Processing math: 100%

UASB/MBR-CANON工艺处理高氮活性印花废水

唐政坤, 王倩, 季慕尧, 田晴, 彭翔, 杨波, 刘艳彪, 李方. UASB/MBR-CANON工艺处理高氮活性印花废水[J]. 环境工程学报, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071
引用本文: 唐政坤, 王倩, 季慕尧, 田晴, 彭翔, 杨波, 刘艳彪, 李方. UASB/MBR-CANON工艺处理高氮活性印花废水[J]. 环境工程学报, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071
TANG Zhengkun, WANG Qian, JI Muyao, TIAN Qing, PENG Xiang, YANG Bo, LIU Yanbiao, LI Fang. Treating high nitrogen-containing reactive printing wastewater with UASB/MBR-CANON process[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071
Citation: TANG Zhengkun, WANG Qian, JI Muyao, TIAN Qing, PENG Xiang, YANG Bo, LIU Yanbiao, LI Fang. Treating high nitrogen-containing reactive printing wastewater with UASB/MBR-CANON process[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071

UASB/MBR-CANON工艺处理高氮活性印花废水

    作者简介: 唐政坤(1991—),男,博士研究生。研究方向:水污染控制。E-mail:2740198603@qq.com
    通讯作者: 李方(1979—),男,博士,教授。研究方向:水污染控制和膜分离。E-mail:lifang@dhu.edu.cn
  • 基金项目:
    国家重点研发计划资助项目(2016YF0400501);国家自然科学基金资助项目(51478099);上海市自然科学基金项目(16ZR1402000)
  • 中图分类号: X703

Treating high nitrogen-containing reactive printing wastewater with UASB/MBR-CANON process

    Corresponding author: LI Fang, lifang@dhu.edu.cn
  • 摘要: 针对棉织物活性印花废水高氮、高色度、高COD等特点,采用上流式厌氧污泥床反应器与完全自养脱氮膜生物反应器组合工艺(UASB/MBR-CANON),处理模拟高氮活性印花废水。实验过程分为独立启动和串联运行2个阶段,探究了不同基质浓度条件下UASB/MBR-CANON反应器对高氮活性印花废水的处理效果。结果表明:UASB和MBR-CANON反应器分别经过140 d独立启动运行后,UASB反应器与MBR-CANON反应器完成串联运行,此时总氮平均去除率达到72%,COD平均去除率达到74%,染料平均脱色率达到82%;在MBR-CANON反应器运行的200 d 内,通过对膜表面污染物分析发现,膜表面滤饼层胞外聚合物中多糖和蛋白质含量分别为52 mg·L−1和17 mg·L−1。膜通量数据表明,在低通量状态下,膜通量衰减速率较为缓慢,经过清洗后,膜通量可恢复初始通量的80%~90%。进一步分析可知,采用UASB/MBR-CANON工艺处理高氮活性印花废水具有较高的技术可行性,以上研究结果可为该工艺的工程化应用提供参考。
  • 近年来,随着经济建设的高速发展,城镇人口急剧增加,污水排放量和污染负荷不断增大,从而导致污水处理厂出水排放的受纳水体水质不断恶化[1-3]。2015年4月,国务院印发的《水污染行动防治计划》中明确要求,敏感区域城镇污水处理设施应全面达到一级A排放标准[4]。因此,提标改造已成为污水处理厂满足愈发严格的出水排放标准的必然选择之一[5]。然而,在实际污水处理厂提标改造过程中,由于对运行参数变化导致的运行效率改变机制认识不清,盲目选择微生物种群结构作为响应指标,导致在提标改造关键参数及工艺的选择上也存在一定的盲目性[6-7]。因此,明确运行参数变化对运行效率产生影响的根本原因,对目前污水处理厂提标改造具有重要的理论意义。

    从污染物降解途径来看,限速酶是物质转化最根本的原因之一。如在氮素转化过程中,氨单加氧酶(AMO)和羟胺氧化还原酶(HAO)是硝化反应的限速酶[8],硝酸盐原酶(NR)和亚硝酸盐还原酶(NIR)是反硝化反应的限速酶[9-11]。一直以来,关于生物脱氮过程中关键酶的研究主要集中在酶的纯化和反应机理上[12-14],近年来,对于酶活性在污水处理过程中的作用才逐步展开。LI等[15]初步分析了与TN去除相关的关键酶种类;CALDERON等[16]阐述了酶活性水平与运行参数变化之间的关系;PAN等[17]探讨了污水处理系统脱氮过程中NR和NIR的特性。然而,这些研究主要集中在实验室小试规模。事实上,实际污水处理厂运行过程比实验室小试装置更加复杂。因此,有必要对实际污水处理厂关键酶活性与污染物去除率之间的关系进行深入研究。

    氧化沟是城市污水处理的3大典型工艺之一[18],在中国,从20世纪80年代以来,氧化沟工艺一直被广泛采用[19]。本研究以Orbal氧化沟为研究对象,分析2种运行模式下活性污泥中微生物种群结构、功能微生物含量、关键酶活性及污染物去除效率,并对其相互关系进行了探讨,目的是揭示影响实际污水处理厂污染物去除率的根本原因,以期为实际污水处理厂提标改造提供参考。

    PCR产物回收纯化试剂盒、实时荧光定量PCR反应试剂盒;磷酸钾(K3PO4)、硫酸铵((NH4)2SO4)、细胞色素C(C42H52FeN8O6S2)、醋酸钠(CH3COONa)、羟胺(NH2OH)、甲基紫(C24H28N3)、硝酸钠(NaNO3)、双对氯苯基三氯乙烷((ClC6H4)2CH(CCl3))均为分析纯。

    核酸自动提取仪(Tanbead,北京九宇金泰生物技术有限公司);聚丙烯酰胺凝胶电泳仪(Bio-Rad,伯乐生命医学产品(上海)有限公司);凝胶成像系统(Bio-Rad,伯乐生命医学产品(上海)有限公司);测序仪(ABI 3730XL,爱普拜斯应用生物系统贸易(上海)有限公司);实时荧光定量PCR仪(SteponePlus,爱普拜斯应用生物系统贸易(上海)有限公司);冷冻离心机(Biofuge Stratos,赛默飞世尔科技(中国)有限公司);溶氧仪(CellOx325,德国WTW中国技术服务中心);pH计(SenTix 41-3,德国WTW中国技术服务中心);温度计(WTW-Multi 340i,德国WTW中国技术服务中心);紫外可见分光光度计(UV-1700,岛津企业管理(中国)有限公司)。

    本实验在河南省某市的一个实际污水处理厂进行,该污水厂主体采用Orbal氧化沟工艺,污水处理量为4×104 m3·d−1,水力停留时间为10 h,污泥龄为12 d。实验分别在2种模式下进行,每种模式的运行周期为1年,进水水质如表1所示。2种运行模式的主要区别在于沟道内转刷开启数量不同,模式I的外、中、内沟道转刷开启数量分别为6、4、4个;模式Ⅱ的沟道转刷开启数量分别为4、4、4个。2种模式下的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷均相近,模式I的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷分别为3 015 mg·L−1、0.13 kg·(kg·d)−1、0.35 kg·(m3·d)−1和3.80×10−2 kg·(m3·d)−1;模式Ⅱ的污泥浓度、污泥负荷、COD负荷及NH+4-N负荷分别为2 965 mg·L−1、0.13 kg·(kg·d)−1、0.34 kg·(m3·d)−1和3.80×10−2 kg·(m3·d)−1。每周监测不同模式下进出水水质及沟道内溶解氧变化,测试位置如图1所示(包括转刷后1 m和下一个转刷前1 m)。同时,在每年6月和12月,分别采集沟道内活性污泥样品,用于微生物种群、功能微生物含量及关键酶活性分析。

    表 1  Orbal氧化沟的进水水质
    Table 1.  Influent quality of Orbal oxidation ditch
    模式 COD/(mg·L−1) NH+4-N/(mg·L−1) TN/(mg·L−1) TP/(mg·L−1) SS/(mg·L−1) pH
    I 492~734 35.25~48.52 42.56~61.25 2.25~4.15 100~325 6.80~7.20
    II 490~684 36.75~47.56 45.75~60.25 2.65~4.75 120~280 6.70~7.20
     | Show Table
    DownLoad: CSV
    图 1  采集及测试位点示意图
    Figure 1.  Schematic diagram of sites for sampling and testing in Orbal oxidation ditch

    分别采用PCR-DGGE技术、实时荧光定量PCR技术定性、定量分析不同运行模式下活性污泥微生物种群结构及功能微生物含量[20-23];采用分光光度法测定不同运行模式下关键酶活性,一个单位的酶活性(U)定义为:1 g活性污泥中,1 h转化1 mg催化底物所需酶的量[24-26];采用文献中的方法[27]测定不同运行模式下污水厂的进出水水质[27]

    在2种运行模式下,该厂进出水中COD、NH+4-N和TN的监测结果见图2。从图2可以看出,在模式I和模式Ⅱ下,COD的平均去除率分别为(94.28±2.19)%和(91.79±2.77)%;NH+4-N的平均去除率分别为(72.80±7.07)%和(69.36±8.45)%;TN的平均去除率分别为(25.50±6.83)%和(44.67±10.96)%。同时,图2中结果表明,除冬季外,其余季节在模式Ⅱ运行条件下,COD、NH+4-N和TN的去除率均明显高于模式I。在4—10月,模式I和模式Ⅱ的COD的平均去除率分别为(96.08±0.87)%和(94.17±0.73)%;NH+4-N的平均去除率分别为(81.38±3.47)%和(80.59±1.39)%,TN的平均去除率分别为(31.77±5.41)%和(59.81±5.33)%。

    图 2  2种模式下污水处理厂COD、NH+4-N和TN的去除率
    Figure 2.  Removal efficiencies of COD, NH+4-N and TN under two modes

    在2种运行模式下,分别对Orbal氧化沟3个沟道不同位置处DO浓度进行测定,结果见图3。可以看出,DO浓度在转刷前和转刷后有明显不同,特别是在外侧沟道。模式I条件下,转刷后1 m处,外渠道的DO浓度为(2.28±0.3) mg·L−1,在下一个转刷前1 m处,外渠道的DO浓度为(0.80±0.1) mg·L−1。在模式Ⅱ条件下,转刷后1 m处外渠道的DO浓度为(2.03±0.4) mg·L−1,在下一个转刷前1 m处,外渠道的DO浓度为(0.16±0.1) mg·L−1

    图 3  2种模式下不同沟道转刷前后溶解氧浓度变化
    Figure 3.  Variation of DO concentration before and after RB in different channels under two modes

    在2种运行模式下,DGGE图谱见图4。可以看出,各沟道内的微生物种群结构基本类似(图4(a))。夏季时,模式I外、中、内沟道香农指数分别为3.76、3.79和3.83,模式Ⅱ外、中、内沟道香农指数分别为3.81、3.97和3.97。冬季时,模式I外、中、内沟道香农指数分别为3.01、3.11和3.15,模式Ⅱ外、中、内沟道香农指数分别为3.05、3.02和3.11。并且,在2种模式下各个沟道中均有主条带W4~W19存在。比对结果显示,所有测得序列97%~100%程度上均与先前确定的16S rRNA基因序列具有同源性,分别隶属于拟杆菌门、变形杆菌门、绿弯菌门和厚壁菌门[28-30](图4(b))。

    图 4  不同沟道活性污泥中细菌种群
    Figure 4.  Bacterial population of activated sludge in different channels

    功能微生物氨氧化菌AOB和硝化细菌NOB定量检测结果见图5。可以看出,无论夏季还是冬季,总细菌、AOB和NOB的含量在模式I和模式Ⅱ下均呈现相似趋势。夏季时,在模式I下,Orbal氧化沟外、中、内沟道中总细菌含量分别为6.70×1010、5.80×1010、5.96×1010 cells·g−1(以干污泥含量计),AOB含量分别为8.98×105、1.02×106、2.52×106 cells·g−1(以干污泥含量计),NOB含量分别为4.89×102、8.88×102、1.02×103 cells·g−1(以干污泥含量计);而在模式Ⅱ下,外、中、内沟道中总细菌含量分别为5.84×1010、6.19×1010、5.88×1010 cells·g−1(以干污泥含量计),AOB含量分别为6.25×105、9.88×105、1.80×106 cells·g−1(以干污泥含量计),NOB含量分别为3.96×102、7.69×102、1.66×103 cells·g−1(以干污泥含量计)。冬季时,Orbal氧化沟3个沟道内总细菌、AOB、NOB含量均略低于夏季。在模式I下,外、中、内沟道中总细菌含量分别为5.58×1010、5.21×1010、5.07×1010 cells·g−1(以干污泥含量计),AOB含量分别为4.25×105、8.85×105、9.26×105 cells·g−1(以干污泥含量计),NOB含量分别为3.10×102、3.23×102、4.15×102 cells·g−1(以干污泥含量计);而在模式Ⅱ下,外、中、内沟道中总细菌含量分别为5.26×1010、5.61×1010、5.12×1010 cells·g−1(以干污泥含量计),AOB含量分别为4.23×105、5.26×105、7.68×105 cells·g−1(以干污泥含量计),NOB含量分别为2.26×102、4.21×102、8.52×102 cells·g−1(以干污泥含量计)。从AOB和NOB在总细菌中所占的相对比例来看,模式I和模式Ⅱ条件下也呈现相似结果。在模式I下,AOB和NOB的比例分别是7.62×10−6~4.23×10−5和8.19×10−9~1.71×10−8;在模式Ⅱ下,AOB和NOB的比例分别是9.38×10−6~3.06×10−5和7.50×10−9~2.82×10−8

    图 5  2种模式下不同沟道内总细菌、AOB和NOB的含量
    Figure 5.  Quantity of total bacteria, AOB and NOB in different channels under two modes

    理论上,活性污泥中的微生物种群会随着污水处理运行参数的变化而发生变化。因此,微生物种群结构变化常用来解释运行参数调节后污水处理效果发生变化这一现象[31]。本实验是在一个实际污水处理厂展开,水质监测结果发现,当外沟道转刷开启数量减少后,污水处理厂TN去除效率明显提升。然而,2种运行模式下微生物种群结构和功能微生物含量却呈现高度相似现象。这与HASHIMOTO等[32]提出的活性污泥中细菌群落结构在实际污水处理系统中是相对稳定的这一结论是相符的。当然,本实验在同一污水处理厂展开,进水水质的稳定也是2种运行模式下细菌种群结构未发生明显改变的重要原因之一,而这一结论也与ZHOU等[33]在实际污水处理厂的研究结果相符。因此,在实际污水处理厂中,仅选取微生物种群来解释运行参数变化引起运行效率提升的原因是远远不够的。

    在夏季和冬季,分别采集2种运行模式下3个沟道内活性污泥样品,进行关键酶HAO和NR的活性分析。结果显示,在同一运行模式下,与中、内沟道相比,HAO活性在外沟道中最低。相反,NR活性在外沟道中最高。并且,HAO和NR的酶活性在夏季都高于冬季。外沟道中,在模式Ⅱ条件下NR活性明显高于模式Ⅰ。在模式Ⅰ下,夏季和冬季的NR活性(以羟胺计)分别为1.58 mg·(g·h)−1和0.80 mg·(g·h)−1;而模式Ⅱ下,夏季和冬季的NR活性分别为2.27 mg·(g·h)−1和1.07 mg·(g·h)−1。内沟道中,模式I和模式Ⅱ条件下的HAO活性并无明显区别。在模式I下,夏季和冬季的HAO活性(以羟胺计)分别为2.17 mg·(g·h)−1和1.56 mg·(g·h)−1;而在模式Ⅱ下,夏季和冬季的HAO活性分别为2.05 mg·(g·h)−1和1.42 mg·(g·h)−1。分析结果表明,外侧沟道转刷开启数量的减少,直接对其中关键酶NR的活性产生了影响。在模式Ⅱ下,冬季和夏季外侧沟道内NR活性分别比模式I下提高了25%和30%。与此同时,该水厂出水中TN的去除率也由模式I的(25.50±6.83)%提高到了模式Ⅱ的(44.67±10.96)%。综合分析关键限速酶HAO、NR与TN、NH+4-N去除的关系,结果表明,HAO和NR活性与NH+4-N和TN的去除均呈正相关关系,斯皮尔曼相关系数r分别为0.99(P=0.01)和0.88(P=0.12)(图6)。也就是说,改变污水厂运行参数,生物处理单位中关键酶活性随之发生变化,进而改变污染物的去除率。进一步深入分析发现,减少Orbal氧化沟外侧沟道转刷开启数量,其沟道中缺氧或厌氧区段明显延长。供氧量的减少直接改变了外侧沟道局部的微环境条件。而这种微环境条件的改变,在不影响其微生物种群结构的前提下,直接提升了沟道内关键酶活性,进而提升了污水出水水质。这与赵群英等[34]关于DO含量变化对污水出水水质具有明显影响的研究结论是一致的。也就是说,在实际污水处理厂中,改变运行参数后,相对于微生物种群结构和功能微生物含量而言,关键酶活性的响应更为快速灵敏。然而,本研究对关键酶活性的分析仅仅是酶粗提取物的分析,并且仅在一家污水处理厂进行。如要将该研究结果用于解析实际污水处理厂运行参数变化对处理效率影响的机制时,需要进行更为精准且全面的研究。例如,结合更多实际污水处理厂的研究,综合分析多种运行参数变化后其关键酶的响应过程;同时,设计小型批量研究实验,对提取的关键酶进行纯化,进而分析不同运行参数条件下关键酶的响应关系。

    图 6  HAO、NR活性与NH+4-N,TN去除率之间的关系
    Figure 6.  Relationship between HAO and NR activities and removal rates of NH+4-N and TN

    1)减少Orbal氧化沟外侧沟道转刷开启数量,可有效地提高实际污水处理厂TN的去除率。

    2)转刷开启数量减少后,Orbal氧化沟外侧沟道内溶解氧含量降低,缺氧或厌氧区明显延长,局部微环境发生改变。

    3)在此过程中,微生物种群及功能微生物含量保持稳定,未发生明显变化。关键酶NR活性随转刷开启数量的减少而升高。并且关键酶NR活性与TN去除效率呈正相关关系。本研究为实际污水处理厂提标改造参数及工艺选择提供了参考。

  • 图 1  UASB/MBR-CANON反应器示意图

    Figure 1.  Schematic diagram of UASB/MBR-CANON reactor

    图 2  UASB反应器处理活性印花废水运行中出水COD浓度、去除率及染料浓度、脱色率变化

    Figure 2.  Variations of COD concentration and its removal efficiency, dye concentration, decolorization efficiency in the effluent of UASB during treating reactive printing wastewater

    图 3  MBR-CANON反应器中进出水NH+4NO2NO3浓度的变化

    Figure 3.  Variations of NH+4, NO2 and NO3 concentrations in the influent and effluent of the MBR-CANON reactor

    图 4  MBR-CANON反应器中NO2的积累率(NAR)和溶解氧(DO)的变化

    Figure 4.  Variations of NO2accumulation efficiency and dissolved oxygen in the MBR-CANON reactor

    图 5  MBR-CANON反应器中总氮去除率(TNR)及总氮去除负荷(NRL)的变化

    Figure 5.  Variations of total nitrogen removal efficiency(TNR) and removal load(NRL) by the MBR-CANON reactor

    图 6  MBR-CANON反应器出水COD、去除率及染料浓度、去除率的变化

    Figure 6.  Variations of COD concentration and its removal efficiency, dye concentration and decolorization efficiency in the effluent of the MBR-CANON reactor

    图 7  MBR-CANON反应器中功能菌丰度分布(种水平)

    Figure 7.  Distribution of functional bacteria abundance in the MBR-CANON reactor(species level)

    图 8  UASB/MBR-CANON工艺处理印花废水时紫外-可见谱图

    Figure 8.  UV-vis spectra of wastewater samples during UASB/MBR-CANON process treating printing wastewater

    图 9  膜通量衰减及膜表面滤饼层EPS中多糖和蛋白质含量变化

    Figure 9.  Membrane fluxes attenuation and variation of polysaccharide and protein content in EPS of cake layer sludge on membrane surface

    表 1  UASB进水水质及成分

    Table 1.  Wastewater quality and compositions of UASB influent mg·L−1

    基质启动阶段浓度140 d后浓度
    TN1 0001 000
    COD500~1 0001 000
    活性黄100~150150
    P5.705.70
    基质启动阶段浓度140 d后浓度
    TN1 0001 000
    COD500~1 0001 000
    活性黄100~150150
    P5.705.70
    下载: 导出CSV

    表 2  MBR-CANON进水水质及成分

    Table 2.  Wastewater compositions of MBR-CANON influent mg·L−1

    基质启动阶段浓度140 d后浓度
    NH+4-N50~3001 146~1 337
    COD0~100100~200
    活性黄020~30
    HCO3580~1 8151 815
    P1.421.42
    基质启动阶段浓度140 d后浓度
    NH+4-N50~3001 146~1 337
    COD0~100100~200
    活性黄020~30
    HCO3580~1 8151 815
    P1.421.42
    下载: 导出CSV
  • [1] WANG R, JIN X, WANG Z, et al. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study[J]. Bioresource Technology, 2018, 247: 1233-1241. doi: 10.1016/j.biortech.2017.09.150
    [2] WU H F, WANG S H, KONG H L, et al. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater[J]. Bioresource Technology, 2007, 98(7): 1501-1504. doi: 10.1016/j.biortech.2006.05.037
    [3] LI F, XIA Q, GAO Y Y, et al. Anaerobic biodegradation and decolorization of a refractory acid dye by a forward osmosis membrane bioreactor[J]. Environment Science: Water Reasearch & Technology, 2018, 4(2): 272-280.
    [4] KHATRI A, PEERZADA M H, MOHSIN M, et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015, 87: 50-57. doi: 10.1016/j.jclepro.2014.09.017
    [5] WANG L, YAN K, HU C Y. Cleaner production of inkjet printed cotton fabrics using a urea-free ecosteam process[J]. Journal of Cleaner Production, 2017, 143: 1215-1220. doi: 10.1016/j.jclepro.2016.11.182
    [6] WANG J D, YAN J J, XU W J. Treatment of dyeing wastewater by MIC anaerobic reactor[J]. Biochemical Engineering Journal, 2015, 101: 179-184. doi: 10.1016/j.bej.2015.06.001
    [7] ALI M, OSHILI M, RATHNAYAKE L, et al. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads[J]. Water Research, 2015, 79: 147-157. doi: 10.1016/j.watres.2015.04.024
    [8] KARTAL B, KUENEN J G, VAN LOOSDRECHT M C M. Sewage treatment with anammox[J]. Science, 2010, 328(5979): 702-703. doi: 10.1126/science.1185941
    [9] ZHANG F Z, PENG Y Z, WANG S Y, et al. Efficient step-feed partial nitrification, simultaneous anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate[J]. Journal of Hazardous Materials, 2019, 364: 163-172. doi: 10.1016/j.jhazmat.2018.09.066
    [10] LOTTI T, KLEEREBEZEM R, VAN ERP TAALMAN KIP C, et al. Anammox growth on pretreated municipal wastewater[J]. Environment Science Technology, 2014, 48(14): 7874-7880. doi: 10.1021/es500632k
    [11] SUN N, GE C, AHMAD H A, et al. Realization of microbial community stratification for single-stage nitrogen removal in a sequencing batch biofilter granular reactor[J]. Bioresource Technology, 2017, 241: 681-691. doi: 10.1016/j.biortech.2017.05.203
    [12] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032
    [13] VAN DONGEN U, JETTEN M S M, VAN LOOSDRECHT M C M. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1): 153-160. doi: 10.2166/wst.2001.0037
    [14] HELMER C, TROMM C, HIPPEN A, et al. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems[J]. Water Science and Technology, 2001, 43(1): 311-320. doi: 10.2166/wst.2001.0062
    [15] 王亚宜, 黎力, 马骁, 等. 厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J]. 环境科学学报, 2014, 34(6): 1362-1374.
    [16] YANG B, XU H, YANG S N, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor[J]. Bioresource Technology, 2018, 264: 154-162. doi: 10.1016/j.biortech.2018.05.063
    [17] 朱小雷, 王强, 范雪荣, 等. 淀粉结构对浆料性能的影响[J]. 棉纺织技术, 2015, 43(5): 21-24. doi: 10.3969/j.issn.1001-7415.2015.05.007
    [18] DEGRAAF A A V, DEBRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology-UK, 1996, 142: 2187-2196. doi: 10.1099/13500872-142-8-2187
    [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [20] ZHEN G Y, LU X Q, LI Y Y, et al. Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136: 654-663. doi: 10.1016/j.biortech.2013.03.007
    [21] 张肖静. 基于MBR的全程自养脱氮工艺(CANON)性能及微生物特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [22] ZHANG X J, ZHANG H Z, YE C M, et al. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors[J]. Bioresource Technology, 2015, 189: 302-308. doi: 10.1016/j.biortech.2015.04.006
    [23] ZHEN S M, CHEN S L. Effects of organic carbon on nitrification rate in fixed film biofilters[J]. Aquacultural Engineering, 2001, 25(1): 1-11. doi: 10.1016/S0144-8609(01)00071-1
    [24] 邹寒艳. 单级自养脱氮系统中功能菌的分子生物学鉴定及氨氧化反应关键酶基因的克隆与表达[D].重庆: 重庆大学, 2010.
    [25] 杨继. 几种活性染料的生物降解特性研究[D].上海: 东华大学, 2016.
    [26] MIAO L, ZHANG Q, WANG S Y, et al. Characterization of EPS compositions and microbial community in an anammox SBBR system treating landfill leachate[J]. Bioresource Technology, 2018, 249: 108-116. doi: 10.1016/j.biortech.2017.09.151
    [27] LI F, LI J, ZHAO Y, et al. The fouling behavior of microfiltration membranes modified with hydrophilic polymers in membrane bioreactor[J]. Acta Scientiae Circumstantiae, 2016, 36(6): 2005-2012.
    [28] 李龙翔. 厌氧氨氧化膜生物反应器脱氮性能及膜污染研究[D]. 济南: 山东大学, 2018.
  • 加载中
图( 9) 表( 2)
计量
  • 文章访问数:  5339
  • HTML全文浏览数:  5339
  • PDF下载数:  169
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-13
  • 录用日期:  2019-09-19
  • 刊出日期:  2020-03-01
唐政坤, 王倩, 季慕尧, 田晴, 彭翔, 杨波, 刘艳彪, 李方. UASB/MBR-CANON工艺处理高氮活性印花废水[J]. 环境工程学报, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071
引用本文: 唐政坤, 王倩, 季慕尧, 田晴, 彭翔, 杨波, 刘艳彪, 李方. UASB/MBR-CANON工艺处理高氮活性印花废水[J]. 环境工程学报, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071
TANG Zhengkun, WANG Qian, JI Muyao, TIAN Qing, PENG Xiang, YANG Bo, LIU Yanbiao, LI Fang. Treating high nitrogen-containing reactive printing wastewater with UASB/MBR-CANON process[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071
Citation: TANG Zhengkun, WANG Qian, JI Muyao, TIAN Qing, PENG Xiang, YANG Bo, LIU Yanbiao, LI Fang. Treating high nitrogen-containing reactive printing wastewater with UASB/MBR-CANON process[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 632-640. doi: 10.12030/j.cjee.201905071

UASB/MBR-CANON工艺处理高氮活性印花废水

    通讯作者: 李方(1979—),男,博士,教授。研究方向:水污染控制和膜分离。E-mail:lifang@dhu.edu.cn
    作者简介: 唐政坤(1991—),男,博士研究生。研究方向:水污染控制。E-mail:2740198603@qq.com
  • 1. 东华大学环境科学与工程学院,上海 201600
  • 2. 国家环境保护纺织工业污染防治工程技术中心,上海 201600
基金项目:
国家重点研发计划资助项目(2016YF0400501);国家自然科学基金资助项目(51478099);上海市自然科学基金项目(16ZR1402000)

摘要: 针对棉织物活性印花废水高氮、高色度、高COD等特点,采用上流式厌氧污泥床反应器与完全自养脱氮膜生物反应器组合工艺(UASB/MBR-CANON),处理模拟高氮活性印花废水。实验过程分为独立启动和串联运行2个阶段,探究了不同基质浓度条件下UASB/MBR-CANON反应器对高氮活性印花废水的处理效果。结果表明:UASB和MBR-CANON反应器分别经过140 d独立启动运行后,UASB反应器与MBR-CANON反应器完成串联运行,此时总氮平均去除率达到72%,COD平均去除率达到74%,染料平均脱色率达到82%;在MBR-CANON反应器运行的200 d 内,通过对膜表面污染物分析发现,膜表面滤饼层胞外聚合物中多糖和蛋白质含量分别为52 mg·L−1和17 mg·L−1。膜通量数据表明,在低通量状态下,膜通量衰减速率较为缓慢,经过清洗后,膜通量可恢复初始通量的80%~90%。进一步分析可知,采用UASB/MBR-CANON工艺处理高氮活性印花废水具有较高的技术可行性,以上研究结果可为该工艺的工程化应用提供参考。

English Abstract

  • 纺织行业中棉织物活性印花工艺一般包括印花、洗网、洗筒、水洗、皂洗等工序,生产过程中会产生大量的工艺废水[1-2]。活性印花废水具有浆料浓度高、活性染料残留多、可生化性相对较好等特点[3]。除此之外,印花废水中残留大量尿素,使印花废水含氮量非常高,从而导致碳氮比失调的问题[4-5]。一般的生化工艺经过厌氧反应器处理,可去除印花废水中部分COD,同时也会将有机氮转化为氨氮,加剧碳氮失调比例,增加了后续的生物脱氮难度。为了解决活性印花废水中高氮问题,行业迫切需要开发一种既高效又经济的生物脱氮技术[6]

    近年来开发出的厌氧氨氧化技术(anaerobic ammonium oxidation, ANAMMOX)为低碳高氮废水提供了高效经济的方法[7]。与传统硝化反硝化相比,ANAMMOX工艺具有节省曝气量和碳源、脱氮效率高、剩余污泥泥少等优点[8]。目前,ANAMMOX工艺已经成功应用于实验室处理高氨氮(>300 mg·L−1)废水,如垃圾渗滤液[9]等。由于厌氧氨氧化工艺以氨氮和亚硝态氮为基质,因此,工艺前段须匹配短程亚硝化工艺来提供亚硝态氮[10-11]。在此基础上,开发出二阶段厌氧氨氧化工艺(如短程硝化-厌氧氨氧化(SHARON-ANAMMOX)工艺[12-13])和平阶段厌氧氨氧化工艺(如完全自养脱氮(completely autotrophic nitrogen removal over nitrite, CANON)工艺[14-15])。

    由于工业废水中存在大量化学品或其中间产物(如染料)可能会抑制厌氧氨氧化菌的生长,因此,目前主流厌氧氨氧化工艺应用于处理印花废水方面的研究未见报导。本研究旨在探讨厌氧氨氧化工艺处理高氨氮工业废水的实验应用可行性,以典型的高氮印花废水作为处理目标,将UASB工艺和主流厌氧氨氧化MBR-CANON工艺进行串联,来处理活性印花废水,考察了UASB/MBR-CANON工艺对印染废水COD、高氮和色度去除的效率,验证了该工艺处理高氮活性印花废水的可行性。

  • UASB/MBR-CANON工艺通过前置的UASB反应器去除废水中浆料等可生化降解的有机物,同时实现尿素的氨化,为后续的MBR-CANON提供适合的反应条件。CANON采用MBR工艺,反应器内置填料可以通过截留生物量来提高污泥浓度,但生物膜的脱落仍会造成部分污泥流失,因此,本研究采用MBR工艺以加强污泥截留,增加污泥浓度,同时可以过滤悬浮颗粒,优化出水水质。

    实验装置系统由厌氧反应器和脱氮反应器组成,分别采用UASB和MBR-CANON反应器形式,如图1所示。其中UASB反应器有效体积为36 L,内部填充软性纤维填料,顶端封闭并设置排气口。MBR-CANON反应器有效体积为12 L,使用隔板平分为左右2部分,左边装填中空纤维膜组件(PVDF膜面积0.144 m2),右边填充软性纤维填料,底部设置曝气盘为微生物提供溶解氧,并放置溶解氧探头和pH计进行实时监测。通过蠕动泵抽取右侧混合液循环至左侧实现膜组件冲刷,使其达到减轻膜污染的目的。当跨膜压力达到−10 kPa时进行膜组件反冲洗。2个反应器均采用连续运行方式,并通过恒温水浴锅和加热管控制反应器内环境温度。

  • UASB反应器接种污泥来自本实验室印染废水的中试厌氧反应器[16],接种污泥浓度为15.6 g·L−1,污泥体积为15 L。MBR-CANON反应器接种污泥来自正在运行的河北某畜牧场厌氧氨氧化污泥,其污泥浓度为10.0 g·L−1,污泥体积为0.5 L。

  • 系统运行共200 d,分为2个阶段。UASB反应器和MBR-CANON反应器的独立启动阶段:UASB反应器启动运行共40 d,在此阶段中,水力停留时间为72 h,pH为7.0~8.5,温度为(25±1) ℃。淀粉是活性印花工艺中常用的浆料之一[17],通过将进水中淀粉浓度由500 mg·L−1增加到1 000 mg·L−1,使COD容积负荷由0.17 kg·(m3·d)−1逐渐提高至0.34 kg·(m3·d)−1。染料为活性黄,分子式为C28H20ClN9O16S5·4Na。进水尿素浓度保持在1 070 mg·L−1,其总氮浓度为500 mg·L−1,总氮容积负荷为0.17 kg·(m3·d)−1。MBR-CANON反应器启动共140 d,在此阶段中,水力停留时间为24 h,水力循环中出水与回流比为1∶100。通过将氯化铵浓度由191 mg·L−1依次提高至382、573、764、1 146 mg·L−1的方式,使氨氮容积负荷由0.05 kg·(m3·d)−1逐渐提高至0.10、0.15、0.20、0.30 kg·(m3·d)−1。控制pH为7.5~8.5,温度为(35±1)℃,溶解氧为0.1~0.5 mg·L−1;系统运行140 d后,UASB反应器和MBR-CANON反应器均启动成功并运行稳定,此时将UASB反应器出水逐步添加进入MBR-CANON反应器的进水中进行串联,其他条件保持不变。2个反应器在启动和串联运行中均不排泥。本研究中UASB反应器和MBR-CANON反应器均配制与实际废水相仿的模拟印花废水,具体如表1表2所示,并添加适量磷、钙镁离子及微量元素[18]

  • 实验在线监测并记录DO和pH(LDO101,Hach,可在线监测并记录数据)。COD采用微波消解法,氨氮采用纳氏试剂分光光度法,亚硝态氮采用N-(1-萘基)-乙二胺分光光度法,硝态氮采用氨基磺酸紫外分光光度法,总氮采用碱性过硫酸钾分光光度法,以上均采用文献中的方法[19]进行测定。

    活性黄染料浓度采用分光光度法:取一定量染料溶于去离子水中,在波长200~800 nm范围内,进行紫外-可见全波段扫描,确定染料最大吸收波长。配制梯度浓度的染料标准溶液,在最大吸收波长下测定其吸光度,并绘制吸光度与染料浓度标准曲线。测得水样吸光度,根据标准曲线计算水样染料浓度,染料脱色率计算如式(1)和式(2)所示。

    式中:R1为亚硝酸盐积累率;R2为染料脱色率;C为浓度,mg·L−1

  • 在本实验中,膜污染分析测试指标包括膜通量和膜表面滤饼层EPS中的多糖和蛋白质。EPS采用热提取法[20]:将膜表面滤饼层刮至50 mL离心管后,放入摇床中至污泥完全溶解并提取EPS,通过改进Lowry法和蒽酮-硫酸法测定其蛋白质和多糖。

  • 1) UASB反应器启动与运行。UASB反应器可将模拟印花废水中的尿素水解为氨氮,降解大部分淀粉,分解染料,从而降低色度。当MBR-CANON反应器运行至97 d时,开始启动UASB反应器。UASB反应器启动运行结果如图2所示。由图2可知,在UASB反应器运行的第97~109天中,出水COD值平均为201 mg·L−1左右,COD去除率接近60%。当进水继续提高淀粉浓度至1 000 mg·L−1左右时,反应器内微生物浓度与活性不断提高,COD去除率逐渐上升至78%左右。从第123天开始向反应器中加入100 mg·L−1活性黄染料,由图2可知,随着反应器的运行,染料不断被降解,到第140天时,出水染料浓度为25 mg·L−1左右,染料的脱色率缓慢升高至80%左右,此时认为UASB启动成功。由于反应器内接种污泥为处理印染废水中试装置中的污泥,因此,反应器启动所需时间较短。

    随着UASB反应器的运行,微生物不断增殖,出水COD去除率和染料脱色率均在80%以上,最高分别可达到85%和86%。运行15 d左右后,提高UASB反应器进水染料浓度至150 mg·L−1,此时出水染料浓度为30 mg·L−1左右,染料的脱色率为80%左右。从第171天开始,反应器出水COD由189 mg·L−1逐渐降低至109 mg·L−1左右,COD去除率平均值为89%,同时,此阶段UASB反应器的染料降解效果相对比较稳定,出水染料浓度和染料脱色率分别为25 mg·L−1和84%左右。以上研究结果表明,UASB反应器对印花废水中COD和活性黄染料均有较好的去除效果。

    2) MBR-CANON反应器启动与运行。MBR-CANON反应器运行分为2个阶段。第1阶段为启动与稳定阶段,共运行140 d;第2阶段为与UASB串联阶段,共运行60 d,处理效果如图3~图6所示。在MBR-CANON反应器启动与稳定阶段,逐渐将反应器进水氨氮浓度由50 mg·L−1提高至100 mg·L−1,系统中生物量逐渐增多并且微生物逐渐适应水质。在第49天时,亚硝酸盐累积率增长至97%左右,此时亚硝化阶段出现并且趋于稳定。AOB比NOB的氧半饱和常数大,因此,在较低的溶解氧水平下,NOB难以和AOB竞争有限的氧气,从而抑制NOB活性。将反应器进水氨氮浓度提高为200 mg·L−1,此时反应器内溶解氧为0.2 mg·L−1左右,亚硝酸盐累积率逐渐下降,出水氨氮浓度持续降低,厌氧氨氧化反应逐渐出现,在第69天时,反应器总氮去除负荷达到0.15 kg·(m3·d)−1(大于0.10 kg·(m3·d)−1),标志着MBR-CANON反应器正式启动成功[21]。为了提高氨氮容积负荷,继续将反应器进水氨氮浓度提升至300 mg·L−1,反应器总氮去除率不断增高,到第140天时,总氮去除率最高达到91%,总氮去除负荷最高达到了0.29 kg·(m3·d)−1。为了强化MBR-CANON反应器去除COD的能力,在第99天时,开始向MBR-CANON反应器进水中加入100 mg·L−1淀粉。有研究[22]表明,加入少量COD并不会抑制AOB的活性,是因为反应器内COD过低或者溶解氧充足并未引起AOB和NOB对基质的竞争。而当C/N比为1.8~3.5时,AOB的活性将下降70%[23],本实验中也发现COD的加入并未抑制MBR-CANON反应器内AOB的活性。经过40 d运行后,反应器出水COD为29 mg·L−1左右,COD平均去除率最高达到85%以上。

    MBR-CANON反应器运行140 d后,将UASB出水逐步添加至MBR-CANON进水中,正式进入UASB与MBR-CANON串联运行阶段。由图3可知,在第140天时,UASB出水接入MBR-CANON反应器后,微生物无法立刻适应进水水质的变化,导致其活性下降,反应器中总氮去除率和总氮去除负荷分别降到了约57%和0.18 kg·(m3·d)−1。在运行30 d后,增大反应器曝气量,使溶解氧升高,反应器内微生物逐渐适应进水水质条件,总氮去除率逐渐上升至82%以上。由图6可知,随着MBR-CANON反应器的不断运行,反应器出水COD平均值为26 mg·L−1左右,COD去除率缓慢上升并稳定在73%。MBR-CANON反应器对染料去除效果相对比较稳定,出水染料浓度平均为5 mg·L−1,染料的脱色率最高达到87%以上。

    综上所述,在本实验条件下,接种厌氧氨氧化污泥的MBR-CANON反应器可在69 d内启动成功,并在140 d内达到稳定运行的状态,同时说明UASB/MBR-CANON串联工艺对高氮活性印花废水有良好的降解作用。

  • 为了考察UASB/MBR-CANON串联工艺处理印花废水过程中MBR-CANON反应器中功能菌的种类及丰度变化情况,分别对反应器接种污泥、第70天和第180天污泥进行高通量测序,分析结果如图7所示。由图7可知,当MBR-CANON反应器启动成功后,亚硝化球菌的丰度由接种时的21.96%增长为38.54%,亚硝化单胞菌(Nitrosomonas_eutropha)的丰度由18.68%降为6.83%,同时出现了一种新的亚硝化单胞菌(Nitrosomonas_europaea,20%),说明随着反应器的运行,系统内亚硝化细菌种类和总相对丰度逐渐增多。此外,缺氧氨氧化菌[24](AmoA_anoxic_biofilm_clone_S6)的丰度由2.34%迅速增长到31.52%,同时出现了厌氧氨氧化菌(Candidatus_Kuenenia,0.001 9%),此时MBR-CANON反应器的脱氮效率在85%左右。这说明2种功能菌在脱氮中起着重要的作用,并且随着反应器的运行,功能菌种类也发生了变化。当UASB和MBR-CANON反应器串联运行稳定后,在第180天,测得系统内出现了大量的亚硝化螺旋菌,而亚硝化菌的总相对丰度逐渐降低。此外生物膜上生长的菌群中缺氧氨氧化菌(AmoA_anoxic_biofilm_clone_S6)和厌氧氨氧化菌(Candidatus_Kuenenia)的相对丰度分别增长至69.48%和0.32%,说明系统中起脱氮作用的氨氧化菌得到了增长。综上研究结果可知,在本研究条件下,印花废水中的污染物并未对系统内脱氮微生物的生长造成严重抑制。

  • 为了进一步探究活性黄染料的降解途径,本研究对活性黄染料、UASB反应器出水和MBR-CANON反应器出水进行紫外-可见全波段(UV-vis)扫描,扫描结果如图8所示。由图8可知,活性黄染料有4个特征吸收峰,其中224 nm处为苯环结构吸收峰,254 nm处为三嗪吸收峰,288 nm处为萘环吸收峰,而424 nm处为偶氮双键吸收峰,偶氮双键是形成发色体的主要基团[25]。经过UASB反应器厌氧降解后,位于424、254和288 nm的吸收峰基本消失,说明提供色度的偶氮双键被打开,同时三嗪结构和萘环结构可能被破坏。位于224 nm的苯环吸收峰只是降低但并未消失,可能是由于染料本身结构中的苯环已经被破坏,但三嗪和萘环在厌氧条件下可降解为含有苯环结构的物质,因此,苯环吸收峰仍然存在。接着经过MBR-CANON反应器处理之后,吸收峰位置基本未发生变化但吸光度降低,其原因可能是因为MBR-CANON反应器内生物膜的吸附作用和膜组件的过滤作用使染料进一步截留。

  • 图9反映了MBR-CANON反应器中胞外聚合物(extracellular polymeric substances, EPS)中多糖和蛋白质浓度变化及膜通量的衰减情况。由图9可知,膜表面滤饼层EPS中多糖和蛋白质含量在第40天时分别为30.53 mg·L−1和3.70 mg·L−1,第80天为15.30 mg·L−1和6.06 mg·L−1,第180天时为52.14 mg·L−1和17.40 mg·L−1。以上结果表明,多糖和蛋白质含量在膜清洗后有所下降,但总体呈现上升趋势,这可能是因为EPS作为形成生物膜的重要组成部分[26],混合液中的浓度与污泥浓度成正相关关系,随着反应器中微生物的浓度不断升高,污泥混合液中多糖和蛋白质含量不断增加,分离过程中被膜表面截留并不断累积。

    膜表面的EPS累积会造成膜通量的衰减[27],MBR-CANON反应器运行200 d期间,膜通量由最初5.79 L·(m2·h)−1衰减至0.96 L·(m2·h)−1,经过清洗后,膜通量可迅速恢复初始通量的80%~90%。同时由于较大的膜出水通量会加速膜污染,污泥容易堵塞膜孔,从而造成更严重的膜污染[28],因此,经过分析验证,本实验中将膜通量控制在6 L·(m2·h)−1以下,此时过滤阻力较小,可有效减缓膜污染。

  • 1) 采用逐渐提高COD容积负荷的方式启动UASB反应器,其在运行40 d后成功启动,印花废水中COD去除率最高可达到90%,染料的脱色率最高可达到88%;采用逐渐提高进水氨氮容积负荷的方式启动MBR-CANON反应器,其在运行69 d后成功启动,总氮去除率最高达到90%以上,总氮去除负荷最高达到0.29 kg·(m3·d)−1

    2) UASB/MBR-CANON串联运行后,该工艺处理活性印花废水总氮去除率达到70%以上,COD去除率和染料脱色率均达到90%以上。

    3) 在MBR-CANON反应器处理活性印花废水过程中,功能菌AmoA_anoxic_biofilm_clone_S6的相对丰度由2.34%逐渐增高至69.48%,并且培养出了Candidatus_Kuenenia,其相对丰度增长至0.32%。

    4) UASB/MBR-CANON反应器采用水力循环方式连续冲刷膜组件,经过清洗后,膜通量可恢复至原始通量的80%~90%,可有效减缓膜污染。

参考文献 (28)

返回顶部

目录

/

返回文章
返回