-
随着人类健康越来越受到人们的重视,农用地土壤安全性问题已然成为亟待解决的关键问题之一。土壤重金属因其难降解性、易移动且具毒性的特性[1-2],直接或者间接通过土壤、动物以及植物循环到人类身体内,给广大居民的生命安全造成威胁。除大气和水体外,土壤是重金属汇集的另一个重要场所[3],土壤累积重金属达到阀值或国家给定的标准后,不仅会影响土壤的组成成分、结构以及理化性质,而且会极大地威胁到人类赖以生存的环境,并最终造成土壤重金属污染。农用地土壤污染是多要素、多尺度、多过程相互影响的结果,镉、汞、铅、砷、铬、铜、镍和锌是土壤重金属污染中最常见的8类元素。近几年,土壤中重金属的累积状况以及由此带来的生态风险,成为土壤环境研究领域的一个热点问题[4]。
在进行污染程度评价时,多数研究利用单因子指数[5]、内梅罗综合污染指数法[6-7]、地累积指数法[8-9]等方法对污染程度进行评价,在此基础上,本研究利用最新的土壤环境质量评价标准对土壤污染程度进行评价。许多的研究集中于时间或者空间上的土壤重金属含量变化,少数研究将时空叠加进行动态土壤污染状况分析,如对土壤重金属含量进行空间预测[10-12]、在时间序列下土壤重金属浓度的变化[13-14]、污染源解析[15-16]等,这些研究在一定程度上可以反映污染现状以及污染趋势。由于土壤重金属有很强的迁移性和聚集性,空间分布大多是由历史和现在的人为活动造成的,因此,在目前土壤环境问题日趋严峻的形势下,土壤环境的保护和治理迫切需要准确掌握区域土壤重金属含量的时空变化信息,将历史数据和现今数据进行比对,分析出土壤重金属污染是属于加强型、减弱型还是保持不变型,这对土壤重金属污染解析以及今后在管理控制方面均有很大的帮助。同时,土壤重金属含量是评价土壤环境质量的重要因素,掌握土壤重金属的空间分布以及变化趋势对评价土壤环境质量类别具有重要的理论和实际意义。
本研究描述了2008年和2018年研究区内土壤中8类重金属浓度的空间格局和时间变化,初步反应耒水流域土壤重金属含量分布状况;采用不同的方法评价2期土壤重金属的污染程度,从而阐明2个时间段研究区内重金属污染情况;叠加分析2期数据的时空变异情况,重点分析出研究区污染加强位置,为今后土壤污染治理以及管控提供参考。
耒水流域土壤重金属污染的时空变异对比
Comparison of temporal and spatial variability of heavy metal pollution in soil of Leishui river basin
-
摘要: 收集了研究区内2008年的历史数据和2018年采集的最新数据,共计278个样品,分析测试了土壤环境污染常提及的Cd、Hg、As、Pb、Cr、Cu、Ni、Zn共8类重金属元素,利用单因子指数评价法、内梅罗综合污染指数法以及土壤环境质量评估法评价研究区内西河和耒水2条河流周边的土壤环境质量类别,结合反距离空间插值法以及空间几何分析,直观地展示出研究区2008—2018年土壤重金属的时空变异特征。结果表明:采集的2期数据中除Cr外,Cd、Hg、As、Pb、Cu、Ni、Zn表层土壤重金属元素均存在点位超标的情况,说明该研究区中整体存在重金属污染;通过单因子指数评价可知,2期数据单因子指数平均值排前2位的均为Cd和Pb,Cr平均值最小,研究区内2期数据Cr超过98%点位均属于优先保护类点位,Cd、As、Pb均存在超过《土壤环境质量农用地土壤污染风险管控标准》(GB 15618-2018)管制值的点位;污染增强区主要分布于采矿及冶炼企业密度较大的西河中上游、耒水上游和耒水下游3个区。为防止今后土壤重金属污染进一步增强,建议对3个高值区采取恰当的管理措施。Abstract: The historical data of 2008 and the latest data collected in 2018 in the study area are 278 samples in total. Eight heavy metal elements of Cd, Hg, As, Pb, Cr, Cu, Ni and Zn, which are often mentioned in soil environmental pollution, were analyzed and tested. The single factor index evaluation method, Nemerow comprehensive index method and soil environmental quality evaluation method were used to evaluate the soil environmental quality types around the two rivers in the research area, Xihe river and Leishui river. Combining the inverse distance spatial interpolation method and map geometry analysis, the spatial and temporal variability of heavy metals in soils of the research area from 2008 to 2018 was visually displayed. The results showed that: except for Cr in these two-period data, Cd, Hg, As, Pb, Cu, Ni and Zn in some points of the surface soils were beyond the standard, indicating that a total heavy metal pollution occurred in the research area. According to the single factor index evaluation, the average values of single factor index for Cd and Pb were ranked in the first two order, while the average value for Cr was the smallest. The points in the research area where Cr in the two-period data was over 98% belonged to the priority protection category, some points where Cd, As and Pb exceeded the intervention values set in Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618-2018) were observed. Pollution aggravated areas were mainly distributed in the upper and middle reaches of Xihe river with high-density distributed mining and smelting enterprises, the upper reaches of Leishui river and the lower reaches of Leishui river, in order to prevent soil heavy metal pollution from further aggravation in the future. It is suggested that appropriate management measures should be taken in these three high-value areas.
-
表 1 2008年和2018年土壤重金属含量统计分析
Table 1. Statistical analysis of soil heavy metals in 2008 and 2018
采样年份 分析元素 最小值/
(mg·kg−1)最大值/
(mg·kg−1)平均值/
(mg·kg−1)标准偏差 峰态系数 偏度系数 变异系数% 湖南省土壤
背景值/
(mg·kg−1)全国土壤
背景值/
(mg·kg−1)2008 Cd 0.085 10.900 1.134 1.525 24.419 4.592 134.492 0.126 0.097 Hg 0.028 0.684 0.181 0.109 4.040 1.758 60.532 0.116 0.065 As 3.697 639.050 32.294 54.343 101.719 9.379 168.274 15.700 11.200 Pb 20.900 2 950.000 126.701 267.243 81.653 8.238 210.924 29.700 26.000 Cr 15.600 190.000 68.195 28.777 2.092 0.907 42.198 71.400 61.000 Cu 7.640 205.000 35.426 23.096 23.875 4.053 65.196 27.300 22.600 Zn 26.000 1 638.000 169.353 212.349 28.241 4.966 125.388 94.400 74.200 Ni 6.010 112.900 31.985 19.157 4.229 1.822 59.894 31.900 26.900 2018 Cd 0.174 19.780 1.581 2.469 29.156 4.920 156.157 0.126 0.097 Hg 0.059 0.741 0.158 0.107 9.199 2.622 67.684 0.116 0.065 As 5.175 146.157 33.900 28.052 6.664 2.445 82.751 15.700 11.200 Pb 19.100 2 794.000 165.054 331.829 39.141 5.853 201.043 29.700 26.000 Cr 26.000 156.000 70.780 20.777 2.431 1.067 29.354 71.400 61.000 Cu 12.000 323.000 40.666 34.676 40.856 5.781 85.271 27.300 22.600 Zn 41.000 2 801.000 227.016 347.409 32.226 5.319 153.033 94.400 74.200 Ni 8.115 117.400 32.395 15.886 6.316 1.900 49.040 31.900 26.900 表 2 研究区土壤重金属单因子指数统计
Table 2. Statistics of single factor index of heavy metals in soil of survey region
采样年份 分析元素 不同评价结果所占比例/% 非污染 轻度污染 中度污染 重度污染 2008 Cd 1.27 5.10 7.64 85.99 Hg 28.66 50.32 14.01 7.01 As 29.94 38.85 21.02 10.19 Pb 4.46 35.67 24.84 35.03 Cr 63.69 34.39 1.91 0.00 Cu 38.22 54.14 4.46 3.18 Zn 30.57 50.96 9.55 8.92 Ni 61.15 31.21 5.73 1.91 2018 Cd 0.00 2.48 6.61 90.91 Hg 44.63 40.50 8.26 6.61 As 21.49 37.19 23.14 18.18 Pb 0.83 28.93 20.66 49.59 Cr 61.16 38.02 0.83 0.00 Cu 23.97 66.12 5.79 4.13 Zn 20.66 47.11 17.36 14.88 Ni 60.33 34.71 4.13 0.83 表 3 土壤重金属的内梅罗综合污染指数评价结果
Table 3. Assessment of soil heavy metal pollution based on Nemerow comprehensive index
年份 安全 警戒 轻度污染 中度污染 重度污染 2008 0 16.56 55.02 2.63 25.80 2018 0 15.08 54.34 4.96 25.62 表 4 土壤重金属环境质量类别评价结果
Table 4. Assessment results of soil heavy metal based on environmental quality categories
采样年份 分析元素 质量类别 优先保护类 安全利用类 严格管控类 采样数量/个 比例% 采样数量/个 比例% 采样数量/个 比例% 2008 Cd 19 12.10 123 78.34 15 9.55 Hg 157 100.00 0 0 0 0 As 98 62.42 57 36.31 2 1.27 Pb 106 67.52 48 30.57 3 1.91 Cr 155 98.73 2 1.27 0 0 Cu 145 92.36 12 7.64 — — Zn 132 84.08 25 15.92 — — Ni 148 94.27 9 5.73 — — 2018 Cd 5 4.13 100 82.64 16 13.22 Hg 121 100.00 0 0 0 0 As 78 64.46 40 33.06 3 2.48 Pb 73 60.33 44 36.36 4 3.31 Cr 121 100.00 0 0 0 0 Cu 115 95.04 6 4.96 — — Zn 3 2.46 119 97.54 — — Ni 121 100.00 0 0 — — -
[1] HE B, YUN Z, SHI J, et al. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity[J]. Chinese Science Bulletin, 2013, 58(2): 134-140. doi: 10.1007/s11434-012-5541-0 [2] WANG C, YANG Z, ZHONG C, et al. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system[J]. Environmental Pollution, 2016, 216: 18-26. doi: 10.1016/j.envpol.2016.05.037 [3] 陆守平. 土壤中重金属元素的测试方法研究[J]. 农业与技术, 2018, 38(2): 252. [4] 姚荣江, 杨劲松, 谢文萍, 等. 苏北滨海滩涂区土壤重金属含量及其时空变异研究[J]. 中国环境科学, 2016, 36(6): 1810-1820. doi: 10.3969/j.issn.1000-6923.2016.06.032 [5] 叶素桃, 张思佳, 彭亚绵, 等. 单因子指数法在土壤重金属污染模型的应用研究[J]. 数学学习与研究, 2016(11): 141. [6] 薛志斌, 李玲, 张少凯, 等. 内梅罗指数法和复合指数法在土壤重金属污染风险评估中的对比研究[J]. 中国水土保持科学, 2018, 16(2): 119-125. [7] ZHANG J T, SUN H. Differences of nemerow index method and fuzzy comprehensive evaluation method in evaluation heavy metal pollution in soil[J]. Administration & Technique of Environmental Monitoring, 2016, 28(4): 27-31. [8] 李杨. 地积累指数法评价某市土壤重金属污染情况[J]. 环境保护与循环经济, 2018, 38(3): 76-78. doi: 10.3969/j.issn.1674-1021.2018.03.020 [9] FÖSTNER U, MÜLLER G. Concentrations of heavy metals and polycyclic aromatic hydro-carbons in river sediments: Geochemical background, man’s influence and environmental impact[J]. Geojournal, 1981, 5(5): 417-432. doi: 10.1007/BF02484715 [10] 檀满枝, 陈杰, 徐方明, 等. 基于模糊集理论的土壤重金属污染空间预测[J]. 土壤学报, 2006, 43(3): 389-396. doi: 10.3321/j.issn:0564-3929.2006.03.006 [11] 胡大伟, 卞新民, 王书玉, 等. 基于BP模型的南通市农田土壤重金属空间分布研究[J]. 安全与环境学报, 2007, 7(2): 91-95. doi: 10.3969/j.issn.1009-6094.2007.02.025 [12] 曾菁菁, 沈春竹, 周生路, 等. 基于改进LUR模型的区域土壤重金属空间分布预测[J]. 环境科学, 2018, 39(1): 371-378. [13] SHAO D, ZHAN Y, ZHOU W, et al. Current status and temporal trend of heavy metals in farmland soil of the Yangtze river delta region: Field survey and meta-analysis[J]. Environmental Pollution, 2016, 219: 329-336. doi: 10.1016/j.envpol.2016.10.023 [14] COPAT C, MAGGIORE R, ARENA G, et al. Evaluation of a temporal trend heavy metals contamination in Posidonia oceanica (L.) Delile, (1813) along the western coastline of Sicily (Italy)[J]. Journal of Environmental Monitoring, 2012, 14(1): 187-192. doi: 10.1039/C1EM10575B [15] 王学松, 秦勇. 徐州城市表层土壤中重金属环境风险测度与源解析[J]. 地球化学, 2006, 35(1): 88-94. doi: 10.3321/j.issn:0379-1726.2006.01.010 [16] 叶琛, 李思悦, 张全发. 三峡库区消落区表层土壤重金属污染评价及源解析[J]. 中国生态农业学报, 2011, 19(1): 146-149. [17] 邓小林, 吴永兰, 周崇松, 等. 郴州市西河流域土壤重金属污染及其潜在生态风险评估[J]. 湘南学院学报, 2013, 34(5): 114-120. [18] 贺卫东. 耒水流域“2006·07·15”暴雨洪水分析[J]. 湖南水利水电, 2007(3): 33-35. doi: 10.3969/j.issn.1009-4229.2007.03.017 [19] 生态环境部, 国家市场管理监督总局. 土壤环境质量 农用地 土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境出版社, 2018. [20] 环境保护部. 固体废物金属元素的测定 电感耦合等离子体质谱法: HJ 766-2015[S]. 北京: 中国环境科学出版社, 2015. [21] 尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, 39(10): 4670-4683. [22] 国家环境保护总局. 土壤环境监测技术规范: HJ/T 166-2004[S]. 北京: 中国环境科学出版社, 2004. [23] HOU D, O'CONNOR D, NATHANAIL P, et al. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review[J]. Environmental Pollution, 2017, 231: 1188-1200. doi: 10.1016/j.envpol.2017.07.021 [24] WU W, WU P, YANG F, et al. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility[J]. Science of the Total Environment, 2018, 630: 53-61. doi: 10.1016/j.scitotenv.2018.02.183 [25] WANG L F, BAI Y X, GAI S N. Single-factor and nemerow multi-factor index to assess heavy metals contamination in soils on railway side of Harbin-Suifenhe railway in northeastern China[J]. Applied Mechanics & Materials, 2011, 71: 3033-3036. [26] 潘佑民. 湖南土壤背景值及研究[M]. 北京: 中国环境科学出版社, 1988. [27] 李锋, 刘思源, 李艳, 等. 工业发达城市土壤重金属时空变异与源解析[J]. 环境科学, 2019, 40(2): 934-944. [28] PHILEZE P O. Variability of soil properties related to vegetation cover in a tropical rainforest landscape[J]. Journal of Geography and Regional Planning, 2010, 3(7): 177-184. [29] DAO L, MORRISON L, ZHANG C. Spatial variation of urban soil geochemistry in a roadside sports ground in Galway, Ireland[J]. Science of the Total Environment, 2010, 408(5): 1076-1084. doi: 10.1016/j.scitotenv.2009.11.022 [30] ZHANG C. Using multivariate analyses and gis to identify pollutants and their spatial patterns in urban soils in Galway, Ireland[J]. Environmental Pollution, 2006, 142(3): 501-511. doi: 10.1016/j.envpol.2005.10.028 [31] REIMANN C, FILZMOSER P, GARRETT R G. Background and threshold: Critical comparison of methods of determination[J]. Science of the Total Environment, 2005, 346(1/2/3): 1-16. [32] 贾赵恒, 罗瑶, 沈友刚, 等. 大冶龙角山矿区农田土壤重金属形态分布及其来源[J]. 农业环境科学学报, 2017, 36(2): 264-271. doi: 10.11654/jaes.2016-1116 [33] 秦普丰, 刘丽, 侯红, 等. 工业城市不同功能区土壤和蔬菜中重金属污染及其健康风险评价[J]. 生态环境学报, 2010, 19(7): 1668-1674. doi: 10.3969/j.issn.1674-5906.2010.07.027