-
随着燃煤电厂节能减排改造工程的升级,超低排放技术得到快速地推广与应用[1]。然而在超低排放条件下如何准确测量颗粒物浓度,对超低排放改造工程进行有效评价是目前亟待解决的问题。颗粒物浓度的测试方法包括在线监测和手工测试,在线监测设备的校准可通过光学原件校准,但其偏差较大[2-3]。相关标准及方法规定采用手工测试方法对在线监测设备进行校准和验收[4-5],因此,颗粒物手工测试方法已成为设备是否达到超低排放的主要评判手段[6]。但测试结果往往易受复杂的烟气条件、测试方法、仪器、滤膜、操作人员等因素影响而存在差异,这直接影响设备的最终评价结果。
目前,国内外针对可吸入颗粒物采样器已经建立计量标准和方法[7-9]。其基本原理是由标准粒子发生器产生一定粒径单分散的标准粒子,并使之在测试区域均匀分布后,在一定环境条件及时间内,用滤膜捕集进入粒子分离器前后的标准粒子,用天平称重后,确定滤膜上粒子的质量及浓度[10]。还有的颗粒物检定装置以米氏散射为理论基础,将光度法和粒子计数法相结合,通过激光功率的切换实现对颗粒物粒径和浓度的监测[11]。这些方法建立在实验室环境条件下,未模拟实际烟气的温度、湿度和酸性气体,并不适用于低浓度颗粒物手工法测试。近年来,环境保护部结合国外测试标准[12-14],制定了适合我国的低浓度颗粒物测试标准[15],规范了低浓度颗粒物手工测试方法,但对低浓度颗粒物测试方法尚未建立相关的计量标准和装置。本研究根据国家相关测试标准,研制了一台量值可溯源的低浓度颗粒物测试校准装置[16](以下简称校准装置),并对该校准装置的给料发生装置、SO3发生装置、空气加热器、蒸气发生器和在线监测等主要单元进行了详细阐述、性能评价和实际应用,以期为低浓度颗粒物的手工测试及在线监测的准确性提供技术参考。
-
给料发生装置为自主研发,主要包括给料机、吹扫装置、稀释系统等3部分,给料发生装置如图1所示。其工作原理是:给料机通过搅伴器将颗粒物搅拌进给料螺杆,给料螺杆在给料变频电机的带动下将颗粒物输送至出料口,由变频电机控制的毛刷对出料口出来的颗粒物实施刮扫,使颗粒物由团状或块状变成粉末状,稳定均匀地将颗粒物吹扫进下料斗;稀释器[17]在空压机的作用下,使压缩空气通过稀释器环形喷射孔进入稀释器内腔,环形喷射孔与进料口相连接,压缩空气高速通过环形喷射孔时在进料口产生负压,诱导下料斗中的颗粒物从进料口通过喷射孔进入稀释器内腔,再与洁净空气充分混合;混合后含有颗粒物的气流以稳定的稀释比[18]分别进入稀释器的2个口(1个为需求气出口,另1个为多余气出口),经多余气出口排出的大部分颗粒物通过布袋进行回收,需求气出口与校准装置连接,实现连续不断地给料。
-
管道包括风机前和风机后2部分。风机前管道包括进入空气加热器的进风管和连接空气加热器与风机的管道。进风管的管径与空气加热器接口尺寸相同,进风口设有集流器和过滤器。连接空气加热器与风机的管道呈“n”字型布置,管径为180 mm,为玻璃钢材质,有50 mm厚的保温层。距空气加热器出口200 mm处设有粉尘给料口。在“n”字型2个弯头内按等分原则各布置1块导流板。距导流板末端100 mm处,依次设有SO3和蒸气的接入点。手工法测试位置布置在距蒸气接入点大于6倍当量直径,距下游弯头大于3倍当量直径[19]的位置,颗粒物和温湿度在线监测分别安装在手工法测试位置上游200 mm和下游100 mm位置。
风机后的管道有尘酸回收装置和连接风机与尘酸回收装置的管道,为玻璃钢材质。连接风机与尘酸回收装置的管道为方管,断面尺寸为200 mm×215 mm。尘酸回收装置的长×宽×高为654 mm×600 mm×1 000 mm,内部装有350 mm高的液体,液体可采用水或其他碱性液体,具有自动补充液体功能,进入回收装置管道应伸入液体表面50~100 mm。
-
在确定管道管径后,根据设计的烟气流速和管道布置计算风机风量和系统阻力,并预留10%~20%的余量,确保风机能够完全满足实验要求。由于管道中烟气具有一定的温度、颗粒物和酸性气体,采用耐温的玻璃钢材质的变频离心式风机,布置在手工测试位置后,确保烟道内保持负压,烟气不外冒。
-
空气加热器主要是将环境中的空气加热到所需的烟气温度。由于SO3反应炉和蒸气发生器进入校准装置的温度分别可达260 ℃和100 ℃,所以加热功率宜以饱和湿烟气的温度50 ℃来计算。加热功率主要包括空气升温热损失、流量补充热损失、管道和保温散热损失等,热损失与介质的重量和比重、温升和升温时间有关。经过计算并预留余量后,最大加热功率为20 kW。
-
SO3发生装置[20]是通过V2O5与SO2标气高温反应生成SO3气体,并根据实际需要的SO3浓度、反应炉催化效率、SO2标气质量浓度和烟气流量,调节通入反应炉的SO2标气流量,然后采用控制冷凝法[21-22]等速采集SO3,用铬酸钡分光光度法[23]分析硫酸根含量,结合所抽取的采样体积计算SO3浓度。反应炉与校准装置之间伴热管应加热至260 ℃[24],SO2标气的质量浓度为228.57 g·m−3,在SO3通入校准装置前,应先对反应炉进行硫平衡实验。
-
在蒸气发生器选型时,首先根据VATSALA软件计算由环境湿度加热到设计温度的饱和湿度,烟气流量所需的加水量为89.45 g·m−3,然后按最大烟气流量计算单位时间的加水量为79.60 kg·h−1,预留一定余量后,计算蒸气发生器的加热功率为72 kW。
-
在线监测包括颗粒物和温湿度在线监测,其中颗粒物在线监测采用英国的PCME实时监测[25],是基于颗粒物对激光的前向散射的特性设计而成的[26],温湿度采用HMT330型VATSALA温湿度传感器实时监测。控制系统集成了变频风机、空气加热器、给料发生装置、SO3发生装置、蒸气发生器等,操作简单方便。建成后的校准装置如图2所示。
-
表1和图3给出了给料发生装置通过滤筒每隔1 min连续采集60个样品的给料量和给料稳定均匀性。由表1和图3可知,当给料频率分别为12、20、30、40 Hz时,给料量分别为1.9、3.3、4.8、6.9 g·h−1,给料稳定均匀性分别为6.9%、5.5%、7.9%、6.9%。最低给料量仅为1.9 g·h−1,且给料稳定均匀性小于8%,满足校准装置的给料要求[27]。
图4给出了在饱和湿烟气条件下在线颗粒物浓度为5.50 mg·m−3时1 h的颗粒物在线监测分布曲线。由图4可知,在线颗粒物浓度为5.50 mg·m−3时,稳定均匀性只有4.4%。这说明给料发生装置的给料是稳定均匀的,校准装置所提供的颗粒物浓度校准可靠性高。
-
采用圆管和方管在“n”字型2个弯头处,在未设置导流板、按等分原则布置1块和2块导流板、按不等分原则布置2块导流板时,通过CFD分析计算,圆管测试位置的流场分布均匀性分别为10.0%、7.4%、8.2%、8.1%,方管测试位置的流场分布均匀性分别为11.0%、7.9%、8.3%、8.1%。同样的导流板布置圆管的流场要优于方管,在“n”字型2个弯头处按等分原则布置1块导流板的流场最优。
-
校准装置在饱和湿烟气条件下,通入 SO3发生装置的SO2标气质量浓度为228.57 g·m−3,流量为0.35 L·min−1时,3个样品的SO3浓度分别为6.52、5.94、5.79 mg·m−3,平均为6.08 mg·m−3,样品相对标准偏差为6.34%。通入校准装置的SO3浓度要高于一般脱硫后的SO3浓度,说明校准装置可稳定提供与实际烟气相近浓度的酸性气体。
-
图5为校准装置在烟气温度为50 ℃和60 ℃时所对应的烟气湿度。由图5可知,烟气温度为60 ℃时,烟气绝对湿度为26.2%;烟气温度为50 ℃时,烟气绝对湿度为13.3%,2个温度点的烟气相对湿度均在100%以上,这说明烟气进入了饱和状态。通过以上测试与分析表明,该装置可模拟现场高湿度、低温度、酸性气体等工况,同时提供稳定、均匀、浓度低的颗粒物输出,为低浓度颗粒物测试准确性提供技术参考。
-
表2和表3给出了校准装置在模拟低温电除尘器后干烟气和湿法脱硫后饱和湿烟气的不同颗粒物浓度的测试结果。由表2和表3可知,在干烟气和饱和湿烟气条件下,不同颗粒物浓度的全程序空白样浓度均小于实测颗粒物浓度的10%[15],说明测试的样品均有效;实测颗粒物浓度随给料频率的升高而增大,且样品平行性较优。
图6给出了校准装置在干烟气和湿烟气条件下实测不同颗粒物浓度分布曲线和在线监测颗粒物浓度分布曲线。由图6可知,干烟气和湿烟气实测颗粒物浓度按多项式回归后的方程式(如式(1)和式(2)所示)计算,r分别为0.999 9、0.993 2,按照选定显著性水平α和观测点数目n减去2的数值(自由度),可在相关系数临界值表中查出相应临界值r0分别为0.999(α=0.001)、0.990(α=0.01)。根据实验数据计算出的相关系数r≥r0,那么给料发生装置的给料频率与干烟气和湿烟气颗粒物浓度存在很好的线性关系,而且可信度分别高达99.9%、99.0%,可作为校准装置标准曲线对颗粒物浓度进行校准。如果按照线性回归,那么r分别为0.997 8、0.968 0,其可信度分别为99.0%、95.0%,要比按式(1)和式(2)计算的可信度低,所以在低浓度颗粒物标定时,其校准因子推荐按多项式回归进行计算设置。
式中:x为给料频率,Hz;y为颗粒物浓度,mg·m−3。
在同样给料频率时,实测的湿烟气颗粒物浓度要比干烟气的低,在给料频率为13 Hz时,低了10.8%,随着给料频率升高至28 Hz,降低幅度上升至52.1%,之后趋于平缓,这主要是由于校准装置的管径小,在饱和湿烟气条件下,喷入的水蒸气大,致使一些颗粒物被吸附在管壁上,在低给料量时,影响较小,随着给料量的增加,吸附越明显,到达一定的给料量后,吸附量基本稳定。
由图6还可知,颗粒物在线监测校准因子按y=3.5x−0.5设置后,在干烟气时,在线监测的颗粒物浓度仍比实测值低,在给料频率≤40 Hz时,两者基本平行,给料频率>40 Hz时,两者明显拉开;在湿烟气时,在线监测的颗粒物浓度反而比实测值高,随着给料频率的升高,其增加的颗粒物浓度也越多,最终接近干烟气的在线值。这说明,在干烟气和湿烟气条件下,颗粒物在线监测校准因子是不一样的,在湿烟气时要小些。其出厂标定的校准因子y=x与实际的差异较大,反映了颗粒物在线监测设备出厂标定的准确度较差。
-
1)通过对校准装置进行性能评价,表明该装置可模拟现场高湿度、低温度、酸性气体等工况,同时提供稳定、均匀、浓度低的颗粒物输出,为低浓度颗粒物测试准确性提供技术支撑。
2)通过对校准装置不同颗粒物浓度的测试与回归分析,给出了干烟气和饱和湿烟气2条颗粒物浓度标准曲线,结果表明可信度高,可作为校准装置标准曲线对颗粒物浓度进行校准,且装置操作简单方便,运行稳定可靠。
3)在线监测结果表明,在颗粒物浓度较低时,颗粒物在线监测设备出厂标定的准确度较差,校准因子应根据不同烟气环境校准装置实际测试结果进行标定。
4)校准装置可模拟现场复杂烟气条件,对超低排放颗粒物浓度的测试准确性进行验证,同时还可以对不同的测试方法和在线监测设备等进行校准。
燃煤烟气低浓度颗粒物测试校准装置的研制与应用
Development and application of test calibration device for low concentration particulate matter in coal-fired flue gas
-
摘要: 在超低排放条件下,如何准确测量颗粒物浓度是非常关键的技术问题。根据HJ 836-2017等相关测试标准,研制了量值可溯源的低浓度颗粒物测试校准装置,详细说明了校准装置的主要单元和性能评价,并在实际中进行验证。结果表明,校准装置的颗粒物浓度随给料频率的升高而增大,且样品平行性较优;给料频率与干烟气和湿烟气颗粒物浓度存在很好的线性关系,可信度高,可作为校准装置标准曲线对颗粒物浓度进行校准;在线监测低浓度颗粒物标定时,推荐采用多项式回归进行计算设置;在干烟气和湿烟气条件下,颗粒物在线监测校准因子不一样,出厂标定的准确度较差。该装置可提供高湿度、低温度和酸性烟气条件下的稳定均匀和可信度高的低浓度颗粒物输出,可用于模拟现场复杂烟气条件,为验证低浓度颗粒物的手工测试及在线监测的准确性提供参考。Abstract: Under ultra-low emission conditions, how to accurately measure low-concentration particulate matter has become a key technical issue. According to the test standards of HJ 836-2017, a low-concentration particle test calibration device with traceable value was developed. The main units and performance evaluation of the calibration device were elaborated, which was also applied in practice. The application results show that the particle concentration of the calibration device increased with the increase of the feed frequency, and the result parallelism of the samples was better. The feeding frequency had a good linear relationship with the particle concentration in dry flue gas and wet flue gas, which showed high credibility and could be used as a calibration device standard curve to calibrate the particle concentration. The polynomial was recommended for the calculation and installation when on-line monitoring was used to calibrate low concentration particulate matter. Under dry and wet flue gas conditions, the calibration factors for on-line monitoring particulate matter were different, and the accuracy of factory calibration was poor. The device could provide stable, uniform and reliable output of low concentration particulate matter under high humidity, low temperature and acid flue gas conditions, which could be used to simulate the complicated flue gas condition in the field, and provide technical reference for the accuracy in verifying the manual testing and on-line monitoring particulate matter with low concentration.
-
抗生素是一种具有抗菌活性的药物[1],可以用于预防和治疗微生物引起的多种疾病[2]。近年来,滥用抗生素带来的生态环境问题已经成为全球性热点关注问题。水环境中残留抗生素的污染分布范围广,具有毒性大、浓度低、难降解、易生物富集等特性[3]。目前降解抗生素的常用方法有物理吸附[4]、化学氧化[5]和生物降解[6]等。其中光催化氧化技术由于有效性、低成本、高稳定性和环境友好性被广泛用于降解抗生素废水[7]。
三氧化钨(WO3)是n型纳米结构半导体,其禁带宽度约为2.6~2.8 eV,制备成本低、绿色环保、具有优异化学稳定性和良好的光催化性能[8-11],因此,被认为是一种有潜力代替TiO2的光催化材料。但由于光生电子和空穴复合率高,其在光催化领域的应用受到了限制,有研究指出构建Z型异质结结构有助于提高WO3的光催化活性[12-15]。
近年来,高分子石墨氮化碳(g-C3N4)被报道为一种新型的无金属光催化剂,其具有2.7 eV的可见光响应窄带隙[16]。g-C3N4制备简单、具有优异的吸附性能和稳定的化学性质,常被用作载体材料。苏跃涵等[17]制备出二维超薄g-C3N4,提高了光催化过程对于恩诺沙星的降解。YU等[18]使用微波加热法制备出金字塔状g-C3N4阵列,其具有较大的比表面积,光生载流子分离效率高,表现出优异的光催化活性,对罗丹明B的脱色率高达99.5%。有研究表明,g-C3N4/WO3异质结材料具有良好的光催化性能[19-20],采用球磨法合成的g-C3N4/WO3具有较高的比表面积,导致光生载流子在可见光下分离和迁移增强,且对罗丹明B的光催化活性明显增强。然而目前将g-C3N4与WO3进行复合并用于降解四环素类抗生素的研究较少,对于g-C3N4/WO3光催化降解抗生素机理的研究较欠缺。
本研究通过原位水热法制备出g-C3N4/WO3复合光催化材料。分析了不同g-C3N4含量的g-C3N4/WO3复合材料的形貌结构和光电性能,并评价了其对土霉素溶液的光催化降解性能和稳定性。最后通过自由基淬灭实验探寻g-C3N4/WO3光催化降解机理。本研究制备的具有高效光生载流子分离、优异氧化还原能力和高吸附能力的Z型异质结光催化剂,对抗生素的去除具有一定的应用价值,可为光催化氧化技术处理抗生素废水提供参考。
1. 材料与方法
1.1 g-C3N4/WO3复合材料的制备
首先采用热缩聚法合成层状g-C3N4。将装有尿素的氧化铝坩埚放入马弗炉中550 ℃下煅烧4 h,自然冷却至室温后收集黄色固体,用蒸馏水和乙醇洗涤3次后在60 ℃下烘干研磨备用。
以二水钨酸钠化合物作为前驱体通过水热反应制备g-C3N4/WO3复合材料。先称取3.30 g Na2WO4·2H2O和一定量的NaCl结构导向剂溶解于40 mL去离子水中,均匀揽拌20 min至原料完全溶解,再加入不同质量(0.3、0.6、1.0、3.0 g)的g-C3N4,搅拌均匀。随后,向溶液中缓慢滴入3 mmol·L−1盐酸溶液同时不断搅拌以调节体系pH至2.0,形成有黄色沉淀的悬浮液。持续揽拌1 h后转移到容量为100 mL的不锈钢高压反应釜中密封并在160 ℃的烘箱中加热24 h。自然冷却至室温后将固体产物进行离心,用蒸馏水和乙醇洗涤3次,最后在60 ℃下烘干(根据g-C3N4不同的添加量,分别将样品命名为WG-0.3、WG-0.6、WG-1.0、WG-3.0,其中W代表WO3,G代表g-C3N4,数字代表复合材料中g-C3N4的添加量分别为0.3、0.6、1.0、3.0 g)。
1.2 WO3/g-C3N4复合材料性能测试
采用PANalytical公司的PW3040/60型X射线衍射仪XRD对复合材料进行晶体结构分析;使用ESCLAB250型X射线光电子能谱仪XPS分析复合材料的表面化学组成,不同元素的XPS谱图以C1s结合能284.8 eV为基准进行校正;采用JEOL公司的JSM-7001F型发射扫描电子显微镜SEM,获取复合材料的微观形貌特征和尺寸。
采用日立公司F-4500型荧光分光光度计测得复合材料的光致发光谱图,观察光催化剂被光激发后电子空穴对的复合状态。复合材料的光电化学性能通过电化学工作站在三电极系统中进行测试,包括瞬态光电流和电化学阻抗谱EIS,用于评估载流子的分离和迁移效率。其中,复合材料作为工作电极,Pt电极作为对电极,饱和甘汞电极作为参比电极,电解质溶液为0.5 mol·L−1硫酸钠溶液。工作电极通过如下方法制备:称取10 mg粉末样品分散在1 mL超纯水溶液中,再加入50 uL Nafion乙醇溶液,超声30 min形成悬浮液,然后在ITO玻璃上滴加150 uL悬浮液,室温下晾干进行光电测试。光电测试所用的光源为北京泊菲莱公司所生产的300 W氙灯(型号PLS-SXE300C)。在EIS测试时,电场变化频率围0.1 Hz~100 kHz,电解质溶液为0.5 mol·L−1硫酸钠溶液。采用安捷伦公司CARY300/PE lambda 750S型光谱仪测得复合材料的紫外-可见漫反射光谱UV-Vi并确定光响应范围及吸收强度。
1.3 WO3/g-C3N4复合材料光催化降解OTC实验
实验采用420 nm滤波片滤除小波长光,300 W氙灯作为光源。每组实验加入50 mg复合材料至含有100 mL 20 mg·L−1 OTC溶液的反应器中。先将混合溶液在黑暗条件下搅拌40 min,使OTC在样品上达到吸附平衡。然后开始光照,每隔20 min取样5 mL,经高速离心除去沉淀,取上清液用于测定HitachiU-3500紫外-可见分光光度计在360 nm处的吸光度值,测定OTC浓度。
实际工程应用中,光催化剂的稳定性至关重要,通过将反应后的复合材料对20 mg·L−1 OTC溶液进行光催化降解的重复实验测试其稳定性。每完成1组循环实验后,将复合材料离心、洗涤、过滤和干燥后用于下1组实验。循环实验次数为3次。
1.4 光催化降解机理实验
在光催化降解OTC的过程添加草酸钠(Na2C2O4,10 mmol·L−1)、异丙醇(IPA,10 mmol·L−1)和超氧化物淬灭剂(TEMPOL,10 mmol·L−1),分别作为空穴(h+)、羟基自由基(·OH)和超氧自由基(·O2−)的淬灭剂。将3种淬灭剂分别加入到含有50 mg WG-0.6的100 mL的OTC溶液中,在黑暗条件下持续搅拌40 min,使OTC在样品上达到吸附平衡。开始光照后,每隔20 min取样5 mL经高速离心除去沉淀,取上清液使用HitachU-3500紫外-可见分光光度计测定在360 nm处的吸光度值。
2. 结果与讨论
2.1 形貌与结构分析
XRD被用于表征复合材料的晶体结构,如图1(a)所示,g-C3N4存在由层面结构堆积而形成的位于27.41的(002)晶面,而块体g-C3N4具有的来自芳香体系的特征晶面间堆积的(100)晶面非常微弱,表明g-C3N4已成功分层剥离。对于具有不同g-C3N4量的g-C3N4/WO3复合材料,观察到所有复合材料的WO3的特征衍射峰,与标准粉末衍射卡(JCPDS)no.35-1001相一致,均为六方相WO3[21]。g-C3N4的(002)衍射峰位置与WO3(101)(200)晶面的衍射峰位置接近,因此,不同g-C3N4含量的g-C3N4/WO3复合材料的主要特征衍射峰与原始WO3的特征衍射峰相近。随着g-C3N4质量含量的增加,WO3的相对衍射峰强度逐渐减弱。此外,当g-C3N4的投加量达到3.0 g时,WO3的衍射图样没有被探测到,表明WO3已经被g-C3N4完全覆盖,同时g-C3N4的(001)晶面的衍射峰也消失。以上结果表明层状g-C3N4与WO3纳米粒子成功地复合。
为深入了解g-C3N4、WO3和WG-0.6复合材料表面元素的化学状态,进行XPS测试。XPS全谱图显示WG-0.6复合材料中存在氧、钨、氮和碳元素。O1s、W4f、N1s和C1s的高分辨率光谱如图1(b)所示。对于图1(c)中的O1s,该峰可分解成530.8 eV和532.6 eV的2个峰,分别对应于W-O-W和W-O-H的氧结合物种。如图1(d)所示,在W4f图谱中结合能分别位于35.8 eV和37.9 eV的W4f7/2和W4f5/2峰,表明WG-0.6中的W为W6+的特征。在N1s光谱中,在401.4、400.6和399.3 eV处可识别出3个峰,分别对应C-N-H,N-(C)3和sp2杂化氮(C=N-C),从而证实sp2键石墨氮化碳的存在,如图1(e)所示。如图1(f)所示,C1s的高分辨率光谱可分为2个峰值,分别为285.0 eV对应sp2C-C键和288.5 eV对应含氮芳环中sp2键的碳(N-C=N)[22]。
使用扫描电镜SEM对光催化剂的结构及形貌分析。由图2(a)可见,WO3为大量纳米棒团聚形成的均匀三维花状微球,其单体为长约500~800 nm,直径约为30 nm的纳米棒。由图2(b)可见,g-C3N4则是通过g-C3N4纳米片的聚集而构建的,结构纹理清晰,表现出典型的带褶皱层状结构。由图2(c)可见,较小的WO3纳米棒修饰在大颗粒层状g-C3N4上,分散性及形貌特征与花状微球形的WO3明显不同。可以观察到,其表面没有表现出明显的g-C3N4层状结构,这意味着g-C3N4纳米片被WO3纳米棒均匀覆盖。纳米棒覆盖在纳米片上的堆积结构增加了材料比表面积,从而可提高其对OTC的吸附能力,促进光催化剂与污染物的接触,有利于提高对OTC的降解率。
2.2 光电化学性能研究
测试WO3、g-C3N4和g-C3N4/WO3复合材料的光致发光谱图,结果如图3(a)所示,以确定光生载流子分离的效率。g-C3N4的光致发光光谱在450 nm附近有一强发射峰,这可能与g-C3N4的光生电子和空穴的复合有关。g-C3N4/WO3复合材料的光致发光强度明显低于g-C3N4,g-C3N4/WO3复合材料中光生电子和空穴的复合受到极大的抑制,而WG-0.6的光致发光强度最低,表明适当的g-C3N4/WO3复合比例可形成更有效的光生载流子分离路径。
为了进一步研究g-C3N4/WO3复合材料的异质结对光生电子和空穴分离效率的影响,测试了g-C3N4、WO3和WG-0.6可见光照射下的瞬态光响应电流,如图3(b)所示。在4个关灯周期过程中的光电流密度与照射时间关系曲线。当灯关闭时,光电流密度接近于零,当灯打开时,光电流密度迅速增加并稳定在一定值。结果显示,WG-0.6表现出较强的光电流密度,表明其具有较高的光生载流子分离率,有利于提高其对可见光的活性。
g-C3N4、WO3和WG-0.6的电化学阻抗谱(EIS)也验证了光电流测试结果。电化学阻抗测试中Nyquist曲线中半圆的直径与电荷迁移电阻有关,Nyquist曲线半圆直径越小说明电子迁移阻力越小[23]。图3(c)为g-C3N4、WO3和WG-0.6的电化学阻抗谱图。相比其他2种材料,WG-0.6的圆弧半径更小,表明电子转移阻力更低,光生载流子的分离更迅速。
紫外-可见漫反射光谱显示,g-C3N4、WO3和g-C3N4/WO3复合材料均在可见光区有典型的半导体吸收。如图3(d)所示,在450 nm附近观察到WO3的吸收边缘,与其他学者研究一致[24]。g-C3N4在约430 nm处显示出吸收边缘。相比于g-C3N4与WO3,WG-0.6在可见光区域表现出较高的吸收强度,且吸收边带有明显的红移。由此可见,通过在WO3上负载g-C3N4改变了原材料的能带结构,从而可增强其对可见光的吸收响应。
根据Tauc-Plot曲线,如图3(e)所示估算光催化剂的带隙,得到g-C3N4、WO3和WG-0.6的带隙分别为2.73、2.65和2.57 eV。综上所述,g-C3N4和WO3构建的Z型异质结结构有利于促进光生载流子的分离。
2.3 光催化降解土霉素效果
通过光催化降解土霉素实验来研究不同光催化材料的活性。如图4(a)所示,暗反应阶段显示各光催化材料都具有较好的吸附能力。当g-C3N4的添加量为0.6 g时,g-C3N4/WO3复合材料的光催化活性最好。随着g-C3N4添加量从0增加到0.6 g,g-C3N4/WO3的光催化活性增强。当g-C3N4含量超过0.6 g时,g-C3N4/WO3的光催化活性下降。结果表明,g-C3N4的含量对于g-C3N4/WO3复合材料的活性有很大影响,其中g-C3N4的最佳添加量为0.6 g。当g-C3N4的添加量高于0.6 g时,WO3的量不足以在g-C3N4和WO3之间构建有效的异质结来分离和转移光生电子空穴对。当g-C3N4的含量过小时,WO3的含量过高导致复合材料的WO3壳变厚,外层的WO3远离g-C3N4,电荷分离会更低效,光生电子和空穴在移动过程中更容易复合,会降低光催化降解率。
为评价g-C3N4/WO3复合光催化剂的稳定性和重复使用性,在相同条件下用WG-0.6光催化降解OTC 3次,结果如图4(b)所示。OTC经3次光催化降解循环后,WG-0.6的光催化性能略有下降。3次循环实验后,OTC的光催化降解率在120 min内达到77%,表明g-C3N4/WO3复合材料具有良好的光催化稳定性。活性减弱的主要原因是催化剂在循环过程中有所损失。
2.4 光催化降解机理
为研究WG-0.6光催化氧化过程中的主要活性物种,进行自由基淬灭实验。如图5(a)所示,光照120 min后,空白对照组和加入Na2C2O4(h+淬灭剂)、TEMPOL(·O2−淬灭剂)、IPA(·OH淬灭剂)后对OTC的光降解率分别为86%、30.2%、66.9%、74.7%,说明h+、·O2−和·OH共同参与g-C3N4/WO3光催化降解OTC反应。其中加入Na2C2O4光催化降解率下降高达55.8%,说明h+在g-C3N4/WO3光催化降解OTC中起主要作用。半导体的导带位置EVB和价带位置ECB可根据经验式(1)~(2)计算[25]。
EVB=X−Ee+0.5Eg (1) ECB=EVB−Eg (2) 式中:X、Ee和Eg分别表示半导体的绝对电负性、自由能和带隙能量。WO3和g-C3N4的X分别为6.59 eV和4.67 eV。Ee大约为4.5 eV,WO3和g-C3N4的Eg分别为2.65 eV和2.73 eV。因此,WO3和g-C3N4的EVB计算分别为3.41 eV和1.53 eV,ECB计算分别为0.76 eV和−1.2 eV。如图5(b)所示,在可见光照射下,g-C3N4和WO3产生光生电子空穴对。因为g-C3N4的ECB比E0(O2/·O2−)=0.046 V更低,g-C3N4导带上的电子可以将溶解的O2还原成·O2−。因为WO3的EVB比E0(·OH/H2O)=2.38 V更高,WO3价带上的空穴可以与水反应生成·OH。WO3导带上的电子开始迁移并与g-C3N4的价带上的空穴复合。最后,OTC在h+、·O2−和·OH的共同作用下被降解。
3. 结论
1)通过原位一步水热法成功合成了g-C3N4/WO3异质结材料。WO3纳米棒均匀地负载在层状的g-C3N4上,形成g-C3N4/WO3异质结结构,光生电子和空穴复合率降低,光吸收范围和吸收强度增强。
2) WG-0.6在可见光照射120 min后OTC降解率高达86%,并且在循环使用3次后仍具有较好催化活性,表现出较高的稳定性。
3) h+、·O2−和·OH共同参与g-C3N4/WO3光催化降解OTC反应,其中h+起主要作用。
-
表 1 给料发生装置的给料量和给料稳定均匀性
Table 1. Feed quantity, stability and uniformity of the feeding device
给料频率/Hz 给料量/(g·h−1) 给料稳定均匀性/% 12 1.9 6.9 20 3.3 5.5 30 4.8 7.9 40 6.9 6.9 表 2 干烟气下颗粒物浓度
Table 2. Particle concentration under dry flue gas condition
给料频率/Hz 烟气温度/℃ 烟气湿度/% SO3浓度/(mg·m−3) 烟气流量/(m3·h−1) 实测颗粒物浓度/(mg·m−3) 样品平行性/% 全程序空白样/(mg·m−3) 在线监测颗粒物浓度1)/(mg·m−3) 13 90 5.37 4.86 563 5.30 4.73 0.31 4.23 28 90 5.40 4.92 556 11.75 6.75 0.46 10.43 40 90 5.37 4.43 567 15.88 4.23 0.09 15.03 50 90 5.30 4.91 557 19.18 4.49 0.40 15.80 注:1)颗粒物在线监测校准因子按y=3.5x−0.5设置。 表 3 湿烟气下颗粒物浓度
Table 3. Particle concentration under wet flue gas condition
给料频率/Hz 烟气温度/℃ 烟气湿度/% SO3浓度/(mg·m−3) 烟气流量/(m3·h−1) 实测颗粒物浓度/(mg·m−3) 样品平行性/% 全程序空白样/(mg·m−3) 在线监测颗粒物浓度1)/(mg·m−3) 13 50 13.80 6.15 445 4.72 0.03 0.04 5.72 28 50 13.70 6.82 441 5.63 1.67 0.17 8.89 40 50 13.80 6.09 449 8.45 3.84 0.06 12.61 50 50 13.50 6.59 445 10.41 2.03 0.06 15.97 注:1)颗粒物在线监测校准因子按y=3.5x−0.5设置。 -
[1] 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015. [2] 崔云寿. 烟气浊度在线监测的校准[J]. 电力科技与环保, 2001, 17(4): 43-45. doi: 10.3969/j.issn.1674-8069.2001.04.013 [3] 纵宁生, 张晏, 陈书建. 烟气浊度在线监测仪校准中应注意的几个问题[J]. 电力科技与环保, 2003, 19(3): 57-59. doi: 10.3969/j.issn.1674-8069.2003.03.019 [4] 环境保护部. 固定污染源废气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法: HJ 76-2017[S]. 北京: 中国环境科学出版社, 2017. [5] BUTTERFIELD D, QUINCEY P. Measurement science issues relating to PM10 and PM2.5 airborne particles[EB/OL]. [2018-10-10]. http://publications.npl.co.uk/npl_web/pdf/as15.pdf, 2007. [6] 梁云平. 固定源低浓度颗粒物监测技术现状与思考[J]. 中国环境监测, 2013, 29(5): 161-164. doi: 10.3969/j.issn.1002-6002.2013.05.034 [7] 刘运席, 陈旭, 杨复沫, 等. 新型多级冲击采样器切割粒径的标准粒子实验分析[J]. 环境工程学报, 2006, 7(5): 138-141. doi: 10.3969/j.issn.1673-9108.2006.05.032 [8] WANG X, CHANCELLOR G, EVENSTAD J, et al. A novel optical instrument for estimating size segregated aerosol mass concentration in real time[J]. Aerosol Science and Technology, 2009, 43(9): 939-950. doi: 10.1080/02786820903045141 [9] HELLERZEISLER S F, ONDOV J M, ZEISLER R. Collection and characterization of a bulk PM2.5 air particulate matter material for use in reference materials[J]. Biological Trace Element Research, 1999, 71-72: 195-202. doi: 10.1007/BF02784205 [10] 刘俊杰, 张文阁. 可吸入颗粒物采样器准确性计量检测方法的设计及研究[J]. 中国粉体技术, 2006, 12(5): 5-8. doi: 10.3969/j.issn.1008-5548.2006.05.002 [11] 吴芳. 颗粒物发生装置与检定系统研究[D]. 杭州: 浙江大学, 2015. [12] ISO. Stationary source emissions-determination of mass concentration of particulate matter(dust) at low concentrations-manual gravimetric method: ISO12141-2002[S]. BSI Standards Publication, 2002. [13] ASTM. Standard test method for determination of mass concentration of particulate matter from stationary sources at low concentrations(manual grvimetric method): ASTM D 6331-2014[S]. American Society for Testing and Materials, 2014. [14] BS EN. Stationary source emissions. Determination of low range mass concentration dust. Manual gravimetric method: BS EN 13284-1-2017[S]. BSI Standards Publication, 2017. [15] 环境保护部. 固定污染源废气低浓度颗粒物的测定重量法: HJ 836-2017[S]. 北京: 中国环境科学出版社, 2017. [16] 郭俊, 杨丁, 叶兴联, 等. 用于标定低浓度颗粒物测试方法准确性的测试校准装置: ZL201721869892.4[P]. 2017-12-27. [17] 李兴华, 段雷, 郝吉明, 等. 固定燃烧源颗粒物稀释采样系统的研制与应用[J]. 环境工程学报, 2008, 28(3): 458-463. [18] AHLVIK P, NTZIACHRISTOS L, KESKINEN J, et al. Real time measurements of diesel particle size distribution with an electrical low presser impactor: NO 980410[R]. Washington DC: SAE International, 1998: 10-20. [19] 国家环境保护局. 固定污染源排气中颗粒物测定与气态污染物采样方法: GB/T 16157-1996[S]. 北京: 中国环境科学出版社, 1996. [20] 杨丁, 陈威祥, 郑芳, 等. 一种三氧化硫采样测试系统的校验方法和装置: ZL201410401789.1[P]. 2014-08-14. [21] 中华人民共和国国家质量监督检验检疫总局. 燃煤烟气脱硫设备性能测试方法: GB/T 21508-2008[S]. 北京: 中国环境科学出版社, 2008. [22] EPA. Determination of sulfuric acid mist and sulfur dioxide emissions from stationary sources. EPA Method 8-1990[S]. U. S. Environmental Protection Agency, 1990. [23] 国家环境保护总局. 水质硫酸盐的测定 铬酸钡分光光度法(试行): HJ/T 342-2007[S]. 北京: 中国环境科学出版社, 2007. [24] WILLIAM E F, PETER M W, JOHN P G, et al. Identification of (and responses to) potential effects of SCR and wet scrubbers on submicron particulate emissions and plume characteristics[R]. Alabama: Environmental Protection Agency, 2004: 1-81. [25] CHENG H H. Field comparison of real-time PM2.5 readings from a beta gauge monitor and a light scattering method[J]. Aerosol and Air Quality Research, 2007, 7(2): 239-250. doi: 10.4209/aaqr.2007.01.0002 [26] JUERGEN K, INGO S, KLAUS S. Scattered light range of view measurement apparatus: 7414703 B2[P]. 2008-08-19. [27] MAYNARD A D, KENNY L C, BALDWLN P E J. Development of a system to rapidly measure sampler penetration up to 20μm aerodynamic diameter in calm air, using the aerodynamic particle sizer[J]. Journal Aerosol Science, 2016, 30(9): 1215-1226. -