超磁分离污泥与剩余污泥协同水解酸化

刘杰, 赵峰辉, 于德爽, 林甲, 陈光辉, 李传举, 张帆, 王钧. 超磁分离污泥与剩余污泥协同水解酸化[J]. 环境工程学报, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075
引用本文: 刘杰, 赵峰辉, 于德爽, 林甲, 陈光辉, 李传举, 张帆, 王钧. 超磁分离污泥与剩余污泥协同水解酸化[J]. 环境工程学报, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075
LIU Jie, ZHAO Fenghui, YU Deshuang, LIN Jia, CHEN Guanghui, LI Chuanju, ZHANG Fan, WANG Jun. Synergistic hydrolysis and acidification of ReCoMag sludge and excess sludge[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075
Citation: LIU Jie, ZHAO Fenghui, YU Deshuang, LIN Jia, CHEN Guanghui, LI Chuanju, ZHANG Fan, WANG Jun. Synergistic hydrolysis and acidification of ReCoMag sludge and excess sludge[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075

超磁分离污泥与剩余污泥协同水解酸化

    作者简介: 刘杰(1980—),女,博士,工程师。研究方向:水污染治理。E-mail:liujie@capitalwater.cn
    通讯作者: 刘杰, E-mail: liujie@capitalwater.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2017ZX07102-003);国家自然科学基金资助项目(51708311,51478229);山东省自然科学基金资助项目(ZR2017BEE076)
  • 中图分类号: X705

Synergistic hydrolysis and acidification of ReCoMag sludge and excess sludge

    Corresponding author: LIU Jie, liujie@capitalwater.cn
  • 摘要: 以超磁分离污泥作为研究对象,用2种不同的剩余污泥作为接种污泥,维持温度在30 ℃,探究了剩余污泥对超磁分离污泥厌氧水解酸化产物及产率的影响。结果表明:随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加;接种剩余污泥量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并会促进丙酸的累积;混合污泥较之于超磁分离和剩余污泥具有快速、高效的产酸优势,且随着剩余污泥接种量的增加,加快了水解酸化的速率并且加深了酸化的程度,但会延长其达到最大值的时间。污泥产酸发酵获得内碳源的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,这种伴随现象更明显。对比2种剩余污泥(W1、W2)发现,W1作为接种污泥时,并没有明显的P元素的释放;当W2作为接种污泥时,伴随着比较明显的P元素的释放。综合考虑剩余污泥对于超磁分离污泥水解酸化效果的影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。
  • 多杀菌素是一种发酵产生的无公害农药[1],属于农用抗生素,因其杀虫效率高,在农业上的应用前景广阔[2]。多杀菌素菌渣是抗生素发酵提取后残留菌丝体和培养基的混合物,若直接进入环境可能造成潜在环境危害。因此,多杀菌素菌渣在2008年被列入中国的危险废物管理清单。考虑到菌渣有机物含量丰富[3],有效地处理多杀菌素菌渣以实现无害化和资源化具有巨大潜力。

    抗生素发酵菌渣无害化方法很多,包括微波分解[4-5]、热水解[6]、高级氧化工艺[7]、厌氧堆肥[8]和好氧堆肥[9],其中好氧堆肥处理以其低成本、技术成熟和可推广性受到企业的青睐。LIU et al[10]将庆大霉素残留物和洛伐他汀发酵残留物混合堆肥,实现了庆大霉素最大降解率96.7%。YANG et al[11]将肉鸡粪便堆肥42 d,去除粪便中75.4%的诺氟沙星。因此,抗生素残留物的肥料化是一个很有前景的资源利用途径。目前,暂无关于多杀菌素菌渣无害化和资源化的相关研究。

    本文通过好氧发酵对多杀菌素菌渣进行无害化与稳定化处理,系统研究其堆肥化效能。通过土壤模拟试验,从土壤中多杀菌素残留降、土壤理化性质及微生物活性与多样性等多层面分析多杀菌素菌渣的肥料化应用效果,以期为多杀菌素菌渣的无害化与资源化提供理论与技术支持。

    实验用多杀菌素菌渣取自山东省某生物制药公司,经脱水处理,含水率(5.61±0.71)%。菌渣样品采用已消毒的塑料桶收集,并在运回实验室后立刻放置于4 ℃冰箱内冷藏储存。实验用土壤取自江苏省某农场纯天然田园土。在进行土壤模拟实验前,已将土壤阴干14 d,并过2 mm筛网以去除石块和植物根系。实验用菌渣和土壤的理化性质,见表1表2

    表 1  多杀菌素菌渣的理化性质
    Table 1.  Physicochemical properties of SFR
    参数数值
    pH 7.93±0.02
    含水率/% 5.61±0.71
    有机质/% 41.52±3.15
    多杀菌素A/ mg·kg−1 2.19×103±238
    多杀菌素D/ mg·kg−1 2.89×102±196
    P/%(by P2O5 1.02±0.09
    K/%(by K2O) 0.25±0.05
    As/mg·kg−1 0.41±0.04
    Cd/mg·kg−1 0.048±0.001
    Cr/mg·kg−1 48.61±0.12
    Hg/mg·kg−1 0.39±0.17
    Pb/mg·kg−1 15.47±3.84
    C/N 6.45±0.66
     | Show Table
    DownLoad: CSV

    实验取稻草秸秆作为碳源,控制堆体C/N分别约为15、20、25进行堆肥,控制堆体含水率控制在60%。考虑到多杀菌素菌渣含有的微生物种类较为单一,单独堆肥难达理想效果,故投加约2%的高效菌(即EM菌,属混合菌,含光合菌、乳酸菌、酵母菌等)。同时堆体内投加约5%的腐殖酸,一方面能为堆体提供碳源,另一方面也能减少堆肥过程中的氮素损失。堆体体积约为15 L。机械曝气量为0.4 L/(min·kg),采用间歇式曝气法,曝气2 h,暂停1 h。与此同时,每天进行人工翻堆保证有机质能够被微生物充分利用。堆肥一共42 d,取样日期分别为0,1,2,3,4,6,8,10,14,18,22,32,42 d,每次取样均从堆体内上、中、下以及发酵罐相应截面的中心、四周均匀取样50 g,取出样品装袋标记后立刻放进−20 ℃的冰箱内进行冷冻保存,以备后续指标检测。发酵设备见图1

    图 1  好氧堆肥装置
    Figure 1.  Aerobic composting unit
    表 2  实验土壤的理化性质
    Table 2.  Physicochemical properties of experimental soil
    指标数值
    pH 7.2±0.1
    电导率/μS·cm−1 155.2±2.1
    含水率/% 12.05±0.14
    土壤有机质含量/% 1.6±0.1
    总磷含量/mg·kg−1 15.5±0.1
    总钾含量/mg·kg−1 100.9±0.7
     | Show Table
    DownLoad: CSV

    本研究通过实验室土壤模拟试验法,研究了菌渣有机肥对土壤性能的影响。参考文献[12],本文设置1%、6%、12%的质量比,并另设空白组和1%鲜菌渣投加组进行对比。每组土壤模拟实验使用土壤量约为1 kg,设置3组平行对照,放置于直径17.5 cm、高16 cm的花盆中培养,定期浇水保证土壤湿度约为10%。在0、3、7、12、20、30、42 d取样(约50 g)。每组样品分为2部分,一部分储存于−20 ℃用于检测残留多杀菌素残留量,另一部分储存于4 ℃以检测相关理化性质。

    pH和EC的检测分别参考《土壤检测 第2部分:土壤pH的测定:NY/T 1121.2—2006》和《土壤 电导率的测点 电极法:HJ 802—2016》。堆体三维荧光光谱检测:使用质量比1∶10的超纯水提取土壤样品5 g,在水平振动器中震荡24 h,10 000 r/min离心20 min后过0.45 μm滤膜,用于三维激发发射矩阵(3D-EEMs)荧光光谱分析,检测数据进行拉曼归一化[13]。土壤酶活采用比色法进行测定[14]。利用生物工业微生物测序仪对细菌群落进行16S基因测序。GI的检测参考了《有机肥料:NY/T 525—2021》。

    抗生素残留检验检测方法:(1)流动相为甲醇:1%乙酸铵=7∶3(V/V),流速0.3 mL/min;(2)使用C18柱色谱柱,柱温30 ℃,进样量10 μL;(3)质谱选择采集多级反应监测模式,电喷雾离子源电压4.5 kV,雾化气流流速700 L/h,锥孔气流流速35 L/h;(4)多杀菌素A母离子质荷比(m/z)732.5,子离子质荷比(m/z)142.2;多杀菌素D母离子质荷比(m/z)746.5,子离子质荷比(m/z)142.2。

    预处理方法:称取样品2.0 g(精确至0.01 g)于50 mL离心管中,加入饱和氯化钙溶液10 mL,同时再加入2.0 mL乙酸乙酯,将混合液摇匀后置于多管涡旋仪上以2 000 r/min的转速充分振荡20 min,4 000 r/min离心10 min之后,取1.0 mL乙酸乙酯相液体在氮吹仪上吹干,之后使用1 mL流动相复溶,过0.22 µm滤膜待测。

    温度反映出好氧堆肥中微生物的新陈代谢水平,是判定堆肥成品达到无害化的重要指标。图2可知,3组实验的初始温度基本一致,在0—3 d内从室温快速升至50 ℃左右。在此阶段,水溶性糖类、淀粉类等易降解的可溶性有机物及大分子有机质被微生物利用,并产生热量上的累积。在4—10 d,堆体温度维持在50 ℃以上,嗜热微生物大量繁殖,有效地分解大分子蛋白质、纤维素、木质素等在升温过程难分解的有机物。到了降温期(11—42 d),嗜温性微生物开始进一步分解残余难降解有机物,温度进一步降低至室温。

    图 2  好氧堆肥中堆体温度的变化
    Figure 2.  Variation of pile temperature in aerobic composting

    pH是影响体系中微生物活性和堆肥性能的重要参数,大多数微生物最适宜生长代谢的pH环境为中性或弱碱性[15],pH过高或过低均会影响到堆肥腐熟的进程。图3可知,在堆肥过程中A、B、C 3组的初始pH均为6.8左右,这主要是因为添加物料中含有一定量的腐殖酸,中和了菌渣等物料本身的碱度。在0—3 d内堆体pH迅速上升,大量含氮有机物被微生物利用产生氨气[16]以及小分子有机酸的降解[17]。在10—22 d进入降温期,功能微生物群落发生转变,堆体内有机物被进一步分解,小分子有机酸和部分盐基离子被合成大分子腐殖质(胡敏酸)[18],3组的pH缓慢下降并趋于稳定,这一点与图3中电导率后期呈现下降趋势相吻合。堆肥结束后,3组的pH稳定在堆肥适宜的7.5~8.5[19],EC稳定在<3 000 μS/cm范围内[20]

    图 3  好氧堆肥过程中各组pH和EC变化规律
    Figure 3.  Changes in pH and conductivity of each group during aerobic composting process

    在多杀菌素菌渣好氧堆肥过程中,多杀菌素残留量是评价菌渣无害化水平的重要指标。多杀菌素包含2种成分,即多杀菌素A和多杀菌素D。在C/N为15、20、25条件下,多杀菌素A和D残留量的变化曲线,见图4。反应至22 d时,C/N为15、20、25实验组的多杀菌素A去除率分别为81.71%、87.16%、79.13%,多杀菌素D的降解率分别为84.40%、84.64%、78.59%。其中,B组其内抗生素残留量最快,多杀菌素A 26.30 mg/kg,多杀菌素D 2.73 mg/kg。到42 d时,3组的多杀菌素降解率均达90%以上。另外,图4可知,在0—10 d内,3组多杀菌素去除率均可达70%以上,这表明多杀菌素的降解主要发生在升温期和高温期。以上结果表明,通过堆肥进行多杀菌素的降解是可行的。

    图 4  好氧堆肥过程中多杀菌素A、多杀菌素D的变化规律
    Figure 4.  Change pattern of spinosad A (a) and spinosad D (b) during aerobic composting

    三维荧光光谱(3D-EEMs)可以直观地展示与微生物活动相关的蛋白质类物质的光谱信息及堆肥过程中形成的腐殖质类物质的结构信息。在数据处理过程中,将空白样品数据扣除并进行拉曼归一化处理,见图5。在堆肥过程中Peak Ⅰ(225/370 nm Ex/Em)代表的色氨酸类物质峰荧光强度下降,说明好氧堆肥过程中类蛋白物质逐渐发生降解,到堆肥后期基本降解完全。Peak Ⅱ(275/370 nm Ex/Em)表示堆肥初期就存在溶解性微生物代谢产物,这是因为菌渣是由微生物经发酵作用而产生的,菌渣内会残留一定的微生物代谢产物。Peak Ⅲ和Peak Ⅳ在高温期同时出现,Ex/Em波长分别为275/449和325/424 nm。Peak Ⅲ和Ⅳ均和腐殖酸类物质相关。LV et al[21]在牛粪蚯蚓堆肥过程中的第60 d检测到与腐殖酸相关的320/416 nm Ex/Em波长对的峰值Peak Ⅲ和Peak Ⅳ的出现表明在堆肥过程中产生了腐殖质的积累,标志着堆体不断腐熟,趋于稳定,见表3

    图 5  好氧堆肥过程中C/N=15(A)、C/N=20(B)、C/N=25(C)的三维荧光图谱
    Figure 5.  Three-dimensional fluorescence profiles of A (C/N=15), B (C/N=20) and C (C/N=25) during aerobic composting
    表 3  荧光区域与对应物质类别
    Table 3.  Fluorescence regions and corresponding substance classes
    荧光区域对应物质类别Ex/nmEm/nm
    酪氨酸类200~250250~330
    色氨酸类200~250330~380
    富里酸类200~250380~500
    腐殖酸类250~500380~500
    溶解性微生物代谢产物250~500250~380
     | Show Table
    DownLoad: CSV

    种子发芽指数(GI)综合反映生物性安全,广泛用于堆肥中物料的植物毒性评价,GI受到多种因素的影响,包括残留物浓度、重金属离子浓度等。图6可知,在堆肥初期,3个堆体的GI相对较低,表明植物毒性相对较高。随着时间推进,GI均有所提升,表明植物毒性大幅降低。第42 d C/N=20、25的GI分别为98.29%和90.70%,而C/N=15的GI为82.34%。这一现象的原因可能与C/N=15组含盐量较大有关[22]。总体上,GI在高温期实现较大提升,原因在于在高温阶段,氨气固定和挥发,有机质分解,毒性化合物降解,堆体开始稳定。通常认为好氧堆肥处理GI>80%说明产品无植物毒性且达到腐熟状态,结果表明3组均达到了GI层面的腐熟状态,较为理想。

    图 6  好氧堆肥过程中种子发芽率的变化
    Figure 6.  Changes in seed germination during aerobic composting

    作为一个生物反应过程,微生物群落结构的变化会直接影响堆肥过程中的物质转化以及堆体的稳定性。结合2.1.1至2.1.4节数据分析,我们初步判断B组(C/N=20)堆肥较为理想,并对B组0、6、14、22 d的样品进行16S rRNA高通量测序。Alpha多样性可以反映微生物群落的丰度和多样性。C/N=15、20、25 3组的Alpha指数变化见图7。在整个堆肥过程中,Shannon指数和Shannoneven指数呈上升趋势,Simpson指数呈下降趋势,表明细菌多样性有所提高,同时群落分布均匀度有所提升。而Chao指数先下降后上升,说明群落丰富度先下降后上升。原因可能在于堆肥使用的EM菌种较为复杂,其中存在一些不适于堆肥条件下生存的微生物种类。综合C/N=20组的微生物群落分析,可初步判定其达到理想的堆肥效果。

    图 7  好氧堆肥过程中B组的Alpha指数变化
    Figure 7.  Variation of Alpha index during aerobic composting

    土壤酶作为一类在土壤中广泛存在的酶类物质,能够催化包括有机质分解、养分循环等过程在内的土壤中的化学反应。土壤酶活性可以用来衡量土壤生态系统功能,具有重要的意义和作用[23]。通过分析土壤酶活性的变化可以反映出菌渣肥对土壤生物活动、土壤物质循环以及土壤生物区系的影响,进而明确对土壤肥力的作用效果。将各检测结果以雷达图的形式展示,各组分所占据面积即可表示土壤酶活性的整体水平,见图8。菌渣肥的投加促进了土壤酶活性,反观鲜菌渣,其投加对酶活促进效果较弱。

    图 8  土壤模拟实验中土壤酶活变化
    Figure 8.  Changes of soil enzyme activity in soil simulation experiments

    磷酸酶在有机磷矿化中起着重要作用,其通过水解有机分子中磷酸基团的磷酸酯键来催化磷酸盐的释放,可表征土壤的供磷能力。图8可知,在模拟前期,磷酸酶的活性随着施肥量的增加而增强,这可能是因为前期高浓度菌渣肥对土壤微生物活性有一定的促进作用,导致土壤酶活性升高;在土壤模拟实验中,不同施肥浓度下的磷酸酶活性均高于空白值且,随着施肥浓度的增加而增加。这与菌渣肥中大量有机质和营养物质的供应有关。

    土壤脲酶能促进土壤中有机化合物尿素分子酰胺碳氮键的水解,其产物是植物最重要的土壤速效氮,在氮肥利用和土壤氮素代谢方面有着重要的意义[24]。不同施肥比条件下菌渣肥均显著提高了土壤脲酶的活性,且随着施肥比的提升有进一步的增强。在第12 d时,脲酶活性达到峰值,而后随着含氮有机物的消耗,脲酶活性逐渐降低,并在第30 d后趋于稳定。培养结束后,施加1%、6%、12%菌渣肥土壤的脲酶活性则显著高于菌渣施肥土壤的脲酶活性,表明多杀菌素菌渣肥增强土壤脲酶活性效果优于菌渣效果。

    通过考察多杀菌素在土壤中的降解规律,分析了菌渣肥土壤施用过程中多杀菌素在土壤中的稳定性及累积的可能性。土壤模拟施肥实验过程中各土壤样品中多杀菌素的含量变化,见表4。在鲜菌渣施入土壤后,显著提高了土壤中多杀菌素的含量。随着培养时间的延长,多杀菌素的含量逐渐降低,分别经过12、20、30 d后,鲜菌渣施加比例为1%、6%的土壤中的多杀菌素已低于检测值,表明多杀菌素在土壤中难以稳定存在,可以被有效降解,不存在累积的风险。而在多杀菌素菌渣肥施入土壤后,在各时期的土壤中多杀菌素残留量均远高于菌渣肥组,表明经过无害化处理后,施肥过程中多杀菌素剩余量大大减少。另外,在《食品安全国家标准 食品中农药最大残留限量:GB 2763—2021》中,多杀菌素在坚果和马铃薯中的最大残留量分别为10和70 μg/kg,这也说明了该结果的安全性。

    表 4  多杀菌素A和D在土壤残留变化
    Table 4.  Changes in spinosad residues in soil
    t/dCK1%菌渣肥6%菌渣肥12%菌渣肥1%鲜菌渣
    ADADADADAD
    02.246.7412.531 863.93402.65
    34.007.321 443.80347.38
    72.355.84741.23171.73
    122.683.69725.64156.42
    202.173.16705.47141.42
    302.723.73593.68137.01
    423.42499.0796.44
      注:多杀菌素A检测限:2.0 μg·kg−1;多杀菌素D检测限:1.5 μg·kg−1;“—”表示低于检测限。
     | Show Table
    DownLoad: CSV

    土壤细菌群落结构对土壤理化性质以及物质循环的意义重大:(1)土壤细菌群落结构与土壤养分的循环和分布密切相关。一些细菌可以将氮、磷等元素固定,促进土壤养分循环,为植物的生长提供了必要的物质条件。同时,细菌还可以促进有机质的分解,释放出养分为植物利用。(2)土壤细菌群落结构对土壤结构的稳定作用明显。某些细胞产生的胞外多糖物质能够促进土壤结构的形成和稳定,提高土壤的水分保持能力和抗侵蚀能力。(3)土壤细菌群落结构对植物生长影响重大,除了提供营养物质徐进植物生长之外,细菌还可以产生包括植物生长素在内的生长因子,促进植物生长发育,提升免疫力和抗逆性。

    空白对照组、1%、6%、12%菌渣肥投加组和1%菌渣投加组土壤模拟过程中门水平上相对丰度变化,见图9。在对照组中,变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)占比极大,在42 d占比分别为57.52%和40.09%,而菌渣投加组则相对更加均匀,土壤质量得到明显提升。放线菌(Actinobacteria)、厚壁菌门(Firmicutes)、酸杆菌门(Acidobacteria)的相对丰度有明显的提。另外,1%鲜菌渣投加组相对丰度变化更大,放线菌(Actinobacteria)、厚壁菌门(Firmicutes)相对丰度提升的原因并非因为菌种数量有所上升,而是因为变形菌门(Proteobacteria)等原本在土壤中的占比较大的细菌数量大幅下降所导致的。因此,结合以上分析可以认为下鲜菌渣投加组的土壤细菌群落结构在不同程度上得到了优化,而鲜菌渣的影响结果相反,不利于细菌的生长。

    图 9  土壤模拟实验中phylum门水平上细菌相对丰度变化
    Figure 9.  Changes in relative abundance of bacteria at the phylum level in soil simulation experiments

    本文通过好氧堆肥工艺探究了多杀菌素菌渣的无害化与稳定化的可行性,同时进一步分析了多杀菌素菌渣肥料对土壤性能的影响效果。(1)好氧堆肥结果表明,C/N=20的条件下对多杀菌素进行好氧堆肥处理,堆体pH、EC等理化指标达适宜范围,三维荧光数据表明堆体已达腐熟状态,多杀菌素降解率达90%以上;(2)土壤模拟实验结果表明,土壤酶活水平明显提升,多杀菌素残留低于检测水平,而微生物多样性总体也呈上升趋势。总体而言,好氧堆肥工艺可以有效去除菌渣中的残留多杀菌素,并且制备而成的多杀菌素菌渣肥能够改善土壤肥力。后续仍应进行相关田间种植试验,以进一步探究多杀菌素菌渣无害化处理的可行性。

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of the test device

    图 2  不同比例的剩余污泥对水解程度的影响

    Figure 2.  Effect of different proportions of excess sludge on hydrolysis

    图 3  不同比例的剩余污泥对VFAs的影响

    Figure 3.  Effect of different proportions of excess sludge on VFAs

    图 4  不同比例的剩余污泥对VFAs∶SCOD的影响

    Figure 4.  Effect of different proportions of excess sludge on VFAs∶SCOD

    图 5  VFAs各组分所占百分比

    Figure 5.  Percentage of VFAs components

    图 6  不同比例的剩余污泥对N元素的影响

    Figure 6.  Effect of different proportions of excess sludge on N element

    图 7  不同比例的剩余污泥对P元素的影响

    Figure 7.  Effect of different proportions of excess sludge on P element

    图 8  ΔSCOD/ΔTN随水解时间的变化

    Figure 8.  Variation of ΔSCOD/ΔTN with hydrolysis time

    表 1  4种污泥的主要理化指标

    Table 1.  Main physical and chemical indicators of four types of sludge mg·L−1

    污泥类型 TCOD SCOD SS VSS NH+4-N TN TP
    R1 14 004.3 388.63 16 280 9 980 26.86 35.55 0.97
    W1 13 476.3 32.10 23 900 15 240 0 1.95 1.09
    R2 36 270.3 444.42 32 480 18 350 36.025 48.33 1.74
    W2 25 893.8 208.76 22 980 15 700 17.092 33.24 42.27
    污泥类型 TCOD SCOD SS VSS NH+4-N TN TP
    R1 14 004.3 388.63 16 280 9 980 26.86 35.55 0.97
    W1 13 476.3 32.10 23 900 15 240 0 1.95 1.09
    R2 36 270.3 444.42 32 480 18 350 36.025 48.33 1.74
    W2 25 893.8 208.76 22 980 15 700 17.092 33.24 42.27
    下载: 导出CSV

    表 2  实验设计污泥投加量

    Table 2.  Experimental designed sludge dosages %

    污泥类型 1号 2号 3号 4号 5号 6号 7号
    R1、W1(以体积计) 0 4 8 12 16 20 100
    R1、W1(以VSS计) 0 6.1 12.2 18.3 24.4 30.5 100
    R2、W2(以体积计) 0 8 16 24 32 40 100
    R2、W2(以VSS计) 0 6.8 13.6 20.5 27.4 34.2 100
    污泥类型 1号 2号 3号 4号 5号 6号 7号
    R1、W1(以体积计) 0 4 8 12 16 20 100
    R1、W1(以VSS计) 0 6.1 12.2 18.3 24.4 30.5 100
    R2、W2(以体积计) 0 8 16 24 32 40 100
    R2、W2(以VSS计) 0 6.8 13.6 20.5 27.4 34.2 100
    下载: 导出CSV
  • [1] 刘绍根, 徐锐, 胡星梅. 污泥性质对污泥水解酸化效果的影响[J]. 环境工程学报, 2015, 9(2): 572-578. doi: 10.12030/j.cjee.20150212
    [2] 苏高强, 王淑莹, 郑冰玉, 等. 温度和污泥浓度对碱性条件下剩余污泥水解酸化的影响[J]. 环境工程学报, 2013, 7(4): 1231-1236.
    [3] 陈远炎, 郭苗芬. 磁絮凝的原理及其工业应用[J]. 有色金属(选矿部分), 1988(1): 42-47.
    [4] 李永泰. 永磁分离滚筒设计制造中的几个问题[J]. 铸造机械, 1973(5): 26-34.
    [5] DUANG D C, NATHAPORN A, KITIPHATMONTREE M. The effects of magnetic field on the removal of organic compounds and metals by coagulation and flocculation[J]. Physica Status Solidi, 2006, 3(9): 3201-3205.
    [6] 何秋杭, 金正宇, 宫徽, 等. 基于强化磁分离的市政污水碳源浓缩技术研究[J]. 水处理技术, 2018, 44(10): 114-118.
    [7] 李军, 任健, 王洪臣, 等. 初沉污泥水解酸化试验研究[J]. 北京工业大学学报, 2008, 12(12): 1304-1308. doi: 10.11936/bjutxb2008121304
    [8] 李斯施, 刘东方, 赵乐军, 等. 臭氧预处理促进剩余污泥的水解酸化[J]. 环境工程学报, 2015, 9(7): 3426-3430. doi: 10.12030/j.cjee.20150757
    [9] 苏高强, 彭永臻, 汪传新, 等. 污泥类型对污泥碱性发酵的影响[J]. 化工学报, 2011, 12(12): 3492-3497. doi: 10.3969/j.issn.0438-1157.2011.12.028
    [10] 赵峰辉, 于德爽, 刘杰, 等. 温度对超磁分离初沉污泥水解酸化影响的研究[J]. 环境工程学报, 2019, 13(6): 1374-1381. doi: 10.12030/j.cjee.201812016
    [11] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [12] 苏高强, 汪传新, 郑冰玉, 等. pH对混合污泥水解酸化的影响[J]. 环境工程学报, 2012, 12(12): 4257-4262.
    [13] 雷彩虹, 孙颖, 杨英. 絮凝剂聚丙烯酰胺对高固体污泥厌氧消化的影响[J]. 工业安全与环保, 2018, 44(1): 24-26. doi: 10.3969/j.issn.1001-425X.2018.01.007
    [14] 高永青, 张晶宇, 彭永臻, 等. pH值对剩余污泥水解酸化溶出物的影响[J]. 北京工业大学学报, 2011, 37(1): 139-145. doi: 10.11936/bjutxb2011010139
    [15] YUAN Q, SPARLING R, OLESZKIEWICZ J A. VFA generation from waste activated sludge: Effect of temperature and mixing[J]. Chemosphere, 2011, 83(4): 603-607.
    [16] 刑光熹, 曹亚烃. 太湖地区水体氮的污染源和反硝化[J]. 中国科学(B辑), 2001, 31(2): 130-136.
    [17] ELEFSINIOTIS P, WAREHAM D G, SMITN M O. Use of volatile fatty acids from an acid-phase digester for denitrification[J]. Journal of Biotechnlogy, 2004, 114(3): 289-297. doi: 10.1016/j.jbiotec.2004.02.016
    [18] CHEN Y G, ANDREW A R, TERRENCE M. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research, 2004, 38(1): 27-36. doi: 10.1016/j.watres.2003.08.025
    [19] 吴昌生, 徐锐, 刘绍根, 等. 温度对碱预处理絮凝污泥水解酸化影响研究[J]. 安徽建筑大学学报, 2016, 24(1): 59-64. doi: 10.11921/j.issn.2095-8382.20160113
    [20] FENG L, WANG H, CHEN Y, et al. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flowreactors[J]. Bioresource Technology, 2009, 100(1): 44-49. doi: 10.1016/j.biortech.2008.05.028
    [21] 郭京京. 强化污水处理厂剩余污泥微氧水解酸化的研究[D]. 北京: 北京工业大学, 2017.
    [22] 温沁雪, 薛莲, 陈志强. 污泥浓度对剩余污泥水解酸化过程的影响[J]. 中国给水排水, 2012, 28(21): 103-106. doi: 10.3969/j.issn.1000-4602.2012.21.030
  • 期刊类型引用(1)

    1. 倪蓉,姜元承,李海燕,王茜,张长禄,吴佳萍,谢琤琤,张明顺,戚菁,胡承志. 预氯化输水对表面停留性有机物及混凝除藻的影响. 环境工程学报. 2024(01): 130-138 . 本站查看

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 12.4 %DOWNLOAD: 12.4 %HTML全文: 79.2 %HTML全文: 79.2 %摘要: 8.4 %摘要: 8.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %XX: 0.2 %XX: 0.2 %衡阳: 0.2 %衡阳: 0.2 %其他XX衡阳Highcharts.com
图( 8) 表( 2)
计量
  • 文章访问数:  4293
  • HTML全文浏览数:  4293
  • PDF下载数:  63
  • 施引文献:  2
出版历程
  • 收稿日期:  2019-02-21
  • 录用日期:  2019-05-14
  • 刊出日期:  2020-01-01
刘杰, 赵峰辉, 于德爽, 林甲, 陈光辉, 李传举, 张帆, 王钧. 超磁分离污泥与剩余污泥协同水解酸化[J]. 环境工程学报, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075
引用本文: 刘杰, 赵峰辉, 于德爽, 林甲, 陈光辉, 李传举, 张帆, 王钧. 超磁分离污泥与剩余污泥协同水解酸化[J]. 环境工程学报, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075
LIU Jie, ZHAO Fenghui, YU Deshuang, LIN Jia, CHEN Guanghui, LI Chuanju, ZHANG Fan, WANG Jun. Synergistic hydrolysis and acidification of ReCoMag sludge and excess sludge[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075
Citation: LIU Jie, ZHAO Fenghui, YU Deshuang, LIN Jia, CHEN Guanghui, LI Chuanju, ZHANG Fan, WANG Jun. Synergistic hydrolysis and acidification of ReCoMag sludge and excess sludge[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 86-95. doi: 10.12030/j.cjee.201902075

超磁分离污泥与剩余污泥协同水解酸化

    通讯作者: 刘杰, E-mail: liujie@capitalwater.cn
    作者简介: 刘杰(1980—),女,博士,工程师。研究方向:水污染治理。E-mail:liujie@capitalwater.cn
  • 1. 北京首创股份有限公司,北京 100044
  • 2. 青岛大学环境科学与工程学院,青岛 266071
基金项目:
国家水体污染控制与治理科技重大专项(2017ZX07102-003);国家自然科学基金资助项目(51708311,51478229);山东省自然科学基金资助项目(ZR2017BEE076)

摘要: 以超磁分离污泥作为研究对象,用2种不同的剩余污泥作为接种污泥,维持温度在30 ℃,探究了剩余污泥对超磁分离污泥厌氧水解酸化产物及产率的影响。结果表明:随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加;接种剩余污泥量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并会促进丙酸的累积;混合污泥较之于超磁分离和剩余污泥具有快速、高效的产酸优势,且随着剩余污泥接种量的增加,加快了水解酸化的速率并且加深了酸化的程度,但会延长其达到最大值的时间。污泥产酸发酵获得内碳源的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,这种伴随现象更明显。对比2种剩余污泥(W1、W2)发现,W1作为接种污泥时,并没有明显的P元素的释放;当W2作为接种污泥时,伴随着比较明显的P元素的释放。综合考虑剩余污泥对于超磁分离污泥水解酸化效果的影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。

English Abstract

  • 城市污水处理厂进水碳源不足是一个普遍存在的问题,导致后续脱氮效率较低。目前,解决该问题的主要方法之一是外加部分碳源,如甲醇和乙酸钠等。添加的部分碳源还有毒性,而且药剂成本较高。如何以较低的成本提高脱氮效率是低碳氮比污水生物脱氮亟待解决的问题,因此,寻找合适的外加碳源成为目前关注的热点[1]。水解酸化是把污泥中的大分子有机物分解成小分子有机物,得到挥发性脂肪酸(VFAs)的过程。而VFAs中的乙酸和丙酸是增强生物脱氮的有利碳源,其反硝化速率比甲醇和乙醇更高[2]

    超磁分离水体净化工艺是近年来发展起来的一种物化水处理技术。磁分离技术借助外加磁场强化固液分离效率,较生物吸附技术处理效率高,较膜分离技术能耗低,能弥补现有碳源浓缩技术各自的劣势,满足节能降耗需求[3-5]。其能快速有效地去除生活污水中的大部分有机物,COD分离去除率约为75%,SCOD的分离去除率超过60%,TP去除率接近90%[6]。本研究所采用的超磁分离设备的进水为生化处理前的污水,所以超磁分离污泥类似于初沉污泥。而初沉污泥中含有大量的有机物,是很好的发酵底物[7]。目前,国内外有许多关于初沉污泥[7]、剩余污泥[8]以及两者混合污泥[9]的水解产酸的研究报道。但是对于超磁分离污泥与剩余污泥协同水解酸化的相关研究,还很少见。现有研究[10]发现,在不调控pH,温度为30 ℃的反应条件下,既可以为生化系统提供更多的SCOD,又可以避免系统过高的N、P负荷。

    本研究在维持温度30 ℃,不调控pH条件下,选取了2种超磁分离后污泥(R1、R2)、剩余污泥(W1、W2),设置R1、W1为一组,设置R2、W2为另一组,进行了超磁分离污泥、混合污泥以及剩余污泥3种不同类型污泥水解酸化的对比研究,其中混合污泥为超磁分离污泥以及剩余污泥按不同比例混合后的污泥(5组)。探究了污泥性质的差异对水解酸化及酸化产物组分的影响,为污水厂通过污泥产酸发酵获得碳源进行污泥种类的选择提供参考。

    • R1、W1分别为污水处理厂停产前超磁分离污泥以及含水率为80%的脱水污泥;R2、W2分别为污水处理厂停产后超磁分离污泥以及某强化生物除磷(EBPR)中试工艺的二沉池中的剩余污泥。其中R1所用污水取自东坝污水处理厂细格栅之后,R2所用污水取自污水处理厂进水井(粗格栅之前)。实验前,将W1用蒸馏水稀释,将W2在4 ℃下浓缩24 h,然后排出上清液。以期达到与超磁分离污泥相似的挥发性固体(VSS)。实验前,取1 d内不同时段的污泥,混合后接种。4种污泥特征(至少经过3次重复测定取平均值)结果见表1。R1、W1、R2和W2的初始pH为7.55、7.68、6.85和6.91,含水率为0.984 7、0.982 2、0.968 3和0.977 2。投加比例见表2,1~7号投加的比例以剩余污泥的体积和VSS计,其中1号为超磁分离污泥,7号为剩余污泥,2~6号为投加了不同比例的剩余污泥。

    • 超磁分离污泥水解酸化的批次实验在恒温培养箱中进行,实验装置如图1所示,采用7个2 L的反应器,接种污泥体积为1.8 L。实验开始前,曝氮气3 min,以驱除反应器中的氧气,然后使用橡胶塞密封,橡胶塞上开2个孔,分别是氮气袋,以及取样口,反应器采用磁力搅拌器搅拌。

    • 本研究在首创东坝污水处理厂现场进行,每天早晚各取反应器的出水进行相关指标的测定。由于水解消化后污泥脱水性能变差,因此,各指标测定前须对样品进行预处理。预处理主要包括离心及过滤2个过程。离心采用100 mL的离心管,设置转速为5 000 r·min−1,离心45 min。然后将上清液用0.45 μm的微孔滤膜过滤,去除上清液中小颗粒物质,避免阻塞测定仪器并确保测量精度。

      常规分析参考文献中的方法[11],其中TCOD、SCOD采用重铬酸钾法,TN采用过硫酸钾氧化紫外分光光度法,TP采用过硫酸钾氧化钼酸铵分光光度法,SOP采用钼酸铵分光光度法,NH+4-N采用纳氏试剂光度法,VSS和SS采用重量法。pH采用HACH HQ40d测定仪测定。VFAs采用瑞士万通883型离子色谱仪测定。

    • 污泥水解情况可以使用SCOD[9]来表示。2种剩余污泥在不同接种比例下对超磁分离污泥水解酸化的影响如图2所示。由图2(a)图2(b)可见,2种超磁分离污泥(R1、R2)自然水解产生的SCOD均在第4天达到峰值,分别为1 118.68 mg·L−1和2 063.50 mg·L−1;虽然两者水解得到的SCOD不同,但是从图2(c)可以看出,其SCOD/VSS的变化规律是一致的,最高值均出现在第4天,为110 mg·g−1。说明2种超磁分离后的污泥水解产酸的效果基本是一致的。

      剩余污泥(W1、W2)自然水解产生的SCOD均在第7天达到峰值,分别为1 599.88 mg·L−1和4 954.80 mg·L−1。由图2(a)可以看出,2号和3号的SCOD最大值均出现在第4天,分别为1 196.80 mg·L−1和1 248.40 mg·L−1;4号的SCOD最大值出现在第5天,为1 262.57 mg·L−1;5号、6号和7号的SCOD最大值均出现在第7天,分别为1 443.68、1 493.96和1 599.88 mg·L−1。随着剩余污泥比例的增加,不仅可以增加SCOD的析出量,还可以延长其达到最大值的时间;与R1、W1水解不同的是,由图2(b)可以看出,2~7号的SCOD最大值均在第7天,并且其随着接种比例的增加而增大,分别为2 435.30、2 622.70、2 668.80、3 151.00、3 423.20和4 954.80 mg·L−1。这与苏高强等[12]的研究结果相似。

      W1、W2产SCOD出现如此大的差异,推测其原因是:一方面,W1为脱完水后的污泥,其中聚丙烯酰胺(PAM)的存在增加了分子间的团聚性,进而减少了发酵微生物与消化基质的接触[13],从而减少了SCOD的产量;另一方面,W2为某稳定运行的EBPR系统,污泥中微生物的含量较W1多,水解酸化菌通过对污泥中微生物细胞壁破坏从而促使细胞内容物释放[14]

    • 水解酸化过程中产生的VFAs主要是由发酵产酸菌对可溶性有机物的吸收转化。实验发现,3种污泥产生的酸主要是乙酸、丙酸、正丁酸、异丁酸和正戊酸,将其乘以相应的系数换算成COD后相加,其和为挥发性有机酸量[8]。实验选取R1、W1进行分析,污泥水解过程中VFAs的生成情况如图3所示。由图3可以看出,VFAs的变化规律与SCOD是一致的,均呈先增大后减少的趋势。1号(超磁分离污泥)自然水解VFAs的峰值出现在第4天,峰值为353.54 mg·L−1,与SCOD的变化趋势相同的是,混合污泥2~6号分别在第4、4、5、7和7天,水解液中产生的VFAs达到最大值,分别为399.98、436.52、449.03、520.05和556.97 mg·L−1,7号(剩余污泥)自然水解产生的VFAs的峰值出现在第7天,为477.52 mg·L−1。从图3中还来可以看出,接种剩余污泥能提高VFAs的产生量,并且随着接种剩余污泥的增加,也能延长其VFAs达到峰值的时间。

      在初始阶段,污泥中易降解颗粒物质首先被水解酸化菌转化为VFAs,随着反应的进行,易降解物质被消耗完全,水解酸化菌开始利用较难降解的颗粒及大分子物质,这样导致VFAs的产速变慢[15]。由图3可以看出:混合污泥与超磁分离、剩余污泥比较,更易酸化产VFAs。这是因为一方面混合污泥吸附大量胶体和易降解有机物,水解酸化菌能被有效利用;另一方面,超磁分离污泥中虽然有机物含量很高,但多数属于慢速降解碳源;剩余污泥中的有机物主要存在其细胞内和胞外聚合物中,不经过有效预处理水解酸化菌难以利用。

    • SCOD向VFAs的转化率能直接用来反映污泥的产酸效果[16]。实验选取R1、W1进行分析,由图4可以看出,在前4 d,VFAs∶SCOD均逐渐变大,混合污泥VFAs∶SCOD比值一直领先超磁分离、剩余污泥。1~7号的VFAs∶SCOD分别在第4、4、4、5、7、7和7天达到最大值分别为0.316、0.334、0.350、0.360、0.361、0.373和0.299。因此,仅从VFAs∶SCOD来看:混合污泥较之于超磁分离具有较高的产酸优势;且剩余污泥接种量的增加也加快了水解酸化的速率,从而加深了酸化的程度。

      ELEFSINIOTIS等[17]指出,反硝化优先利用乙酸,其次为丁酸(包括异丁酸和正丁酸)和丙酸,最后是戊酸(包括异戊酸和正戊酸)。CHEN等[18]发现,适宜作为除磷碳源的2种有机酸为乙酸和丙酸,从短期看,乙酸作为碳源除磷效果较好,而从长期看,丙酸作为碳源要比乙酸作为碳源的除磷效果好。可见SCFAs的组成情况对其作为碳源被利用具有重要的影响。

      由于超磁分离污泥SCOD在第4天即达到最大值,此时选取R1、W1进行分析,结果如图5所示。实验中污泥水解酸化主要生成5种挥发性脂肪酸,分别为乙酸、丙酸、正丁酸、异丁酸和正戊酸。超磁分离污泥中5种酸的含量大小为乙酸>正戊酸>正丁酸>异丁酸>丙酸,而剩余污泥中5种酸的含量大小为乙酸>丙酸>正戊酸>正丁酸>异丁酸。混合污泥中随着剩余污泥占比的增加,丙酸和异丁酸的含量也有不同程度的增加,正丁酸出现了下降的趋势,而正戊酸的变化不大。从图5中易看出,各种污泥产VFAs中,乙酸均具有明显优势。这与苏高强等[9]、刘绍根等[1]、吴昌生等[19]的研究结果是一致的。之所以乙酸占比最高,其主要原因为:一方面,水解产物被产酸菌降解为乙酸,且乙酸可以直接从碳水化合物和蛋白质的水解酸化得到;另一方面,其他的有机酸(丙酸、丁酸或戊酸等)在某些胞内酶的作用下也可进一步生成乙酸[20]

    • 不同比例的剩余污泥对N元素的影响见图6。超磁分离污泥以及剩余污泥中含有大量的蛋白质,所以水解酸化过程中除了有VFAs、SCOD等有机物溶出以外,还会伴随着N元素的释放。本研究主要以NH+4-N和TN为考察对象。在以往对于污泥厌氧发酵的研究中,都出现了不同程度的N元素的释放[1, 9-10, 19]。对于R1、W1,由图6(a)可知,3种不同的污泥的NH+4-N都呈现出逐渐增长的趋势。并且随着剩余污泥接种量的增加,NH+4-N的增加量也越大。反应进行到第4天时,1~7号的增加量分别为78.79、85.97、91.11、94.68、97.28、115.32和115.91 mg·L−1

      对于R2、W2,由图6(b)可知,3种不同的污泥呈现出与R1、W1一样的变化规律,不同于R1、W1的是,其NH+4-N的增加量更大。第4天,1~7号NH+4-N的增加量分别为127.34、147.56、153.53、176.34、206.19、244.41和399.83 mg·L−1。由于剩余污泥主要是由一些活性生物絮体组成,因此,含有较多的蛋白质,蛋白质水解能释放出大量的氨氮。

      系统中的TN主要是以NH+4-N的形式存在,由图6(c)图6(d)中可以看出,TN具有和NH+4-N相似的变化规律。剩余污泥接种量的增加也加快了N元素的溶出,含有大量氮元素的水解酸化液若投加到脱氮系统中,势必增加系统的N负荷。因此,剩余污泥的接种量应该综合考虑氮元素的释放对于整个系统后续的脱氮除磷的影响。

    • 在污泥的厌氧消化过程中,随着污泥的解体和细胞的破壁,会有大量的磷释放到水解酸化液中。如果将水解酸化液直接用于脱氮除磷的碳源,会增加后续处理的磷负荷。所以,在此之前都会进行前处理,对氮磷进行部分回收。因此,监测P的溶出情况很有必要[21]

      在以往对于污泥水解酸化的研究中,随着时间的延长,都在不同程度上伴随着磷元素的析出。吴昌生等[19]在对碱预处理絮凝污泥水解酸化影响的研究中发现:在25 ℃时,磷酸盐浓度在第480分钟达到峰值,为7.65 mg·L−1;在35 ℃时,在第480分钟达到峰值,为15.23 mg·L−1。苏高强等[9]发现混合污泥厌氧发酵在第6天时磷酸盐的释放量为120 mg·L−1。由于超磁分离在污水处理前端就已经去除了系统中绝大多数的磷酸盐,减轻了后续的处理压力,所以对于超磁分离污泥的水解酸化,并不希望有P元素的析出。

      对比2种超磁分离污泥(R1、R2)P的释放情况,由图7可知,不管是TP还是SOP,其值较初始值都没有较大的变化,并没有P的析出。推测可能是由于超磁分离污泥中有PAC(聚合氯化铝),抑制了磷酸盐的释放。对比2种剩余污泥(W1、W2)的TP,由图7(b)可知,TP的浓度在前5 d逐渐升高,在第5天达到峰值,为24.15 mg·L−1,此后逐渐降低。由图7(a)可知,2~6号TP的浓度稳定在1~2 mg·L−1,并没有很明显的磷的析出;由图7(d)可以看出,TP的浓度在第3天即达到峰值,为385.11 mg·L−1,此后浓度稳定在390 mg·L−1左右,由图7(c)可知,2~6号TP的浓度在3 d后分别稳定在4.31、9.61、16.96、32.81、57.50 mg·L−1左右。2种剩余污泥释磷情况有巨大差异,推测其原因是:W1来源的东坝污水处理厂采用前端化学除磷工艺,所以污泥中几乎没有P的富集;而W2取自某稳定运行的EBPR中试实验的二沉池污泥,其出水能稳定满足北京市地标(DB 11/890-2012)B限值标准甚至北京市地标(DB 11/890-2012)A限值标准出水标准,因此,其二沉池中污泥富集了大量的磷酸盐,污泥水解酸化时,在厌氧条件下导致了剩余污泥中的聚磷菌的释磷。单从P元素的释放情况来看,W2显然不适合用作接种污泥。

    • 污泥水解酸化旨在获取较多可利用碳源,但同时也存在着氮元素的释放。较高的氮释放势必会增加系统的氮负荷,同时加剧对碳源的竞争,最终降低系统的脱氮效率[9, 22]。因此,在污泥水解酸化反应获得较多碳源的同时尽量减少总氮的释放,即达到较高的ΔSCOD/ΔTN值。由于超磁分离后的污泥水解产酸在第4天达到最大值,所以考察了第4天时各污泥的ΔSCOD/ΔTN值。由图8(a)可以看出,在第4天,3号的ΔSCOD/ΔTN值最大,为9.80,此时,剩余污泥的投加比例为12.2%。由图8(b)可以看出,在第4天,3号的ΔSCOD/ΔTN值最大,为9.86,此时,剩余污泥的投加比例为13.6%。由此可见,在只考虑N元素的影响时,虽然2种剩余污泥来源不同,但其在第4天达到最大值时的污泥接种比例是相近的。综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。

    • 1) 2种超磁分离污泥(R1、R2)自然水解产生的SCOD均在第4天达到峰值,剩余污泥(W1、W2)自然水解产生的SCOD均在第7天达到峰值,随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加。

      2)对R1、W1进行产酸分析发现:剩余污泥接种量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并且会促进丙酸的累积。

      3) VFAs∶SCOD值的分析结果表明,混合污泥较之于超磁分离、剩余污泥具有快速、高效的产酸优势,且剩余污泥接种量的增加也加快了水解酸化的速率并且加深了酸化的程度,但是会延长其达到峰值的时间。

      4)污泥产酸发酵的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,N元素的释放更明显;对比2种剩余污泥(W1、W2),W1作为接种污泥时,并没有明显的P元素的释放,当W2作为接种污泥时,伴随着比较明显的P元素的释放。

      5)综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。

    参考文献 (22)

返回顶部

目录

/

返回文章
返回