Processing math: 100%

Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能

张健伟, 苑鹏, 王建桥, 沈伯雄, 张艳芳. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119
引用本文: 张健伟, 苑鹏, 王建桥, 沈伯雄, 张艳芳. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119
ZHANG Jianwei, YUAN Peng, WANG Jianqiao, SHEN Boxiong, ZHANG Yanfang. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119
Citation: ZHANG Jianwei, YUAN Peng, WANG Jianqiao, SHEN Boxiong, ZHANG Yanfang. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119

Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能

    作者简介: 张健伟(1994—),男,硕士研究生。研究方向:烟气污染物控制。E-mail:952256100@qq.com
    通讯作者: 沈伯雄(1971—),男,博士,教授。研究方向:烟气污染物控制。E-mail:shenboxiong0722@sina.com
  • 基金项目:
    天津市自然科学基金重点项目(18JCZDJC39800);天津市科技专项(18ZXSZSF00040);天津市平台科技专项(18PTZWHZ00010)
  • 中图分类号: X701

Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance

    Corresponding author: SHEN Boxiong, shenboxiong0722@sina.com
  • 摘要: 为探讨湿法脱硫后光催化在烟气脱硝方面的应用潜力,采用溶胶-凝胶法制备了金属、非金属掺杂的CNTs-TiO2复合光催化剂,并在模拟烟气条件下对所得催化剂的NO氧化性能进行了测试与对比筛选,通过SEM、BET、XRD、Raman、XPS、DRS等手段进行表征。结果表明:TiO2的氧化效率最低,掺杂金属比掺杂非金属的光催化剂的氧化效率略高,复合CNTs的光催化剂的氧化效率明显提高;CNTs-Ce/TiO2比表面积较大,Ti—O键长最短,从而有利于光生电子沿Ti—O键向CNTs转移,可形成更多的三价铈氧化物,有利于催化剂表面的氧吸附;带隙宽度较低以及极大的紫外光吸光度,在NO氧化性能测试中表现出最优异的脱除效率,与TiO2相比,效率提升了19%,与CNTs-TiO2相比,效率提升了13%。进一步分析可知:Ce和CNTs具有协同作用,Ce掺杂TiO2可以有效抑制光生载流子的结合,从而提高光催化活性;复合CNTs提高了催化剂比表面积并促进了氧空位的形成,从而促进整个催化氧化反应。
  • 混凝作为给水处理的核心环节,在显著去除水中杂质的同时,不可避免地产生大量副产物——污泥。据统计,我国自来水厂每年约产生1 500~2 400 KT干污泥[1]。净水污泥主要由水、悬浮固体、有机物和铝或铁的金属氧化物组成[2],部分污泥还含有微生物和消毒副产物前驱物[3]。常见的污泥处理方式通常是填埋或排放至周边水域,虽然具有处理成本的优势,但会污染周围的土壤、水体[4]。而污泥回流工艺可以通过回用净水污泥来增加原水中颗粒物含量,加快絮凝进程,不仅能减少污泥排放量,还能节约混凝药剂[5],是目前解决污泥再利用问题的研究重点。

    近年来,国内外学者对污泥回流控制进行了深入的研究。童祯恭等[6]发现,污泥回流比控制在2%时,出水的Al、Fe和Mn含量均无累积,回流比控制在4%时就能防止细菌和粪大肠菌群数过快增长。CHUN KANG等[7]通过响应面法得到最佳污泥回流运行条件,当污泥投加量为1 588 mg·L−1时,出水效果最好。实际影响混凝效果的是污泥回流后水体杂质,而原水水质波动会引起回流污泥性质的变化,以相同污泥回流量或回流比进行回流并不能达到相同的混凝效果。因此本研究尝试将污泥回流后的水体浊度作为运行控制指标,并对其进行优化。

    此外,污泥回流强化混凝效能的影响因素也是研究的重点。ABHULASH等[8]研究发现在pH值为9、混凝剂剂量为4.2 mg·L−1时,污泥回流效果最好。DAYARATHEN等[9]研究发现,浊度去除率受温度影响很大,温度过低过高都不利于混凝反应的进行,2 ℃时浊度去除率为83%,20 ℃时升至90%,而40 ℃时又降至78%。除常见的环境因素外,污泥本身的性质也会对混凝效果产生影响,但目前少有针对这方面的研究。

    本研究以混合水的浊度为控制指标,研究混合水浊度对混凝效果的影响,同时探究温度、污泥悬浮固体浓度、污泥指数对混凝效果及较优混合水浊度范围的影响,最后应用偏最小二乘法构建污泥回流比同混合水浊度、温度和污泥性质间的关系,以求在不同工况下预测污泥回流比变化趋势,提高混凝效率,为水厂污泥回流工艺运行提供数据参考。

    本实验用水取自宁夏回族自治区银川市某给水处理厂。该厂原水主要来自水洞沟水库,是典型的低浊水,水质参数指标如表1所示。污泥取自该水厂斜管沉淀区。该水厂核心处理工艺为高密度澄清池,是通过回流沉淀区污泥来提高絮体密实度、增强水处理效果,减少混凝药剂投加量的典型水处理工艺[10]

    表 1  实验用原水主要特性
    Table 1.  Characteristics of raw water
    pH温度/℃浊度/NTUCODMn/( mg·L−1)TP/( mg·L−1)TN/( mg·L−1)
    7.9~8.4−1.5~24.01.08~64.001.03~5.920.01~0.080.64~3.90
     | Show Table
    DownLoad: CSV

    本实验采用的混凝剂为聚合氯化铝(PAC),氧化铝(Al2O3)质量分数为10.2 %,质量浓度为0.1 g·L−1,助凝剂为聚丙烯酰胺(PAM),质量浓度为0.02 g·L−1。实验中应用的PAC、PAM、高锰酸钾(KMnO4)、硫酸(H2SO4)、草酸钠(Na2C2O4)试剂均为分析纯。

    1)污泥回流混凝实验:使用混凝搅拌仪(ZR4-6,深圳中润)进行实验,对原水进行预搅拌(200 r·min−1,30 s)处理,混匀水中杂质。加入混凝剂PAC后快速搅拌(200 r·min−1,1.5 min)促进药剂分散,加入PAM和收集的污泥,再慢速搅拌(40 r·min−1,15 min)促进絮体形成,最后静置40 min,取液面下1 cm处的样品,进行浊度和CODMn检测。

    2)混合水浊度混凝实验:污泥回流至原水中会改变水体浊度,浊度的变化会影响混凝效果及混凝药剂投加量。水厂原水浊度在1.08~64 NTU左右,回流污泥后混合水浊度范围约为 500~2 500 NTU,因此以1、2、5、7、10%的比例将污泥加入至1 L原水的烧杯中,慢速搅拌(40 r·min−1,3 min)后取水样检测浊度,每组重复3次取均值进行线性拟合,得到拟合关系式,以500、1 000、1 500、2 000、2 500 NTU为自变量,推求该性质污泥的回流比,进行污泥回流获得对应混合水浊度,按照污泥回流混凝实验步骤进行实验。

    3)温度影响实验:实验期间,原水水温为0~5 ℃,控制水浴锅(HWS~26型)温度分别为10、15、20 ℃对低温水进行升温,在恒温水浴条件下进行污泥回流实验,实验过程同上述步骤一致。

    采用浊度仪(YZD-IB,银川宁加环保仪器制造有限公司)测定样品浊度。采用酸性高锰酸钾滴定法测定样品CODMn。污泥的沉降比(SV)、污泥悬浮固体浓度(MLSS)采用国家标准方法进行测定[11],污泥容积指数(SVI)采用经30 min沉淀后,1 g干污泥所占容积来表示,见式(1)。

    SVI=SVMLSS (1)

    收集斜管沉淀区的污泥进行污泥性质检测,得到3组不同污泥容积指数(SVI1为11~15 mL·g−1,SVI2为15~19 mL·g−1,SVI3为19~23 mL·g−1)的回流污泥,和3组不同污泥悬浮固体浓度(MLSS1为40~55 g·L−1,MLSS2为55~70 g·L−1,MLSS3为70~85 g·L−1)的回流污泥。收集6组污泥在相同混凝药剂投加量下(PAC:35 mg·L−1,PAM:0.1 mg·L−1)进行各项实验,通过拉依达(3σ)准则对实验数据异常值进行识别与剔除,通过归一化处理消除不同量纲对拟合精准度的影响,见式(2)。

    xi,norm=xixi,minxi,maxxi,min (2)

    式中:xi,norm表示消除量纲后的数值;xi表示实验数据;xi,min表示实验数据最小值;xi,max表示实验数据最大值。

    偏最小二乘法是一种数据驱动的方法,主要通过对过程变量的观测来预测输出变量。偏最小二乘法(PLSR)适用于观测数据较少,变量较多且存在多重相关性时的回归建模[12]。PLSR集主成分分析和典型相关性分析为一体,可以通过提取、筛选成分得到对因变量影响最大的自变量,提供更深层次的信息[13]。本研究以回流比为因变量,通过实验探究污泥回流比的关键影响因素,将其作为自变量,采用PLSR法建立污泥回流比控制模型,通过拟合系数(R2)、均方根误差(RMSE)对模型进行评价。拟合系数R2表示因变量与自变量间总体关系,可以体现回归模型的解释能力,通常R2越接近1模型越精准,具体计算公式见式(3)。RMSE用于评价数据的变化程度,体现真实值与预测值的误差,通常RMSE越小说明模型描述的数据具有越好的精确度具体计算公式见式(4)。

    R2=ni=1(yi¯fi)2ni=1(fi¯fi)2 (3)
    RMSE=1nni=1(yifi)2 (4)

    式中:n为测试样本数目;yi为预测值;fi为实测值;¯fi为测试样本实测值的平均值。

    为探究混合水浊度对混凝效果及药剂投加量的影响,考察了混合水浊度在500~2 500 NTU、PAC投加量为20~40 mg·L−1,PAM投加量为0.1 mg·L−1条件下,混凝出水浊度和CODMn的变化,结果如图1所示。

    图 1  混合水浊度对混凝效果的影响
    Figure 1.  Effect of turbidity of mixed water on coagulationt

    图1(a)、图1(b)可以发现适当提高混合水浊度有利于混凝反应的进行。对比相同药剂投加量下的出水浊度和CODMn可以看出,当未进行污泥回流时,混凝药剂投加量小于30 mg·L−1,出水浊度值大于1.5 NTU,混凝药剂投加量大于35 mg·L−1,出水浊度也始终大于其它出水浊度,大于1.5 NTU。混合水浊度控制在500~1 000 NTU时,出水浊度始终低于其他混合水浊度的出水浊度,小于1.2 NTU。混凝药剂投加量增至40 mg·L−1时,出水浊度达到最低值0.86 NTU,出水CODMn也低于其他混合水浊度。研究结果同徐永鹏等[14]研究结果一致。可能是因为适量的混合水浊度可以增加水中悬浮物颗粒浓度,提高絮凝颗粒物浓度,增加颗粒间的碰撞几率,达到强化混凝的效果。当混合水浊度超过1 000 NTU时,随着混合水浊度持续提高,出水浊度和CODMn均随着混合水浊度的上升呈现增高趋势。可能是因为混合水浊度过大时,颗粒间剪切和摩擦作用力增大,絮体破碎可能性增加,聚合几率低于破碎几率,反而降低混凝效果[15]

    根据图1(a)、图1(b),对比不同混合水浊度控制下出水浊度接近1 NTU时的药剂投加量可以发现,混凝药剂需求量随混合水浊度的升高呈先降低后升高的趋势。未进行污泥回流时,浊度为1~20 NTU,需投加35 mg·L−1的PAC。当污泥进行回流后,混合水浊度升至500~1 000 NTU时,仅需投加30 mg·L−1的PAC。可能是因为污泥回流水体中含有未完全水解或未被利用的混凝剂,在混凝时再次发挥效用,降低混凝药剂的使用量[16]。混合水浊度增加到1 500~2 500 NTU时,PAC投加量增加到35 mg·L−1。可能是因为随着混合水浊度持续增加,水中悬浮的胶体也逐渐增加,混凝剂中的铝盐无法降低Zeta电位,悬浮物的凝聚效率降低,需要通过增加混凝药剂的投加量[17]来提升混凝效果。

    为探究温度对混凝效果、适宜混合水浊度及药剂投加量的影响,参考原水温度变化范围,在0~20 ℃的条件下重复上述试验,结果如图2所示。

    图 2  温度对混凝效果的影响
    Figure 2.  Effect of temperature on coagulation

    图2(a)、图2 (b)可以看出,在相同混凝药剂投加量下,随着温度降低,混凝效果较优的混合水浊度范围逐渐缩减。且相同混合水浊度下,出水浊度、CODMn随着温度降低而升高。15~20 ℃时,混凝效果随着混合水浊度升高呈先升高后降低趋势。混合水浊度范围控制在500~1 500 NTU时混凝效果较好,出水浊度约为1 NTU,出水CODMn小于1.5 mg·L−1。10 ℃时,混凝效果随着混合水浊度升高呈缓慢降低趋势。混合水浊度范围控制在500~1 000 NTU时混凝效果较好,出水浊度约为1.1 NTU,出水CODMn小于1.8 mg·L−1。0~5 ℃时,混凝效果随着混合水浊度升高而变差。混合水浊度范围控制在500 NTU时混凝效果较好,此时出水浊度接近1.2 NTU,出水CODMn小于2 mg·L−1。低温 (0~10 ℃) 时,控制在较低的混合水浊度更有利于混凝反应的进行,原因可能是水温过低时胶体布朗运动减弱,高混合水浊度会导致水中的胶体无法被凝聚,不利于混凝反应的进行[18]

    图2(a)、图2 (b)也反映出,在相同混合水浊度下,随着温度的降低,对混凝药剂的需求量也逐渐增加。当控制混合水浊度为500~2 500 NTU,出水浊度接近1 NTU,出水CODMn接近1.0 mg·L−1时,温度为15~20 ℃,PAC需投加20~25 mg·L−1。温度为0~10 ℃时,出水CODMn无法达到1.0 mg·L−1。此时,控制混合水浊度为500~2 500 NTU,出水浊度接近1 NTU,出水CODMn接近1.5 mg·L-1时,10 ℃下,PAC需投加30~35 mg·L−1;温度为0~5 ℃,PAC需投加35~40 mg·L−1。产生此种现象原因可能是金属离子的水解反应需要热能,温度降低时,混凝剂的水解反应缓慢,扩散的速率降低,均不利于胶体粒子的碰撞运动,因此需要更多的药剂量来促进混凝反应进行[19]。且相同温度下,随着混合水浊度的升高,需求投加的混凝药剂量也逐渐增加,同DAYARATHEN等[9]研究结果一致。可能是因为水中悬浮的颗粒物增加,需要更多混凝药剂来提供反应活性位点。

    污泥的沉降和絮凝性能直接影响污泥回流强化混凝的效能和处理效率,目前常用污泥容积指数(SVI)来衡量污泥的沉降性能。对比相同混合水浊度下SVI变化对混凝效果的影响,如图3(a)所示,随着污泥SVI增大,混凝后出水浊度呈现先降低后升高的趋势。SVI在11~17 mL·g−1时,出水浊度始终保持下降趋势,接近17 mL·g−1时达到最小值,小于0.9 NTU;SVI在17~23 mL·g−1时,出水浊度始终保持上升趋势,接近23 mL·g−1时达到最大值,大于1.1 NTU。在既定的3组污泥容积指数内,SVI在15~19 mL·g−1范围内,整体出水浊度较低,混凝效果最好,SVI在19~23 mL·g−1范围内,整体出水浊度较高,混凝效果差,SVI在11~15 mL·g−1范围内,混凝效果介于两者之间。可能是因为SVI较低时污泥颗粒细小,不利于吸附水中悬浮颗粒。随着SVI增加,污泥吸附性能持续提升,有利于混凝反应的进行[20]。SVI过大时,污泥的沉降性能降低,污泥下沉量减少,出水浊度提高。SVI对适宜混合水浊度的选择也存在影响。对比相同SVI范围内不同混合水浊度的出水效果,由图3(a)可知,SVI在11~19 mL·g−1时,混合水浊度控制在500 NTU出水效果最好,这是因为水体中颗粒基数较小,污泥吸附后残余颗粒数也小于其他浊度。SVI在19~23 mL·g−1时,混合水浊度提高到1 000~1 500 NTU,混凝出水效果最好。此时水中颗粒碰撞概率增加,絮体胶体尺寸增大,胶体沉降性能提升,混合水浊度持续提升反而会提高絮体破碎可能性,不利于混凝反应的进行[15]

    图 3  污泥性质对混凝效果的影响
    Figure 3.  Effect of sludge properties on coagulation

    夏季春等[21]研究发现,污泥浓度是影响污泥回流强化混凝的另一关键因素。对比相同混合水浊度下MLSS变化对混凝出水效果的影响,如图3(b)所示,混合水浊度为500~2 000 NTU时,出水浊度随着MLSS的提高整体呈先降低后增高的变化趋势,混合水浊度为2 000 NTU时,出水浊度成波动性变化。但总体来看,MLSS控制在60 g·L−1以下时,出水浊度呈下降趋势,接近60 g·L−1时出水浊度达到最小值;MLSS超过60 g·L−1时,出水浊度呈上升趋势。MLSS在55~70 g·L−1时,整体出水效果最好。可能是MLSS较小时,回流污泥无法高效进行网捕卷扫;MLSS过高时,污泥沉降层泥位上升,不易沉降的絮体颗粒浮在水体中,促使出水浊度上升。研究结果同孟凡凡等[22]一致。图3(b)也显示了MLSS对适宜混合水浊度的影响。对比相同MLSS范围内不同混合水浊度对出水效果的影响可知,MLSS在40~60 g·L−1时混合水浊度控制在1 000~1 500 NTU出水效果最好,因为增加了水中颗粒密度,提高网捕卷扫效果,进而促进污泥絮体的的生长[23],提高混凝效果。MLSS提高到60~85 g·L−1时,混合水浊度降低到500 NTU出水效果最好,此时水中颗粒基数减小,有效降低了污泥沉降层的泥位和水中不易沉降的絮体颗粒,沉降水体浊度值降低。

    实际工艺运行中通过污泥回流比来调整污泥回流量,而污泥回流比同混合水浊度具有较强的线性相关性,二者线性拟合程度较高,如图4所示,可以通过混合水浊度推求适宜的污泥回流比。并且由图4同上述研究可知,SVI、MLSS、污泥沉降比既会影响较优混合水浊度范围取值,又会影响污泥回流比同混合水浊度的关系,温度会影响较优混合水浊度范围取值。因此本研究以污泥回流比作为预测的自变量,期望以混合水浊度、温度、SVI、MLSS、污泥沉降比作为关键影响指标构建PLSR拟合模型。

    图 4  混合水浊度同污泥回流比的关系
    Figure 4.  Relationship between turbidity of mixed water and sludge reflux ratio

    基于PLSR法的建模原理,需要先确定主成分个数,以便在最大程度保留数据本质的前提下降低维数,为后期分析提供依据[24]。由PLSR拟合得到的主成分分析结果如表2所示,选择3个主成分建模就可以解释自变量80%的信息,继续增加主成分数时解释信息量变化不明显,说明选择3个主成分进行建模是合理的。

    表 2  方差因子解释情况
    Table 2.  Explanations of variance factors
    潜在因子X方差累计X方差Y方差累计的Y方差
    10.4850.4850.7320.732
    20.2070.6920.0570.774
    30.2000.8920.0030.775
    40.1040.9970.0010.775
    50.00310.0010.767
     | Show Table
    DownLoad: CSV

    表3表示不同成分个数时,因变量对自变量的影响程度。由表3可知,选择3个主成分进行建模时,对污泥回流比影响因素排序为混合水浊度>温度>MLSS>SVI>污泥沉降比。说明混合水浊度才是影响回流比的关键因素,温度也决定了污泥回流比的控制范围,污泥沉降比较其他因素来讲,影响程度最低。

    表 3  自变量累积投影重要性
    Table 3.  Cumulative projection importance of independent variables
    变量因子1因子2因子3因子4因子5
    混合水浊度2.1782.1212.1202.1192.111
    温度0.4410.5060.5090.5090.511
    MLSS0.2040.3520.3560.3570.359
    SVI0.1370.3470.3470.3490.359
    污泥沉降比0.0270.0330.0340.0520.161
     | Show Table
    DownLoad: CSV

    在确定主成分提取个数的条件下,对污泥回流比进行拟合,得到各自变量对因变量的标准回归系数,进而得到回归模型如式(5)所示。

    =0.627+1.289×+0.067×0.812×MLSS0.726×SVI+0.046× (5)

    应用拟合的PLSR模型对污泥回流比进行预测,污泥回流比的实测值与预测值关系图如图5所示。由图5可以看出,拟合散点基本上均匀地分布在回归线两侧,预测值与真实值吻合程度较好[25]。所得R2为0.778,相关系数为0.882,为高度相关[26]。表明拟合的污泥回流比模型拟合良好,实验误差小,有一定的预测效果,能够反映污泥回流比的变化范围。

    图 5  实测污泥回流比和预测污泥回流比的相关图
    Figure 5.  Correlation plot of measured and predicted sludge return ratio

    图6反映了66组污泥回流比实测值与预测值的曲线情况。由图6可知,模型的RMSE值为1.28,但整体误差较低[27]。且预测值与实测值的变化趋势是比较一致的,可以通过预测值来推测实际值的变化,证明通过温度、混合水浊度和污泥性质来推断污泥回流比具有可行性,有望通过该模型对高密澄清池实际运行提供参考。

    图 6  实测污泥回流比和预测污泥回流比的对比图
    Figure 6.  Comparison of measured sludge return ratio and predicted sludge return ratio

    1) 适量的回流污泥有利于强化混凝效果,节约混凝药剂投加量。相较于未回流污泥的原水而言,当混合水浊度控制在500~1 000 NTU时,出水浊度最低 (<1.2 NTU) ,需求药剂投加量最少(PAC:30 mg·L−1),为较优混合水浊度区间。

    2) 将温度控制在一定区间内,能够提高污泥回流的强化混凝效果。当温度为15~20 ℃时,混凝出水效果最好,出水浊度约为1 NTU,出水CODMn小于1.5 mg·L−1,混凝药剂需求量较低(PAC:20~25 mg·L−1),较优混合水浊度范围较广。当温度小于15 ℃时,出水效果变差,混凝药剂需求量增加,较优混合水浊度范围减小。

    3) 出水浊度随着SVI、MLSS的增大,呈先降低后升高的趋势。当SVI为15~19 mL·g−1,混合水浊度控制在500 NTU时,混凝出水效果较好;当MLSS为55~70 g·L−1,混合水浊度控制在500~1 500 NTU时,混凝出水效果较好。

    4) 通过采用偏最小二乘法,选择与污泥回流比相关性较强的影响指标,建立污泥回流比控制模型。结果表明,模型的R2为0.778,RMSE为1.28,模型拟合良好,可为实际工艺运行调节污泥回流比提供参考。

  • 图 1  实验系统示意图

    Figure 1.  Schematic diagram of the experimental system

    图 2  光催化氧化烟气脱硝效率对比

    Figure 2.  Comparison of photocatalytic oxidation flue gas denitration efficiency

    图 3  样品的SEM图

    Figure 3.  SEM images of samples

    图 4  不同样品的XRD图

    Figure 4.  XRD patterns of different samples

    图 5  不同光催化剂的拉曼光谱

    Figure 5.  Raman spectra of different photocatalysts

    图 6  不同光催化剂的XPS谱图

    Figure 6.  XPS spectra of different photocatalysts

    图 7  漫反射光谱和禁带宽度

    Figure 7.  Diffuse reflectance spectra and band gap

    表 1  光催化剂的平均孔径与比表面积

    Table 1.  Specific surface area and pore size of photocatalysts

    样品比表面积/(m2·g−1)平均孔径/nm
    TiO279.398.43
    N/TiO253.437.73
    CNTs-TiO289.428.44
    CNTs-N/TiO294.438.66
    Cu/TiO255.408.23
    Ce/TiO2127.126.87
    CNTs-Cu/TiO281.238.47
    CNTs-Ce/TiO2144.128.97
    样品比表面积/(m2·g−1)平均孔径/nm
    TiO279.398.43
    N/TiO253.437.73
    CNTs-TiO289.428.44
    CNTs-N/TiO294.438.66
    Cu/TiO255.408.23
    Ce/TiO2127.126.87
    CNTs-Cu/TiO281.238.47
    CNTs-Ce/TiO2144.128.97
    下载: 导出CSV

    表 2  样品的Ti—O键长及键长的缩短

    Table 2.  Ti—O bond length of samples and shortening of bond length

    样品拉曼位移/cm−1Ti—O长度/nm键长的变化/nm
    TiO21440.2610
    CNTs-TiO21460.2600.001
    CNTs-Ce/TiO21500.2580.003
    样品拉曼位移/cm−1Ti—O长度/nm键长的变化/nm
    TiO21440.2610
    CNTs-TiO21460.2600.001
    CNTs-Ce/TiO21500.2580.003
    下载: 导出CSV
  • [1] 高林, 李辉, 单历元, 等. 燃烧烟气脱硝技术的研究进展[J]. 化学工程, 2017, 45(3): 15-19. doi: 10.3969/j.issn.1005-9954.2017.05.004
    [2] SHI Y, XIA Y F, LU B H, et al. Emission inventory and trends of NOx for China, 2000-2020[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2014, 15: 454-464.
    [3] VILLAMAINA R, NOVA I, TRONCONI E, et al. The deactivation of an NH3-SCR Cu-SAPO catalyst upon exposure to non-oxidizing conditions[J]. Applied Catalysis A: General, 2019, 580: 11-16. doi: 10.1016/j.apcata.2019.03.027
    [4] DAOOD S S, JAVED M T, GIBBS B M, et al. NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR[J]. Fuel, 2013, 105: 283-292. doi: 10.1016/j.fuel.2012.06.087
    [5] ZHANG B, ZHONG Z P, FU Z M, et al. Experimental studies on photocatalytic oxidation of nitric oxides using titanium dioxide[J]. Journal of Southeast University, 2012, 28: 179-183.
    [6] 顾卫荣, 周明吉, 马薇. 燃煤烟气脱硝技术的研究进展[J]. 化工进展, 2012, 31(9): 2084-2092.
    [7] 董慧科, 王菲, 董慧裕, 等. TiO2光催化氧化脱除模拟烟气中的NOx[J]. 环境工程学报, 2015, 9(5): 2379-2385. doi: 10.12030/j.cjee.20150557
    [8] SONG W, ZENG Y, WANG Y, et al. Photo-induced strong active component-support interaction enhancing NOx removal performance of CeO2/TiO2[J]. Applied Surface Science, 2019, 476: 834-839. doi: 10.1016/j.apsusc.2019.01.190
    [9] NGUYEN D C T, CHO K Y, OH W C. Mesoporous CuO-graphene coating of mesoporous TiO2 for enhanced visible-light photocatalytic activity of organic dyes[J]. Separation and Purification Technology, 2019, 211: 646-657. doi: 10.1016/j.seppur.2018.10.009
    [10] TREVISAN V, OLIVO A, PINNA F, et al. C-N/TiO2 photocatalysts: Effect of co-doping on the catalytic performance under visible light[J]. Applied Catalysis B: Environmental, 2014, 160: 152-160.
    [11] MATOS J, OCARES-RIQUELME J, POON P S, et al. C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations[J]. Journal of Colloid and Interface Science, 2019, 547: 14-29. doi: 10.1016/j.jcis.2019.03.074
    [12] 杜瑞安, 马小帅, 张萌迪, 等. 多壁碳纳米管/TiO2复合材料的合成及其光催化性能研究[J]. 有色金属科学与工程, 2019, 10(5): 25-38.
    [13] XU C, XIE W, SI X, et al. Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter[J]. Environmental Research, 2018, 166: 167-174. doi: 10.1016/j.envres.2018.05.038
    [14] WANG W, LU C, NI Y, et al. Fabrication of CNTs and GP/AuGP modified TiO2 photocatalyst with two-channel electron conduction path for significantly enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 129: 606-613. doi: 10.1016/j.apcatb.2012.10.014
    [15] YAN N, ZHU Z, ZHANG J, et al. Preparation and properties of Ce-doped TiO2 photocatalyst[J]. Materials Research Bulletin, 2012, 47: 1869-1873. doi: 10.1016/j.materresbull.2012.04.077
    [16] SILVA C G, FARIA J L. Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 81-89.
    [17] HU C, ZHANG R, XIANG J, et al. Synthesis of carbon nanotube/anatase titania composites by a combination of sol-gel and self-assembly at low temperature[J]. Journal of Solid State Chemistry, 2011, 184(5): 1286-1292. doi: 10.1016/j.jssc.2011.03.040
    [18] DASIREDDY V D B C, LIKOZAR B. Selective photocatalytic oxidation of benzene to phenol using carbon nanotube (CNT)-supported Cu and TiO2 heterogeneous catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 331-341. doi: 10.1016/j.jtice.2017.11.011
    [19] XIAO J, PENG T, I R, et al. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles[J]. Journal of Solid State Chemistry, 2006, 179(4): 1161-1170. doi: 10.1016/j.jssc.2006.01.008
    [20] TAN Z Q, SUN L S, XIANG J, et al. Gas-phase elemental mercury removal by novel carbon-based sorbents[J]. Carbon, 2012, 50(2): 362-371. doi: 10.1016/j.carbon.2011.08.036
    [21] 王文一, 王恩霞, 霍腾波, 等. 碳纳米管负载二氧化钛的制备及其对甲基橙的光催化降解[J]. 天津工业大学学报, 2016, 35(6): 50-52. doi: 10.3969/j.issn.1671-024x.2016.01.010
    [22] 王环颖, 李文军, 常志东, 等. 非共价修饰碳纳米管/二氧化钛复合材料的合成及性能[J]. 无机化学学报, 2011, 27(2): 269-275.
    [23] SHAARI N, TAN S H, MOHAMED A R. Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation[J]. Journal of Rare Earths, 2012, 30(7): 651-658. doi: 10.1016/S1002-0721(12)60107-0
    [24] WANG S, PAN L, SONG J J, et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance[J]. Journal of the American Chemical Society, 2015, 137(8): 2975-2983. doi: 10.1021/ja512047k
    [25] ZHANG Z, TAN X, YU T, et al. Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11634-11643. doi: 10.1016/j.ijhydene.2015.12.200
    [26] 张羽池. 黑色二氧化钛/碳纳米管复合材料的制备及其应用研究[D]. 哈尔滨: 黑龙江大学, 2017.
    [27] RUI Y, XIONG H, SU B, et al. Liquid-liquid interface assisted synthesis of SnO2 nanorods with tunable length for enhanced performance in dye-sensitized solar cells[J]. Electrocimica Acta, 2017, 227: 49-60. doi: 10.1016/j.electacta.2017.01.004
    [28] MAHESWARI A U, ANJALI K K, SIVAKUMAR M. Optical absorption enhancement of PVP capped TiO2 nanostructures in the visible region[J]. Solid State Ionics, 2019, 337: 33-41. doi: 10.1016/j.ssi.2019.04.001
    [29] YANG S X, ZHU W P, JIANG Z P, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505. doi: 10.1016/j.apsusc.2005.11.067
    [30] DOLGONOS A, MASON T, POEPPELMEIER K. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method[J]. Journal of Solid State Chemistry, 2016, 240: 43-48. doi: 10.1016/j.jssc.2016.05.010
    [31] THIRUPPATHI M, SENTHIL K P, DEVENDRAN P, et al. Ce-TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium[J]. Journal of Alloys and Compounds, 2018, 735: 728-734. doi: 10.1016/j.jallcom.2017.11.139
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 7.9 %DOWNLOAD: 7.9 %HTML全文: 60.7 %HTML全文: 60.7 %摘要: 31.4 %摘要: 31.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 82.2 %其他: 82.2 %Ashburn: 2.1 %Ashburn: 2.1 %Beijing: 6.8 %Beijing: 6.8 %Hangzhou: 1.6 %Hangzhou: 1.6 %Qingdao: 0.5 %Qingdao: 0.5 %Shanghai: 0.5 %Shanghai: 0.5 %Suzhou: 0.5 %Suzhou: 0.5 %XX: 4.2 %XX: 4.2 %娄底: 0.5 %娄底: 0.5 %济南: 0.5 %济南: 0.5 %郑州: 0.5 %郑州: 0.5 %其他AshburnBeijingHangzhouQingdaoShanghaiSuzhouXX娄底济南郑州Highcharts.com
图( 7) 表( 2)
计量
  • 文章访问数:  6228
  • HTML全文浏览数:  6228
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-10-10
  • 刊出日期:  2020-07-01
张健伟, 苑鹏, 王建桥, 沈伯雄, 张艳芳. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119
引用本文: 张健伟, 苑鹏, 王建桥, 沈伯雄, 张艳芳. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119
ZHANG Jianwei, YUAN Peng, WANG Jianqiao, SHEN Boxiong, ZHANG Yanfang. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119
Citation: ZHANG Jianwei, YUAN Peng, WANG Jianqiao, SHEN Boxiong, ZHANG Yanfang. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119

Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能

    通讯作者: 沈伯雄(1971—),男,博士,教授。研究方向:烟气污染物控制。E-mail:shenboxiong0722@sina.com
    作者简介: 张健伟(1994—),男,硕士研究生。研究方向:烟气污染物控制。E-mail:952256100@qq.com
  • 1. 河北工业大学能源与环境工程学院,天津 300401
  • 2. 天津市清洁能源利用与污染物控制重点实验室,天津 300401
  • 3. 唐山亨通科技有限公司,唐山 063300
基金项目:
天津市自然科学基金重点项目(18JCZDJC39800);天津市科技专项(18ZXSZSF00040);天津市平台科技专项(18PTZWHZ00010)

摘要: 为探讨湿法脱硫后光催化在烟气脱硝方面的应用潜力,采用溶胶-凝胶法制备了金属、非金属掺杂的CNTs-TiO2复合光催化剂,并在模拟烟气条件下对所得催化剂的NO氧化性能进行了测试与对比筛选,通过SEM、BET、XRD、Raman、XPS、DRS等手段进行表征。结果表明:TiO2的氧化效率最低,掺杂金属比掺杂非金属的光催化剂的氧化效率略高,复合CNTs的光催化剂的氧化效率明显提高;CNTs-Ce/TiO2比表面积较大,Ti—O键长最短,从而有利于光生电子沿Ti—O键向CNTs转移,可形成更多的三价铈氧化物,有利于催化剂表面的氧吸附;带隙宽度较低以及极大的紫外光吸光度,在NO氧化性能测试中表现出最优异的脱除效率,与TiO2相比,效率提升了19%,与CNTs-TiO2相比,效率提升了13%。进一步分析可知:Ce和CNTs具有协同作用,Ce掺杂TiO2可以有效抑制光生载流子的结合,从而提高光催化活性;复合CNTs提高了催化剂比表面积并促进了氧空位的形成,从而促进整个催化氧化反应。

English Abstract

  • 氮氧化物(NOx)不仅具有很强的毒性,而且还是酸雨和光化学烟雾的重要源头之一,给人类健康和生态环境带来极大威胁[1-2] 。烟气脱硝技术一直是环境治理领域的重要研究方向之一。目前,工业中较成熟的NOx的脱除方法主要包括选择性催化还原法(selective catalytic reduction, SCR)[3]和选择性非催化还原法(selective non-catalytic reduction, SNCR)[4]。但这2种烟气脱硝技术方法存在一些弊端,如设备占地面积大、反应成本高以及二次污染等[5-6]。相比之下,光催化氧化技术作为一种环境友好、投资费用少、反应条件温和的污染物去除方法,在NOx的净化中具有巨大潜能[7]

    在众多的光催化剂中,TiO2因其廉价易得、环境友好和催化活性高等特点颇受关注。近期研究表明,TiO2能够对NOx实现有效的光催化氧化降解[8],但是TiO2催化剂依然存在缺陷,其中难以利用可见光以及光生电子-空穴复合率高等问题严重制约了其在光催化脱硝过程中的应用和发展[9]。因此,对TiO2进行改性,使其能够在可见光驱动下实现有效的光生电子对分离具有重要的科学和现实意义。在过去的10年中,人们已成功实现了非金属元素以及过渡金属元素对TiO2的掺杂,研究发现,这些元素的掺杂不仅能够有效改善TiO2对可见光的吸收,还能在一定程度上缓解光生电子对复合率高的问题。NGUGEN等[9]成功制备了Cu掺杂TiO2纳米片,用于降解有机染料,发现Cu离子可作为界面电荷迁移的介质,从而降低电子-空穴复合率;TREVISAN等[10]研究发现,N元素的掺杂可有效提升TiO2的价带位置,使得带隙宽度有效降低,从而实现了对可见光的响应。然而对TiO2进行改性,仍然存在催化剂比表面积低的缺点,这将影响光催化性能的进一步提高。

    鉴于此,将TiO2与碳材料复合,可在降解有机污染物方面表现出优异的性能[11]。碳纳米管(carbon nanotubes, CNTs)的高导电性可以提供电子通道,从而增加了电子湮灭长度,以防止电子-空穴的结合;可以在TiO2晶格中引入杂质能级,从而加速电子-空穴的分离[12];可以在TiO2晶格中引入杂质能级,从而加速电子-空穴的分离[13-14],同时碳纳米管可以有效增大TiO2的比表面积。因此,将CNTs与TiO2进行复合是一个很好的思路。

    本研究将具有良好导电性的CNTs与具有良好储氧能力的Ce耦合,采用溶胶-凝胶法,制备出CNTs-Ce/TiO2系列复合光催化剂,并对其光催化脱硝性能进行测试;通过扫描电子显微镜 (SEM)、全自动微孔物理吸附-脱附 (BET)、X射线衍射 (XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和紫外可见漫反射谱(DRS)等技术,对复合材料进行结构表征和性能分析,以探讨光催化在烟气脱硝方面的应用潜力,为湿法脱硫后的脱硝的研究提供参考。

  • 催化剂制备所需材料:钛酸丁酯(Ti(OCH3)4,98.56%);无水乙醇(C2H5OH,99%);硝酸(HNO3,98.02%);硫酸(H2SO4,浓度98.08%);碳纳米管(CNTs,纯度95.12%);硝酸铈六水化合物(Ce(NO3)3·6H2O,99.55%);硝酸铜三水化合物(Cu(NO3)2·3H2O,99.04%);尿素(H2NCONH2,99.02%)。

  • 在制备TiO2光催化剂时,利用钛酸丁酯(Ti(OCH3)4)作为钛源,将20 mL钛酸丁酯加入7 mL乙酸和3 mL HNO3的混合液中,搅拌均匀后得到A液;将20 mL无水乙醇与4 mL去离子水混合后,用HNO3调pH≈2.0,得B液;将B液逐滴加入到A中,搅拌得到凝胶状产物,在80 ℃下干燥,并将产物在500 ℃焙烧2 h,冷却后,制备出TiO2光催化剂。

    在制备金属与非金属掺杂的钛基光催化剂时,将20 mL钛酸丁酯加入70 mL乙酸和3 mL HNO3的混合液中,搅拌均匀后得到A液;称取一定量的含有元素M (M占Ti的比例为6%)的前驱物,溶于20 mL无水乙醇与4 mL去离子水中,并用HNO3调pH≈2.0,得到B液;将B液逐滴加入到A中,搅拌得到凝胶状产物,干燥后,在500 ℃下焙烧2 h,得到金属与非金属掺杂的Ti基光催化剂,分别记为N/TiO2、Cu/TiO2、Ce/TiO2

    在制备CNTs掺杂的钛基光催化剂时,称取0.68 g CNTs,加入到40 mL无水乙醇溶液中,超声分散,再加入20 mL钛酸丁酯、30 mL无水乙醇和3 mL HNO3到CNTs悬浊液中,得到A液;称取一定量的含有元素M(M占Ti的比例为6%)的前驱物溶于20 mL无水乙醇与4 mL超纯水中,并用HNO3调pH≈2.0,得到B液;将B液逐滴加入到A中,搅拌干燥、焙烧,冷却得到CNTs掺杂的Ti基光催化剂,分别记为CNTs-TiO2、CNTs-N/TiO2、CNTs-Cu/TiO2、CNTs-Ce/TiO2

  • 采用扫描电子显微镜(SEM)观察催化剂的形貌特征;使用全自动微孔物理吸附-脱附分析测试仪 (BET)分析内外比表面积和孔分布情况;采用X射线粉末衍射仪 (XRD)测定催化剂的晶体结构;拉曼光谱仪(Raman)确定催化剂的组成结构和理化特性;X射线光电子能谱仪(XPS)分析材料的元素组成及价态;紫外可见漫反射谱分光光度计(DRS)测试催化剂的光响应特性。

  • 实验系统主要由配气系统、光催化氧化脱硝系统以及气体分析测试系统构成,如图1所示。

    在模拟烟气中,SO2、NO、N2、O2和CO2按不同流量喷入气体缓冲罐,混匀,体积空速为10 000 h−1,总气体流量为100 mL·min−1,H2O(g)体积分数为4%~6%,CO2体积分数为6%,O2体积分数为4%~6%,N2体积分数为80%~90%,NO和SO2进口浓度为0.006%,反应器中催化剂为0.6 mL,将光催化反应器中的温度调节到50 ℃,开启光源。反应后的模拟烟气进入干燥瓶进行干燥处理,利用烟气分析仪(英国凯恩,940MKⅡ)连续采样测定NO浓度,NO氧化效率计算方法见式(1)。

    式中:η为NO氧化效率;Cin为进口浓度;Cout为出口浓度。

  • 针对制备的8种光催化剂:TiO2、N/TiO2、CNTs-TiO2、CNTs-N/TiO2、Cu/TiO2、Ce/TiO2、CNTs-Cu/TiO2、CNTs-Ce/TiO2,进行光催化氧化NO活性测试。通过4种方式对催化剂进行灯光照射实验:紫外线短波UVB(290~320 nm)单独照射,紫外线短波UVB与紫外线长波UVA(320~400 nm)同时照射,紫外线短波UVB、紫外线长波UVA和可见光vis(380~780 nm)同时照射和无光源照射。光催化氧化烟气脱硝效率对比结果如图2所示。

    图2可知,当紫外线短波UVB(290~320 nm)、紫外线长波UVA(320~400 nm)和可见光vis(380~780 nm) 3种灯同时打开时,NO氧化效率最高;当UVB(290~320 nm)和UVA(320~400 nm)同时打开与UVA(320~400 nm)单独打开时,氧化效率有所降低;当3种灯全部关闭时,NO氧化效率明显迅速下降,经过10 min左右,对NO氧化效率接近于0。可见,打开灯数越多,所产生的能量越强,更易于产生空穴。而空穴具有很强的氧化性,可以和水蒸气生成具有很高活性的自由基。这些自由基和污染物发生氧化还原反应,所以NO氧化效率大大提升。关灯后,因为没有能量受体,并且反应温度只有50 ℃,根本达不到钛基催化剂的活化温度,因此,关灯后NO氧化效率较低。

    当3种灯同时打开时,可以明显观察到,CNTs-Ce/TiO2的NO氧化效率相对于TiO2参与的光催化氧化效率显著提升。这可能是由于形成了CeO2杂质能级,从而有效地捕获光生电子和空穴[15],抑制了光生载流子的复合,提高了光催化活性;并且引入CNTs后,不仅有效改善了其自身的导电性,从而有利于电子转移,以促进电子-空穴的分离,同时还提供了更大的比表面积和孔径。

  • 用扫描电镜(SEM)观察了CNTs-Ce/TiO2的形貌。由图3可看出,纯TiO2样品表面结构紧致光滑,Ce/TiO2表面出现了活性组分团聚现象,溶胶的高黏度可能是引起此现象的原因之一[16];而CNTs-Ce/TiO2团聚现象得以改善,颗粒均匀,分散程度较高,其原因是CNTs多孔的特性促进了催化剂表面空隙的形成,有利于气体扩散,从而更好地与气体污染物发生反应。

  • 研究表明,比表面积越大,越有利于促进反应的进行[17]。由表1可知,对于TiO2,Cu/TiO2比表面积均有所下降,这是由于TiO2的孔隙被团聚的CuO颗粒所覆盖造成的[18];但是Ce/TiO2的比表面积却显著增大。XIAO等[19]也发现,氧化铈的存在有利于有效地增强催化剂比表面积。加入适量CNTs后,各催化剂比表面积和平均孔径均有不同程度的增大,其中CNTs-Ce/TiO2的比表面积和平均孔径最大。相对于纯TiO2,CNTs-Ce/TiO2比表面积提高了81.5%,CNTs-Ce/TiO2的大孔径有利于反应气体及产物的扩散及转移[20],产生的少量中间产物的沉积也不会造成孔堵塞。

  • 图4显示了锐钛矿TiO2以及CNTs-Ce/TiO2催化剂的XRD图谱。由图4可见,N/TiO2、CNTs-TiO2、CNTs-N/TiO2、Cu/TiO2、Ce/TiO2和CNTs-Cu/TiO2各样品在2θ为25.36°、37.85°、48.08°、53.99°、55.20°、62.74°、68.92°、70.35°、75.26°、82.70°的位置上都出现了衍射峰。与标准卡片(PDF#65-5714)对比,各样品皆成TiO2锐钛矿。在复合材料的光谱范围内,没有出现CNTs的特征衍射峰,这是由于TiO2锐钛矿型主峰位置处(2θ=25.36°)和CNTs的特征衍射峰(2θ=26.23°)发生了重叠,且TiO2的质量分数远高于CNTs所导致[21-22]。CNTs-Ce/TiO2和Ce/TiO2相对于TiO2,在锐钛矿主峰位置处(2θ=25.36°),峰形明显宽化且衍射峰强度减弱,这是由于Ce的掺杂使TiO2晶格发生了膨胀(畸变)。Ce/TiO2和CNTs-Ce/TiO2的XRD图谱中没有检测到与Ce相关的衍射峰,表明Ce4+离子可能以小团簇形式的CeO2分散均匀地覆盖在催化剂表面,这种覆盖可以有效地分离电荷载体,从而阻碍了电子空穴对的复合,以提高光催化活性[23]

  • 图5可知,0~800 cm−1的拉曼峰是TiO2的特征峰,在144、197、394.2、515.2和636.4 cm−1处的振动峰分别从属于锐钛矿型TiO2Eg(144 cm−1)、Eg(198 cm−1)、B1g(398 cm−1)、A1g(515 cm−1)和Eg(640 cm−1)的特征信号峰[24],证明TiO2在复合材料中是以锐钛矿型TiO2存在的,这和XRD的测试结果相吻合。如图5(a)所示,144 cm−1为Ti—O键伸缩振动的特征峰,与纯相TiO2相比,Ce/TiO2的Ti—O振动的特征峰显示出明显的蓝移、拓宽和削弱,这表明Ce的掺杂为TiO2引入了缺陷[25]。如图5(b)所示,在1 353 cm−1和1 586 cm−1处分别对应于CNTs的无序碳(D峰)和石墨碳(G峰),复合材料均出现了这2个特征峰,由此证明了复合材料中CNTs的存在[26]。拉曼位移和键长之间的关系[27]见式(2)。

    式中:ν为拉曼位移,cm−1RM-O为金属、非金属原子和氧原子之间的M—O键长,nm。

    由式(2)得到掺杂CNTs后各样品的Ti—O键长度变化,结果如表2所示。通过计算可知,CNTs-Ce/TiO2的Ti—O键长最短,表明其构建出了紧密的界面接触关系,从而有利于光生电子沿Ti—O键向CNTs转移,以促进电子-空穴的分离。

  • 图6为各催化剂的X射线光电子能谱,用于进一步确定合成物质的元素组成及其价态。图6(a)为各催化剂的全谱图,通过CNTs-Ce/TiO2全谱可以确认,CNTs-Ce/TiO2中包含元素Ti、O和Ce,同时也对XRD中没有检测到Ce的存在作了补充说明。图6(b)为 Ti2p的高分辨谱,458.4 eV和464.3 eV处的2个特征峰,分别归属于Ti2p3/2和Ti2p1/2,对应于TiO2中的Ti4+图6(c)~图6(e)分别为TiO2、Ce/TiO2和CNTs-Ce/TiO2的O1s高分辨谱,利用Gaussian-Lorentzian函数结果,对O1s峰进行拟合去卷积处理,3种催化剂均可以拟合2个O特征峰:结合能在529.3~530.3 eV的拟合峰对应于催化剂的晶格氧(Oβ),包括Ti—O和Ce—O键等;结合能在532.4~533.2 eV的拟合峰对应于化学吸附氧(Oα)。有研究[28]表明,Oα非常活跃,具有更强的氧传递和供给能力,从而有利于提高催化氧化效率。对比图6(c)~(e)可以明显看出,CNTs-Ce/TiO2吸附氧的特征峰最强,这主要得益于Ce元素优良的氧化性能和储氧能力以及CNTs强大的电子转移性能。图6(f)~图6(g)为Ce/TiO2和CNTs-Ce/TiO2催化剂的Ce3d的XPS图谱,Ce3d光谱可拟合成6个特征峰。结果表明,Ce3+和Ce4+共同存在于催化剂表面,其中Ce4+为主要存在状态。根据峰面积计算,Ce/TiO2中Ce3+/Ce4+的比例为 62.1%,而CNTs-Ce/TiO2中Ce3+/Ce4+的比例为 67.4%,由此说明,CNTs的引入能够促进催化剂形成更多的三价铈氧化物。还有研究[29]表明,Ce3+导致催化剂的电子分布不均,形成氧空位和不饱和化学键,此特性有利于催化剂表面的氧吸附,进而促进整个催化氧化反应,这一结论与CNTs-Ce/TiO2的O1s XPS图谱信息相吻合。

  • 图7(a)显示了CNTs-Ce/TiO2的紫外-可见漫反射光谱。在200~400 nm的紫外光区域内,TiO2加入Ce 和CNTs后,Ce/TiO2和CNTs-TiO2的吸光性能没有较明显的区别,但CNTs-Ce/TiO2吸光性能却有了大幅度的提升,这是由于Ce在TiO2基体中的嵌入以及CNTs与TiO2在复合催化剂中良好的连接,从而导致了强相互作用[23];在400~800 nm的可见光区域内,CNTs-Ce/TiO2对可见光的吸收范围较大,这种红移是由于Ce完全结合在TiO2基体中,从而改变了其电子结构和晶体结构[23]。CNTs-Ce/TiO2的带隙宽度可根据光吸收能带方程[30]计算得到,计算方法见式(3)。

    式中:α为吸收系数;h为普朗克常数;ν为吸收光频率;Eg为禁带宽度值;A为常数。

    由式(3)计算出CNTs-Ce/TiO2的带隙宽度为2.06 eV,对比纯相TiO2(3.09 eV)和Ce/TiO2(2.15 eV),明显变窄,对可见光谱的响应较强,主要原因是 CeO2杂质能级的形成降低了光生电子迁跃所需能量[31]

  • 1)采用溶胶-凝胶法制备了新型的CNTs-Ce/TiO2光催化剂,成功地在金属掺杂改性TiO2的基础上复合CNTs。

    2)在可见及紫外光同时照射下,CNTs-Ce/TiO2催化剂光催化氧化NO的效率最高。这是由于Ce和CNTs的协同作用使NO在可见及紫外光照射下的氧化效率比制备所得其他催化剂均有所提高。

    3) Ce高度分散在催化剂表面,有利于催化性能提高;CNTs的掺杂提高了催化剂比表面积,促进了催化剂表面空隙的形成,有利于气体扩散;拉曼光谱(Raman)分析表明,CNTs-Ce/TiO2的Ti—O键长最短,有利于光生电子沿Ti—O键向CNTs转移,以促进电子-空穴的分离;XPS说明CNTs-Ce/TiO2具有更高的氧化效率,并且CNTs的引入能够促进催化剂形成更多的三价铈氧化物,形成的氧空位有利于催化剂表面的氧吸附,从而促进整个催化氧化反应。

参考文献 (31)

返回顶部

目录

/

返回文章
返回