用碘量法进行测量。利用2个串联的吸收瓶组成尾气收集装置,对溢出尾气进行收集,定时在反应器中部取样。

    将PCN溶液加入反应器中均匀混合,在通入O3前,加入适量H2O2并控制反应温度和pH,待臭氧发生器稳定工作后,调节气体流量为1.2 L·min−1(臭氧产量为492 mg·h−1),反应开始后按时取样,然后用Na2S2O3终止反应。样品经0.22 μm滤膜过滤后,测定其COD和ρ(PCN)。每次均设计重复实验,每个样品都进行平行测定,然后取其均值。

    使用HPLC对PCN的降解产物进行检测。具体实验条件为:Hypersil BDS C18色谱柱;流动相为超纯水(含0.1%甲酸)∶乙腈=50∶50(体积比);流速为1.0 mL·min−1;柱温为30 ℃;进样量为20 μL[26]。质谱检测采用电喷雾电离源,在负离子模式下进行检测,扫描的质荷比m/z为100~700。O3气相浓度采用碘量法(CJ/T 3028.2-1994)测定,COD采用重铬酸钾快速消解法进行测定。

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、O3气体流量为1.2 L·min−1、H2O2投加量为7.84 mmol·L−1的反应条件下,考察pH对PCN和COD去除效果的影响,结果如图1所示。由图1可知,在不同pH下,COD和PCN的去除效果差异明显,在酸性和中性条件下,COD去除效果相对较差,PCN去除速率缓慢,当pH升高时,反应去除速率也相应加快;在碱性反应环境下,去除效果显著提升,在反应5 min后,PCN去除率为92.5%,在反应3 h后,COD去除率为71.9%。这是因为pH会影响O3/H2O2体系中HO·的产生效率,在酸性条件下,主要是O3分子的氧化,而在碱性情况下,溶液中OH-会促进HO·的生成,此时主要以HO·氧化为主,反应速率得到了提升,具体反应如式(1)~式(3)所示。

    图 1  pH对PCN、COD去除率的影响
    Figure 1.  Effect of pH on the removal rates of PCN and COD
    O3+OHHO2+O2 (1)
    H2O2HO2+H+ (2)
    O3+HO2HO+O2+O2 (3)

    此外,在碱性环境中,H2O2更容易离解生成HO2,而HO2又是HO·的诱发剂,所以可促进HO·的生成,进而加快氧化速率[23]

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、pH=10,H2O2投加量为7.84 mmol·L−1的反应条件下,考察O3投加量对PCN和COD去除效果的影响,结果如图2示。由图2可知,O3投加量对去除PCN和COD的影响较大,当流量由0.3 L·min−1(O3产量为123 mg·h−1)升至1.5L·min−1(O3产量为615 mg·h−1)时,随着O3投加量的不断增加,PCN和COD的去除率也不断提升,当O3流量为1.5 L·min−1时,PCN和COD去除效果达到最佳。在反应5 min后,PCN去除率为95.83%,在反应3 h后,COD去除率为72.8%。由图2还可看出,在1.2 L·min−1(O3产量为492 mg·h−1)和1.5 L·min−1反应条件下,PCN和COD的去除效果无明显差异,PCN和COD的去除率增幅明显降低,原因可能是,当水中O3溶解度达到最大时,O3的利用率将会降低,未参加反应的O3分子将会直接从液相转移至气相中,故导致无法继续提高降解效能。所以本实验最佳O3流量设定为1.2 L·min−1,以避免造成O3的浪费。

    图 2  O3投加量对PCN、COD去除率的影响
    Figure 2.  Effect of O3 on the removal rates of PCN and COD

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、pH=10、O3气体流量为1.2 L·min−1的条件下,考察H2O2投加量对PCN和COD去除效果的影响,结果如图3所示。由图3可知,在O3/H2O2体系氧化PCN的过程中,PCN能在较短时间内快速被氧化成中间产物,而中间产物的氧化速率则较为缓慢,但H2O2的促进效果明显。当H2O2的投加量由0升至7.84 mmol·L−1时,PCN和COD的去除率也相应随之升高。在反应5 min后,PCN去除率为100%,增幅为37.4%;在反应3 h后,COD去除率为71.9%,增幅为26.3%。相比于单独的O3体系,添加双氧水能显著提升COD和PCN的去除率,这是由于O3和H2O2之间存在协同机制,适量双氧水可促进氧化过程中HO·的生成,从而提升反应效果[3]。具体反应如式(4)所示。

    图 3  H2O2投加量对PCN、COD去除率的影响
    Figure 3.  Effect of H2O2 dosage on the removal rates of PCN and COD
    O3+2H2O22HO+2O2 (4)

    图3可看出,当H2O2投加量大于7.84 mmol·L−1时,COD去除率略微下降。这可能是由于反应体系中多余的H2O2成为了HO·的捕获剂,从而降低了HO·氧化有机物的效率[22-23]。具体反应机理如式(5)所示。

    H2O2+2HO2H2O+O2 (5)

    ρ(PCN)为25 mg·L−1、pH为10、H2O2投加量为7.84 mmol·L−1、O3气体流量为1.2 L·min−1的条件下,考察温度对PCN去除效果的影响,结果如图4所示。由图4可知:在10~30 ℃时,随着温度的上升,PCN去除速率也逐渐加快,去除速率由8.11 mg·(L·min)−1增至17.34 mg·(L·min)−1;但当温度为40 ℃时,PCN去除速率明显降低。原因可能是:当反应温度升高时,加快了分子之间的运动,加速了HO·的生成和O3在水中的扩散速率,从而提升了PCN去除速率。但当温度继续升高时,H2O2的自分解效果加剧,且O3在溶液中的溶解度也有所降低,导致去除速率明显减缓。

    图 4  不同温度对PCN去除率的影响
    Figure 4.  Effect of different temperature on the removal rate of PCN

    在温度为20 ℃、ρ(PCN)为25 mg·L−1、pH为10,O3气体流量为1.2 L·min−1、H2O2投加量为7.84 mmol·L−1的条件下,考察O3/H2O2反应体系中pH的变化趋势,结果如图5所示。由图5可知,在O3氧化PCN的过程中,反应体系pH随反应时间的延长呈下降趋势,在反应3 h后,pH由10下降至6.8,最终反应溶液呈弱酸性,这可能是由于在降解过程中产生了酸性中间产物,从而导致pH的下降。这与红外光谱和LC-MS的分析结论相一致。体系pH的降低不利于反应的进行,这可能也是反应过程中反应速率均呈先快后慢的变化趋势的原因。

    图 5  反应体系中pH的变化
    Figure 5.  Changes of pH in the reaction system

    通过大量的实验得出最优pH和温度,研究O3、H2O2和PCN初始浓度对氧化过程中PCN浓度衰减的影响,结果如表1所示,降解动力学方程见式(6)。

    表 1  不同反应物的初始浓度对反应速率的影响
    Table 1.  Effect of initial concentration of different reactants on reaction rate
    序号反应物初始浓度/(mg·L−1)T/K初始速率/(mg·(L·min)−1)拟合方程
    PCNO3H2O2
    1258.2266.4303.1513.87y=0.358 9x−2.901 9R2=0.996 1
    2508.2266.4303.1517.76
    3758.2266.4303.1520.22
    41008.2266.4303.1523.29
    5252.05266.4303.155.31y=0.697 9x−1.756 4R2=0.997 6
    6254.1266.4303.158.25
    7256.15266.4303.1511.4
    8258.2266.4303.1513.87
    9258.266.6303.158.84y=0.323 3x−3.701 1R2=0.999 8
    10258.2133.2303.1511.12
    11258.2199.8303.1512.6
    12258.2266.4303.1513.87
    13258.2266.4283.158.11
    14258.2266.4293.1513.87
    15258.2266.4303.1517.34
     | Show Table
    DownLoad: CSV
    dCPCN/dt=k0exp(Ea/RT)CαPCNCβO3CγH2O2 (6)

    式中:αβγ分别为PCN、O3、H2O2的反应级数;CPCNCO3CH2O2分别为PCN、O3、H2O2的初始浓度,mol·L−1Ea为反应活化能,kJ·mol−1k0为指前因子,mol·(L·s)−1R为气体常数,取值8.314 J·(mol·K)−1T为反应温度,℃。

    根据表1的数据并结合表观动力学计算原理,可计算出PCN、O3和H2O2反应物的反应级数,其数值分别为α=0.367、β=0.697 3、γ=0.323 3。

    由于总反应速率常数k=k0exp(-Ea/RT),两侧一起取对数可得式(7)。据Tk相应值可得图6。计算得到Ea=27.59 kJ·mol−1k0=0.052 mol·(L·s)−1,因此,得出总动力学方程,见式(8)。

    图 6  反应速率常数与温度的关系
    Figure 6.  Relationship between the rate constant and temperature
    lnk=(Ea/R)(1/T)+lnk0 (7)
    dCPCN/dt=0.052exp(27594.9/RT)C0.367PCNC0.6973O3C0.3233H2O2 (8)

    本动力学模型是依据反应物初始浓度对降解速率的影响而建立的,对于整个降解过程而言,模型可能会高估反应速率。由式(8)可知,O3的反应级数为0.697 9,高于PCN (0.358 9)和H2O2 (0.335 4)的反应级数,说明降解过程中O3初始浓度对反应速率的影响最大。原因可能是,在O3氧化降解PCN的过程中,存在O3分子直接氧化和HO·氧化2种氧化方式,反应过程中只要有O3就能氧化有机物,而H2O2与O3反应只能加快HO·的生成。此外,反应活化能 (Ea=27.59 kJ·mol−1)较低,说明该反应容易发生。

    将PCN溶液及其氧化降解的最终产物进行冷冻干燥后进行红外光谱检测,结果如图7所示。在PCN红外光谱图中,1 773.7 cm−1为—COOH中的C=O的伸缩振动峰,3 353.6 cm−1为—COOH中的O—H的伸缩振动峰;1 495.5、1 617.9和2 959.7 cm−1为苯环结构对应的吸收峰,650~1 000 cm−1为苯环上的C—H取代伸缩振动峰;而1 697.5 cm−1为酰胺结构的C=O的伸缩振动;1 307 cm−1处为—(CH3)2的吸收峰。

    图 7  PCN及其降解产物的红外光谱图
    Figure 7.  Infrared spectra of PCN and its degradation products

    图7可知,PCN在氧化前后的谱图有着明显差异,在1 450~1 620 cm−1和3 000 cm−1处苯环骨架吸收峰消失,这说明氧化破坏了PCN的苯环结构。在2 421 cm−1处出现了新的吸收峰,这说明在氧化过程中可能有含叁键或者累积双键的物质产生。在1 697.5 cm−1处的酰胺结构吸收峰消失不见,说明氧化反应破坏了PCN的抑菌结构β-内酰胺环,从而使PCN的抑菌性减弱[27-28]。在1 385.7 cm−1处的峰强度有明显增大,这说明原—(CH3)2结构仍存在,吸收峰在3 449.5 cm−1处出现,有可能是伯胺官能团的不对称伸缩振动与—COOH上O—H的伸缩振动,说明最终产物中可能含有胺类化合物。在1 789.5 cm−1和833.2 cm−1处分别出现羧酸的C=O的伸缩振动和O—H的弯曲振动,这表明最终产物中可能含有酸类化合物,这是导致反应中pH下降的原因。

    对PCN的降解产物进行LC-MS检测,PCN及其降解产物的总离子流图如图8图9所示。结果表明,PCN及其降解产物得到了较好的分离,降解后没有检测到PCN的出峰,说明PCN已被完全降解,离子流图显示了PCN降解产物的变化;综合FT-IR的表征结果,对降解产物进行了质谱分析,推测出PCN降解产物可能的分子结构(表2)。

    表 2  PCN及其降解产物的质谱数据
    Table 2.  Mass spectrometry data of PCN and its degradation products
    物质分子式保留时间/min离子质荷比
    青霉噻唑酸C16H21N2O5S0.841352
    青霉素钠C16H18N2O4S1.753334
    去羧青霉素噻唑酸C15H20N2O3S0.505308
    6-氨基青霉噻唑酸C8H14N2O4S0.407234
    青霉胺C5H11NO2S0.488149
    化合物1C10H11NO30.515193
    化合物2C8H16N2O6S0.488267
    化合物3C7H15NO5S0.339225
     | Show Table
    DownLoad: CSV
    图 8  PCN的离子流图
    Figure 8.  PCN ion flow diagram
    图 9  PCN降解产物离子流图
    Figure 9.  Ion flow diagram of PCN degradation products

    在O3降解PCN的过程中,可能有HO·氧化以及水解等非常复杂的反应存在。在碱性条件下,PCN的β-内酰胺环容易水解打开生成青霉噻唑酸;经脱酸反应后,可能生成去羧青霉噻唑酸;同时在HO·的强氧化能力下,青霉噻唑酸可能进一步被氧化降解成6-氨基青霉噻唑酸、青霉胺和其他未知产物;中间产物也可能最终矿化成为CO2和H2O。根据中间产物分析,推测PCN可能的降解路径如图10所示。

    图 10  PCN可能的降解路径图
    Figure 10.  Possible degradation path of PCN

    根据LC-MS对产物的分析结果,并结合红外光谱表征结果可知,PCN降解前后的官能团结构发生了较大的变化,氧化使PCN的β-酰胺环被破坏,这也解释了PCN及其降解产物的抑菌性消失或者减弱的原因。

    1) O3和H2O2有显著的协同作用,能明显加快反应速率,显著提升COD和PCN的去除率。在初始ρ(PCN):25 mg·L−1,pH=10、O3投加量为1.48 g·L−1、H2O2投加量为7.84 mmol·L−1、温度为20 ℃的条件下,反应10 min后,PCN被完全去除,反应3 h后,COD去除率为71.9%。这说明O3/H2O2体系能有效氧化降解PCN和降解过程中产生的中间产物。

    2)通过数据的拟合,得到了O3/H2O2降解PCN的反应动力学方程,O3的反应级数为0.697 3,高于PCN(0.367)和H2O2(0.323 3)的反应级数,说明在降解过程中,O3初始浓度对反应速率的影响最大;此反应的活化能(Ea=27.59 kJ·mol−1)较低,说明此反应容易发生。

    3)根据LC-MS和红外光谱检测结果得出,PCN分子结构在降解前后发生了明显变化,PCN的抑菌结构β-内酰胺环被破坏。此外,降解产物中含有酸性物质,这会导致反应体系pH下降,从而不利于O3反应的进行。

  • 图 1  沿程取样点分布

    Figure 1.  Sampling points distribution along the process device

    图 2  进出水BOD的变化

    Figure 2.  Changes of BOD in inlet and outlet water

    图 3  进出水TN的变化

    Figure 3.  Changes of TN in inlet and outlet water

    图 4  进出水氨氮的变化

    Figure 4.  Changes of NH+4-N in inlet and outlet water

    图 5  有机物冲击对悬浮载体及污泥硝化性能的影响

    Figure 5.  Effect of organic matter impact on suspending carriers and sludge nitrification performance

    图 6  沿程氮素分析

    Figure 6.  Nitrogen analysis along the process device

    图 7  属水平物种相对丰度

    Figure 7.  Relative abundance distribution of microbes at genus level

    表 1  硝化小试实验参数及实验结果

    Table 1.  Nitrification test parameters and results

    样品活性污泥浓度/(g·L−1)悬浮载体填充率/%活性污泥容积负荷/(kg·(m3·d)−1)活性污泥硝化负荷/(kg·(kg·d)−1)悬浮载体容积负荷/(kg·(m3·d)−1)
    冲击前4.2330.0760.0180.108
    冲击后5.7330.0570.0100.109
    样品活性污泥浓度/(g·L−1)悬浮载体填充率/%活性污泥容积负荷/(kg·(m3·d)−1)活性污泥硝化负荷/(kg·(kg·d)−1)悬浮载体容积负荷/(kg·(m3·d)−1)
    冲击前4.2330.0760.0180.108
    冲击后5.7330.0570.0100.109
    下载: 导出CSV
  • [1] 张金钟, 潘爱军, 刘光辉. 提高污水处理场活性污泥抗冲击性[J]. 中国高新技术企业, 2010(18): 83-84. doi: 10.3969/j.issn.1009-2374.2010.18.043
    [2] 吴成强, 熊珺莹, 沈奇杰, 等. 深度水解/MBR工艺用于处理高浓度已内酰胺废水[J]. 中国给水排水, 2019, 35(4): 93-95.
    [3] RUSTEN B, KOLKINN O, DEGAARD H. Moving bed biofilm reactors and chemical precipitation for high efficiency treatment of wastewater from small communities[J]. Water Science and Technology, 1997, 35(6): 71-79. doi: 10.2166/wst.1997.0245
    [4] 吴迪, 李闯修. 北方某污水处理厂Bardenpho-MBBR改造运行分析[J]. 中国给水排水, 2018, 34(9): 106-110.
    [5] 李新利, 吴迪, 张晶晶, 等. MBBR处理皮革废水中试研究[J]. 中国给水排水, 2017, 33(13): 40-44.
    [6] 张小玲, 彭党聪, 王志盈, 等. 低 DO紊动床内有机物对硝化过程的影响[J]. 中国给水排水, 2002, 18(5): 10-13. doi: 10.3321/j.issn:1000-4602.2002.05.003
    [7] 张文燕, 马金星, 王志伟, 等. 有机负荷对膜-生物反应器硝化性能的影响[J]. 环境污染与防治, 2012, 34(2): 39-44. doi: 10.3969/j.issn.1001-3865.2012.02.009
    [8] 滕良方, 吴迪, 郑志佳, 等. 某污水厂准IV类水Bardenpho-MBBR提标改造分析[J]. 中国给水排水, 2019, 35(11): 1-7.
    [9] 刘浩, 杨俊杰, 于宁. Bardenpho 五段法/MBBR 用于青岛李村河污水厂三期扩建[J]. 中国给水排水, 2016, 32(24): 62-66.
    [10] 杨晓美, 宋美芹, 吴迪, 等. 新型悬浮载体强化脱氮除磷技术用于高标准污水处理[J]. 中国给水排水, 2017, 33(16): 97-102.
    [11] 方土, 周家中, 吴迪, 等. 长三角地区某污水处理厂准Ⅳ类水提标改造分析[J]. 中国给水排水, 2018, 34(17): 102-107.
    [12] 孙逊, 谢新各, 焦文海, 等. MBBR工艺强化污水脱氮除磷中试[J]. 中国给水排水, 2010, 26(21): 152-156.
    [13] 吴迪. MBBR在国内的工程应用与发展前景[J]. 中国给水排水, 2018, 34(16): 22-31.
    [14] 姚伟涛, 肖社明, 张永祥. 改良 Bardenpho 工艺处理低BOD5/TN混合工程设计[J]. 中国给水排水, 2018, 34(14): 67-70.
    [15] 崔洪升, 刘世德. 强化脱氮Bardenpho工艺碳源投加位置及内回流比的确定[J]. 中国给水排水, 2015, 31(12): 22-24.
    [16] VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555-559. doi: 10.1038/nature16459
  • 期刊类型引用(1)

    1. 彭智昊,郭兴强,于双,黄光群,史苏安,何雪琴. 规模化好氧堆肥底部曝气系统管道内流场仿真与试验. 农业工程学报. 2024(08): 198-206 . 百度学术

    其他类型引用(3)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.5 %DOWNLOAD: 3.5 %HTML全文: 80.7 %HTML全文: 80.7 %摘要: 15.8 %摘要: 15.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 84.9 %其他: 84.9 %Ashburn: 0.2 %Ashburn: 0.2 %Beijing: 4.0 %Beijing: 4.0 %Brooklyn: 0.1 %Brooklyn: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Chanshan: 0.1 %Chanshan: 0.1 %Cincinnati: 0.1 %Cincinnati: 0.1 %Gaocheng: 0.2 %Gaocheng: 0.2 %Guiyang: 0.2 %Guiyang: 0.2 %Hangzhou: 0.9 %Hangzhou: 0.9 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Mountain View: 0.1 %Mountain View: 0.1 %Nanjing: 0.2 %Nanjing: 0.2 %Newark: 0.2 %Newark: 0.2 %Qinnan: 0.1 %Qinnan: 0.1 %Shanghai: 1.4 %Shanghai: 1.4 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Suzhou: 0.1 %Suzhou: 0.1 %Taiyuan: 0.2 %Taiyuan: 0.2 %Tianjin: 0.1 %Tianjin: 0.1 %Xi'an: 0.2 %Xi'an: 0.2 %Xinzhuang: 0.1 %Xinzhuang: 0.1 %XX: 4.4 %XX: 4.4 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %上海: 0.1 %上海: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.6 %北京: 0.6 %博伊西: 0.1 %博伊西: 0.1 %成都: 0.1 %成都: 0.1 %杭州: 0.1 %杭州: 0.1 %汕尾: 0.1 %汕尾: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %连云港: 0.1 %连云港: 0.1 %郑州: 0.2 %郑州: 0.2 %银川: 0.1 %银川: 0.1 %其他AshburnBeijingBrooklynChang'anChanshanCincinnatiGaochengGuiyangHangzhouHyderabadJinrongjieMountain ViewNanjingNewarkQinnanShanghaiShenyangShenzhenSuzhouTaiyuanTianjinXi'anXinzhuangXXYunchengZhengzhou上海内网IP北京博伊西成都杭州汕尾济南深圳连云港郑州银川Highcharts.com
图( 7) 表( 1)
计量
  • 文章访问数:  4760
  • HTML全文浏览数:  4760
  • PDF下载数:  92
  • 施引文献:  4
出版历程
  • 收稿日期:  2019-07-19
  • 录用日期:  2019-09-26
  • 刊出日期:  2020-06-01
黄青, 周家中, 吴迪, 韩文杰. Bardenpho镶嵌MBBR工艺用于北方某污水厂抗冲击性能[J]. 环境工程学报, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108
引用本文: 黄青, 周家中, 吴迪, 韩文杰. Bardenpho镶嵌MBBR工艺用于北方某污水厂抗冲击性能[J]. 环境工程学报, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108
HUANG Qing, ZHOU Jiazhong, WU Di, HAN Wenjie. Shock-loading resistance of Bardenpho-embeded MBBR process in a WWTP of northern China[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108
Citation: HUANG Qing, ZHOU Jiazhong, WU Di, HAN Wenjie. Shock-loading resistance of Bardenpho-embeded MBBR process in a WWTP of northern China[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1698-1704. doi: 10.12030/j.cjee.201907108

Bardenpho镶嵌MBBR工艺用于北方某污水厂抗冲击性能

    通讯作者: 周家中(1990—),男,硕士,工程师。研究方向:水污染防治技术。E-mail:zhoujiazhong@qdspr.com
    作者简介: 黄青(1976—),男,本科,高级工程师。研究方向:污水处理工艺。E-mail:hqyb@163.com
  • 1. 青岛首创瑞海水务有限公司,青岛 266031
  • 2. 青岛思普润水处理股份有限公司,青岛 266510
基金项目:
国家水体污染控制与治理科技重大专项(2017ZX07106005);青岛市民生科技计划项目(18-6-1-100-nsh)

摘要: 采用Bardenpho镶嵌MBBR工艺对北方某污水厂进行提标改造,考察了在进水有机物长期超标冲击情况下的运行效果。通过对该污水厂近一年的运行数据进行分析发现,在进水BOD和TN超标的情况下,出水TN、BOD、NH+4-N分别为(7.75±2.67)、(2.82±0.34)、(2.43±1.04) mg·L−1,稳定达到一级A标准,通过后缺氧区的设置,破除了回流比对TN去除的限制,使系统在进水TN超标的情况下同样能够稳定达标,TN去除率均值达到88%。硝化小试研究结果表明,在有机物冲击前后,悬浮载体的硝化速率没有受到影响,容积负荷分别为0.108 kg·(m3·d)−1和0.109 kg·(m3·d)−1,而冲击后活性污泥的硝化速率则较冲击前降低了44%。通过对生化段沿程各功能区断面出水测定发现,好氧MBBR区对NH+4-N的去除率超过90%,保障了出水氨氮的稳定达标。微生物高通量测序结果显示,MBBR悬浮载体对硝化细菌的筛选和富集具有重要作用,悬浮载体上硝化菌含量是活性污泥的5倍,为MBBR的抗冲击性能提供了微观保证。采用Bardenpho镶嵌MBBR工艺进行提标改造后,系统抗冲击性能较强,运行效果稳定,适用于污水厂升级改造。

English Abstract

  • 随着我国对水环境质量要求的提高,废水的排放标准也日益严格,从一级A到各地方标准、从日均值达标到时时达标,都对污水处理工艺以及运行提出了严格的要求。但随着人们生活水平的不断提高,污水厂进水管控不严格,常常出现进水水质超过设计标准的情况,尤其是有机物浓度,对于污水厂的正常运行和出水造成了恶劣的影响,所以改善污水厂运行工艺,提高其抗冲击性能,对于保障污水厂的正常运行具有重要意义。

    目前,活性污泥法在我国应用较为普遍,其结构简单、形式多样、运行管理方便,但进水水质波动会对处理过程产生冲击,使生化系统C/N/P营养比例失衡,在冲击来临时,常面临出水不达标的问题;同时污泥中的硝化菌丰度会伴随冲击过程逐步降低,导致出水氨氮恢复较慢,严重影响出水水质[1]。因此,需要通过工艺改善来保障污染物稳定达标。吴成强等[2]采用深度水解/MBR工艺处理高COD、高氨氮废水,工程运行结果表明,该工艺抗冲击负荷能力强,出水氨氮稳定低于1 mg·L−1。移动床生物膜反应器(moving bed biofilm reactor, MBBR)兼具生物接触氧化和生物流化床的优点[3],属于典型的生物膜法。工程实践表明,MBBR工艺具有很强的抗冲击负荷能力。如在北方某污水厂实施Bardenpho-MBBR工艺改造后[4],进水COD波动频繁的情况下,出水水质稳定达标,且系统可稳定运行;李新利等[5]采用MBBR工艺处理皮革废水,常规活性污泥法氨氮容积负荷为0.21 kg·(m3·d)−1,而采用MBBR工艺后,容积负荷为0.53 kg·(m3·d)−1,MBBR工艺硝化负荷提升1.5倍,从而保障了氨氮稳定达标。

    本研究通过向活性污泥系统中投加悬浮载体,形成泥膜复合的MBBR工艺,依靠悬浮载体对于微生物的富集筛选作用抵抗进水冲击,以期达到抗水质冲击的效果,保障水厂稳定达标;通过实际工程的运行效果,判定宏观上MBBR工艺的抗冲击性能,然后通过硝化小试实验和生化段沿程的测定,分析了活性污泥和悬浮载体的抗冲击性能;通过高通量测序,从微生物角度探究了活性污泥和悬浮载体对于硝化细菌的富集能力;从宏观和微观上分析了MBBR工艺的抗冲击性能,为污水厂的抗冲击提供稳定运行工艺以及理论指导,为类似工程的运行提供数据指导。

  • 该污水厂生化池采用Bardenpho (A2/O+A/O)-MBBR工艺,总HRT为19.33 h,其中前厌氧区和缺氧区HRT为7.06 h、好氧区为8.42 h (MBBR区HRT为4.93 h),后缺氧区HRT为2.80 h,后好氧区HRT为1.05 h。污泥浓度为4 g·L−1,污泥龄为16 d,内回流比为100%~300%,外回流比为50%~150%。

    MBBR区投加悬浮载体为新型悬浮载体SPR-III,悬浮载体直径为(25±0.5) mm,高为(10±1) mm,挂膜后比重与水接近,有效比表面积大于800 m2·m−3,符合《水处理用高密度聚乙烯悬浮载体填料》(CJ/T 461-2014)行业标准。好氧内回流硝化液全部进入前缺氧区,在强化TN去除的同时也提高了原水碳源的利用率。此外,后缺氧区作为后置反硝化区,可通过碳源外部投加或內源呼吸对硝酸盐氮进一步去除,从而保障TN的去除不受回流比的限制,强化TN去除。生化处理段末端的好氧区保证了有机物去除及生物池出水中一定的溶解氧浓度,防止二沉池污泥上浮。

  • 为了解生化段对污染物质的去除情况,对生化段各功能区进行了沿程分析,取样点包括生化池进水、 厌氧区出水 、缺氧区出水、第1好氧区出水、好氧MBBR区出水、第2好氧区出水、后缺氧区出水和后好氧区出水,共8个取样点,具体取样点均位于各功能区出水断面,分布如图1所示。每间隔2~3 h取样,所有样品先快速沉淀后取上清液,取回后及时进行预处理,将3次样品等量混合均匀后,分别进行氨氮、硝氮、TN、COD的测定。

  • 对悬浮载体和活性污泥的硝化性能进行测定,实验用水采用缺氧区出水经沉淀后的上清液。实验温度为13 ℃,纯活性污泥实验控制污泥浓度为4.4 g·L−1,纯膜系统控制悬浮载体填充率为33%。

  • 沿程样及硝化小试的常规指标测定方法如下:氨氮采用纳氏试剂分光光度法测定,硝氮采用紫外分光光度法测定,TN采用过硫酸钾氧化紫外分光光度法测定,COD采用重铬酸钾法测定;pH、DO采用WTW Multi-3430i离线测定。

  • 高通量测序通过试剂盒(E.Z.N.A Mag-Bind Soil DNA Kit,OMEGA)提取微生物基因组DNA,通过1%琼脂糖凝胶电泳检测抽提基因组的完整性,利用Qubit 3.0 DNA试剂盒检测基因组DNA浓度。PCR扩增所用引物为341F/805R。对PCR产物进行琼脂糖凝胶电泳,并通过DNA胶回收试剂盒(SanPrep)对PCR产物进行回收,利用Qubit3.0 DNA检测试剂盒对回收的DNA精确定量,按照1∶1的等量混合后测序,等量混合时,每个样品DNA量取10 ng,最终上机测序浓度为20 pmol,通过Illumina Miseq测序平台完成对样品的高通量测序。

    采用UPARSE 7.1软件根据97%的相似度进行OTU聚类;使用UCHIME软件剔除嵌合体;利用RDPclassifier对每条序列进行物种分类注释,比对Silva数据库(SSU123),设置比对阈值为70%。

  • 图2图3图4分别为该水厂2018年2月27日至2019年2月26日的BOD、TN和氨氮的运行数据。从图2图3中可以看出,一年中进水存在2次严重超标,主要是TN、BOD,进水C/N(五日生化需氧量/总氮)为5.57±2.61。一年中进水有机负荷超过设计值(1.23 kg·(m3·d)−1)的时间达到了111 d,占30%。虽然进水氨氮不超标,但是TN超标,进水TN超标天数达到137 d,超标率为38%。由于TN的去除仍以硝化反硝化为主,故实际硝化的氮高于设计值,TN的超标间歇性地导致了氨氮的超标。

    图2图3可知,在进水BOD、TN超标的状态下,出水稳定达标,出水BOD均值为(2.82±0.34) mg·L−1,已经稳定达到了地表Ⅳ类水标准。出水TN均值为(7.75±2.67) mg·L−1,低于10 mg·L−1的时间为262 d,达到72%,低于12 mg·L−1的时间为332 d,达到91%,说明脱氮效果良好。

    图4可知,一年出水氨氮均值为(2.43±1.04) mg·L−1。正常情况下,出水氨氮可以稳定小于1.5 mg·L−1,但是在进水BOD和TN超标时,出水氨氮有所提升,但仍小于5 mg·L−1。分析其原因主要为2点:1) TN超标间接导致氨氮超标,从而导致出水氨氮偏高;2) 进水BOD超标,由于异养菌对于溶解氧的竞争能力强于自养菌,所以一旦有机物浓度过高,在好氧池就会优先发生异养菌好氧脱碳过程,从而导致硝化菌可利用溶解氧不足,致使出水氨氮浓度升高[6-7]。但即使出现了间接的TN和BOD超标,出水氨氮仍可稳定达到一级A标准。

    该污水厂生化段采用Bardenpho镶嵌MBBR工艺进行改造。首先,增设前缺氧和后缺氧区,其中,前缺氧区通过内回流过程充分利用原水碳源进行反硝化脱氮,后缺氧区通过投加碳源进一步进行反硝化脱氮,两大缺氧区共同保障了TN的去除效果,生化池出水硝氮最低可达到1 mg·L−1。其次,在前好氧区投加了悬浮载体,悬浮载体生物膜为长泥龄,这就为长泥龄菌尤其是硝化细菌的高效附着提供了场所。此外,由于悬浮载体专性在好氧区,所以即使有冲击来临,也能保障悬浮载体在好氧区内的持留,从而保障硝化效果。综上所述,采用Bardenpho镶嵌MBBR工艺可强化硝化和反硝化过程,抗冲击能力强,从而达到出水稳定达标的目的[8-10]

  • 为验证MBBR工艺在有机物冲击情况下对系统的处理情况,进行悬浮载体及活性污泥硝化小试并对污水厂生化段各功能区的沿程水样进行检测分析。

    在对悬浮载体及污泥硝化性能进行对比时,根据MBBR区实际情况,分别在有机物冲击前后对好氧池内挂膜成熟的悬浮载体和活性污泥进行硝化小试实验,测定悬浮载体及活性污泥的硝化速率。硝化小试实验条件和所得的结果见表1图5。活性污泥浓度和悬浮载体填充率为实验时生化池内实时值,实验温度为13 ℃。由表1可知,不论是在冲击前还是冲击后,悬浮载体的硝化速率均高于活性污泥。冲击前,悬浮载体的硝化性能是活性污泥的1.4倍,冲击后则增大至1.9倍。从有机物冲击对悬浮载体及活性污泥的硝化性能影响方面看,虽然冲击后生物池污泥浓度升高,但是污泥的硝化负荷有所降低,容积负荷由0.076 kg·(m3·d)−1降至0.057 kg·(m3·d)−1,降低了25%,污泥的硝化负荷由0.018 kg·(kg·d)−1降至0.010 kg·(kg·d)−1,降低了44%。而对于悬浮载体,冲击前后容积负荷未发生变化,这说明有机物的冲击并没有影响悬浮载体的硝化性能。

    进水有机物浓度过高会导致异养菌繁殖过快,从而引起污泥浓度的升高。此外,由于自养菌对于溶解氧的争夺处于劣势,繁殖速率降缓,且随着污水厂剩余污泥排放量的增大,最终导致了硝化菌在活性污泥中的占比降低,从而导致污泥的硝化性能下降。而对于悬浮载体,由于硝化菌附着于悬浮载体表面,且悬浮载体专性在好氧区,即使在有机物冲击的条件下,悬浮载体也不会流失,生物膜的高效附着有效地持留了硝化菌,从而保障了悬浮载体的硝化性能不受影响,抗冲击能力强[11-13]

    为分析有机物冲击情况下生化系统各功能区对氮素的处理情况,对生化段各功能区进行取样检测,生化池氮素浓度沿程变化如图6所示。由图6可知,生化系统进水氨氮接近设计值,在TN超标的情况下,出水氨氮为1.42 mg·L−1,出水TN为11.48 mg·L−1,均优于设计标准。对于硝化过程,由于进水有机物超标,故在好氧1区内基本无硝化发生,氨氧化率仅为2.66%,硝化容积负荷为0.029 kg·(m3·d)−1。而在好氧MBBR区内,氨氧化率则达到90%以上,硝化容积负荷达到0.192 kg·(m3·d)−1,硝化速率是好氧1区的6.6倍,从而保障了好氧MBBR区出水氨氮稳定达标。对于反硝化过程,厌氧区和前缺氧区对TN的去除率达到了70.22%,并且前缺氧区出水硝氮基本为零,这说明厌氧区和缺氧区脱氮效果良好,充分利用了原水碳源。值得注意的是,在好氧MBBR区也有7%的TN去除,推测可能是发生了同步硝化反硝化(SND)过程。基质(有机物、硝态氮等)以及DO在悬浮载体生物膜内部存在传质梯度并且各类微生物的代谢活动及其相互作用所形成的微环境是引起同步硝化反硝化(SND)的主要因素。此外,由于生物膜分层分布的特点,使其存在典型的缺/好氧微环境,进而形成功能菌群分置。生物膜外层形成好氧生物膜,硝化菌群得以附着并氧化氨氮;内层则形成缺氧生物膜,具备反硝化功能的菌群能够得以生长并将氨氮的氧化产物还原为氮气实现脱氮[14]。好氧MBBR区出水TN已经降低至15.12 mg·L−1,通过在后缺氧区投加碳源,使出水TN进一步降低,最终达到11.48 mg·L−1

    从沿程氮素去除效果来看,在受进水有机物冲击的情况下,系统仍能保持较好的处理效果,结合硝化小试及沿程数据可知,MBBR工艺为系统抗冲击性能提供了保障。一方面通过悬浮载体的投加,为硝化菌的大量生长提供了附着条件,易受冲击的硝化菌群主要附着在悬浮载体上,在进水存在负荷冲击时,MBBR抗冲击能力强,减轻了系统受冲击负荷的影响;另一方面,采用MBBR工艺进行改造,增大了缺氧区的停留时间,尤其是增加了后缺氧区,破除了回流比对TN去除的限制,可控性强。当MBBR区出水TN达标时,后缺氧区可不投加碳源,利用原水碳源或者内碳源进行反硝化可去除少量的TN,而一旦进水TN超标,导致MBBR区出水TN偏高时,则可通过在后缺氧区投加碳源,从而保障生化池出水TN达标[14-15]

  • 为从微观层面进一步分析系统抗冲击负荷的原因,对该污水厂活性污泥以及悬浮载体进行了基于16S rRNA扩增子高通量测序,各样品属水平物种相对丰度如图7所示。MBBR悬浮载体中优势菌群主要包括Nitrospira(硝化螺旋菌属)、Acinetobacter(不动杆菌属)、Nitrosomonas(亚硝化单胞菌属)等;污泥中优势菌群主要包括Nitrosomonas(亚硝化单胞菌属)、Thermomonas(热单胞菌属)、Nitrospira(硝化螺旋菌属)。系统中AOB主要为Nitrosomonas(亚硝化单胞菌属),在悬浮载体生物膜和活性污泥上的丰度分别为1.46%和1.08%,占比较少。Nitrospira是主要的NOB菌属,在悬浮载体生物膜和活性污泥上的丰度分别为12.94%和1.01%。研究发现,Nitrospira更容易以附着态形式存在,因此,在悬浮载体中的丰度较大;Nitrospira在污泥中的丰度也高于传统污水厂,这可能是由于悬浮载体生物膜脱落后,对污泥进行了接种,使之在污泥中也能够维持一定的比例。有研究[16]发现,Nitrospira兼具AOB和NOB功能,另外,该菌属适宜生存在低氨氮环境中,可以作为出水水质较好和稳定的指示性微生物。因此,Nitrospira作为硝化菌中优势种属也反映了水厂处理效果较为良好。

    取样时,系统内污泥浓度为4.86 g·L−1,VSS/SS=0.51,悬浮载体上污泥量为9.07 g·m−2,VSS/SS=0.89。在好氧系统中,结合池容、悬浮载体填充率等进行计算发现,悬浮载体提供83%的硝化菌,是活性污泥的5倍,由此可见,悬浮载体保障了系统硝化的进行。

    值得注意的是,冲击过后,同样对活性污泥和悬浮载体进行了高通量测定,与冲击前相比,两者的硝化菌属均未发生改变,仍以Nitrospira为主,兼具Nitrosomonas,但冲击过后活性污泥中硝化菌属的丰度均明显降低,Nitrospira由1.01%降低至0.84%,Nitrosomonas由1.08%降低至0.61%。相比而言,悬浮载体的硝化菌属丰度并未发生明显改变,Nitrosomonas的丰度为1.52%,Nitrospira的丰度为12.06%。从微生物的角度进一步证明了MBBR工艺良好的抗冲击性能。

  • 1)通过向活性污泥系统中投加悬浮载体形成泥膜复合MBBR工艺,强化了系统的抗冲击能力,在进水TN、BOD超标的情况下,出水TN、BOD、氨氮分别为(7.75±2.67)、(2.82±0.34)、(2.43±1.04) mg·L−1,稳定达到一级A标准。

    2) Bardenpho工艺通过后缺氧的设置,破除了回流比对TN去除的限制,使系统在进水TN超标的情况下同样能够稳定达标,可控性强。

    3)悬浮载体生物膜长泥龄、专性培养的特点使其能够对硝化细菌实现高效的筛选富集和持留,保障了在有机物冲击前后,悬浮载体的硝化性能不受影响。

    4)悬浮载体和活性污泥的高通量结果显示,悬浮载体上优势硝化菌为硝化螺旋菌,其丰度是活性污泥的5倍,高效的硝化细菌保障了工程中氨氮的稳定达标。

    5)工程实践表明,MBBR工艺抗冲击能力较强,出水各指标稳定达标,适用于污水厂在高排放标准下的应用。

参考文献 (16)

返回顶部

目录

/

返回文章
返回