-
水泥产业是典型的能源和资源消耗密集型产业,也是仅次于电力行业的第二大CO2、NOx排放源,减排形势严峻[1]。O2/CO2烟气循环煅烧水泥技术是将分离空气制得的高纯度O2与部分再循环烟气混合后通入回转窑和分解炉内助燃,使煤粉在O2/CO2氛围下燃烧,不仅能实现窑尾烟气中CO2的富集和回收,还能降低热力型NOx的排放[2],对水泥行业实现CO2和NOx减排具有重要意义。
许多学者针对煤粉颗粒在O2/CO2气氛下的燃烧特性展开了大量研究。楚化强等[3]利用数值模拟的方法研究了煤粉在空气和O2/CO2气氛下的燃烧情况,结果表明O2/CO2气氛下燃烧火焰温度较低。何先辉等[4]和SHEN等[5]研究表明,在O2/CO2气氛下,煤粉颗粒的完全燃尽时间延长了20%~25%左右。在流化床锅炉方面,有学者通过搭建中小型实验台[6-9]和数值模拟的方法[10-12]进行了O2/CO2燃烧技术的研究,目前O2/CO2燃烧技术已经逐渐应用在电站锅炉上的实际工程中。但是O2/CO2燃烧技术在水泥生产领域的研究还处于起步阶段,仅有少数研究者进行了初步的探索工作。DAVID等[13]通过建立回转窑氧燃料燃烧过程的三维数学模型发现,在同一氧气浓度下, 火焰长度比在空气条件下燃烧的火焰长度短30%~65%,辐射通量提高2~4.5倍,在相同的燃料消耗率下,可以提高熟料的生产率。FRANCISCO等[14]和MARIO等[15]分别以实验和数值模拟的方式验证了现代窑式燃烧器可在不作额外改造的情况下适用氧燃料燃烧。但三者都只单独进行了回转窑的研究,缺少炉、窑一体的研究,没有进一步研究分解炉中NOx的生成情况和煤粉燃烧特性的改变对生料分解产生的影响,无法支持该技术在水泥回转窑和分解炉上的应用。
本研究对某公司2 500 t·d−1回转窑和分解炉进行数值模拟,探讨了O2/CO2烟气循环煅烧水泥技术实现CO2和NOx减排的可行性,对比分析了21%O2/79%CO2助燃工况下与空气助燃工况下回转窑、分解炉的模拟结果,为水泥行业实现O2/CO2燃烧技术的应用提供参考。
O2/CO2工况下回转窑和分解炉内煤粉燃烧的数值模拟及可靠性验证
Numerical simulation and reliability verification of pulverized coal combustion in rotary kiln and decomposing furnace under O2/CO2 condition
-
摘要: 为研究O2/CO2烟气循环煅烧水泥技术实现CO2和NOx减排的可行性,采用数值模拟的方法对某2 500 t·d−1回转窑和分解炉模型进行了21%O2/79%CO2助燃氛围下煤粉燃烧的研究,对比分析了O2/CO2助燃工况下与空气助燃工况下回转窑、分解炉的模拟结果,并通过实验验证了数值模拟的可靠性。结果表明:与空气助燃工况下相比,O2/CO2助燃工况下回转窑、分解炉的煤粉燃尽率分别为92.41%、91.15%,下降了3.06%、3.51%;分解炉出口处生料分解率为90.54%,下降了2.90%,仍满足生产需求;O2/CO2助燃工况下回转窑、分解炉的NO排放量明显下降,脱硝率分别为74.47%、11.80%;烟气中CO2体积分数从32.23%增加到95.35%,通过简单的处理就可以实现C捕获。上述研究结果为O2/CO2烟气循环煅烧水泥技术的推广应用提供了参考。Abstract: In order to study the feasibility of reducing CO2 and NOx emission by using O2/CO2 flue gas cycling calcinating cement technology, a numerical simulation method was used to study the pulverized coal combustion of the 2 500 t·d−1 rotary kiln and decomposing furnace models under 21%O2/79%CO2 combustion-supporting atmosphere. The simulations results of rotary kiln and decomposition furnace under O2/CO2 combustion-supporting conditions and air-supported combustion conditions were compared and analyzed. The reliability of numerical simulations was also verified by experiments test. The results showed that in comparison with the air-supported combustion conditions, the pulverized coal burnout rate of the rotary kiln and decomposing furnace under O2/CO2 combustion-supporting conditions were 92.41% and 91.15%, respectively, which decreased by 3.06% and 3.51%. The decomposition rate of raw materials at the exit of the decomposing furnace was 90.54%, which decreased by 2.90% and still basically met the production demand. Under O2/CO2 combustion-supporting conditions, NO emission of rotary kiln and decomposing furnace decreased significantly, and the denitrification rates were 74.47% and 11.80%, respectively. The CO2 volume fraction in flue gas increased from 32.23% to 95.35%, and the C capture could be achieved through simple treatment. This study provides a reference for the generalization and application of the O2/CO2 flue gas cycle calcinating cement technology.
-
Key words:
- O2/CO2 atmosphere /
- numerical simulation /
- rotary kiln /
- decomposition kiln /
- CO2 enrichment /
- denitrification
-
表 1 回转窑燃烧器运行参数(基础工况)
Table 1. Operating parameters of rotary kiln burner (basic working condition)
风种类 风量/(m3·h−1) 风速/(m·s−1) 风温/K 占比/% 1次风轴流风 547 120 306 8 1次风内旋流风 383 120 306 1次风煤风 2 101 24 319 1次风中心风 901 40 306 2次风 47 095 1.3 1 320 92 表 2 煤样元素分析及工业分析
Table 2. Elemental and industrial analysis of coal sample element
煤粉种类 工业分析/% 元素分析/% 低位热值/
(kJ·kg−1)Mad Aad Vad FCad Car Har Oar (N+S)ar A 1.65 26.80 6.11 65.44 87.3 10.8 1.2 0.7 22 268.8 B 2.05 17.22 31.82 48.91 53.8 42.6 2.2 1.4 22 647.2 A与B混合(A∶B=4∶6) 2.21 20.73 21.62 55.44 67.18 30.0 1.4 1.42 22 495.8 注:Mad为空气干燥基水分含量;Aad为空气干燥基灰分含量;Vad为空气干燥基挥发分含量;FCad为空气干燥基固定碳含量;Car、Har、Oar、(N+S)ar为煤粉中各组分的收到基质量分数。 表 3 回转窑出口测试数据与计算数据对比
Table 3. Comparison of test data and calculation data of rotary kiln outlet
数据来源 烟气温度/K 摩尔分数/% 测点a 测点b 测点c CO2 O2 测量 1 172.5 1 207.7 1 231.2 18.630 0 4.080 0 计算 1 202.7 1 234.5 1 254.8 19.250 0 3.800 0 相对误差 0.025 8 0.022 2 0.019 1 0.035 5 0.068 6 表 4 分解炉出口测试数据与计算数据对比
Table 4. Comparison of test data and calculation data of decomposing furnace outlet
数据来源 出口烟气温度/K 出口烟气成分(摩尔分数)/% 0.6 m处 1.2 m处 1.8 m处 CO2 O2 测量 993 1 016 1 019 31.46 1.88 计算 1 010 1 021 1 054 32.23 1.70 相对误差 0.017 0.004 9 0.034 0.024 5 0.096 -
[1] 赵宏, 伍浩松. 全球能源相关碳排放连续三年持平[J]. 国外核新闻, 2017(5): 3-4. [2] WU F, MORRIS D A, PAUL A D, et al. Progress in O2 separation for oxy-fuel combustion: A promising way for cost-effective CO2 capture: A review[J]. Progress in Energy and Combustion Science, 2018, 67: 188-205. doi: 10.1016/j.pecs.2018.01.004 [3] 楚化强, 冯艳, 曹文健, 等. O2/CO2气氛下煤粉燃烧特性模拟研究[J]. 工业炉, 2016, 38(4): 6-9. doi: 10.3969/j.issn.1001-6988.2016.04.002 [4] 何先辉, 顾明言, 李红, 等. O2/CO2气氛下煤粉燃烧NO排放特性[J]. 燃烧科学与技术, 2017, 23(6): 554-559. [5] SHEN Z J, ZHANG L Q, LIANG Q F, et al. In situ experimental and modeling study on coal char combustion for coarse particle with effect of gasification in air (O2/N2) and O2/CO2 atmospheres[J]. Fuel, 2018, 233: 177-187. doi: 10.1016/j.fuel.2018.06.045 [6] LI W, XU M X, LI S Y. Calcium sulfation characteristics at high oxygen concentration in a 1MWth pilot scale oxy-fuel circulating fluidized bed[J]. Fuel Processing Technology, 2018, 171: 192-197. doi: 10.1016/j.fuproc.2017.11.005 [7] XU M X, LI S Y. Experimental study on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed[J]. Journal of the Energy Institute, 2019, 92(1): 128-135. doi: 10.1016/j.joei.2017.10.016 [8] BO L, ALBERTO G B. Oxy-fuel combustion in circulating fluidized bed boilers[J]. Applied Energy, 2014, 125: 308-318. doi: 10.1016/j.apenergy.2014.03.050 [9] LI L, DUAN L B, TONG S, et al. Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres[J]. Fuel Processing Technology, 2019, 186: 8-17. doi: 10.1016/j.fuproc.2018.12.007 [10] WU Y, LIU D Y, DUAN L B, et al. Three-dimensional CFD simulation of oxy-fuel combustion in a circulating fluidized bed with warm flue gas recycle[J]. Fuel, 2018, 216: 596-611. doi: 10.1016/j.fuel.2017.12.042 [11] JAROSLAW K, TOMASZ C, WALDEMAR M, et al. Modelling of CO2, CO, SO2, O2 and NOx emissions from the oxy-fuel combustion in a circulating fluidized bed[J]. Fuel Processing Technology, 2011, 92(3): 590-596. doi: 10.1016/j.fuproc.2010.11.015 [12] WOJCIECH P A, PAWEŁ K, ADAM K, et al. Numerical simulations of the industrial circulating fluidized bed boiler under air-and oxy-fuel combustion[J]. Applied Thermal Engineering, 2015, 87: 127-136. doi: 10.1016/j.applthermaleng.2015.04.056 [13] DAVID A G, FARID C, JUAN M M, et al. Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln[J]. Energy, 2014, 64: 615-625. doi: 10.1016/j.energy.2013.09.045 [14] FRANCISCO C, SIMON G, JÖRG M, et al. Experimental investigations of oxyfuel burner for cement production application[J]. Fuel, 2019, 236: 608-614. doi: 10.1016/j.fuel.2018.08.135 [15] MARIO D, JØRN B. Study of a full scale oxy-fuel cement rotary kiln[J]. International Journal of Greenhouse Gas Control, 2019, 83: 166-175. doi: 10.1016/j.ijggc.2019.02.008 [16] 梅书霞, 谢峻林, 陈晓琳, 等. 涡旋式分解炉中煤及垃圾衍生燃料共燃烧耦合CaCO3分解的数值模拟[J]. 化工学报, 2017, 68(6): 2519-2525.