化学镀镍废水中磷和镍的同步去除

李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
引用本文: 李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
Citation: LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196

化学镀镍废水中磷和镍的同步去除

    作者简介: 李洋(1994—),女,硕士研究生。研究方向:金属表面处理废水净化。E-mail:sjtu_liyang@sjtu.edu.cn
    通讯作者: 孙同华(1963—),男,博士,教授。研究方向:工业废水及废气治理技术。E-mail:sunth@sjtu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(21876107)
  • 中图分类号: X703.1

Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater

    Corresponding author: SUN Tonghua, sunth@sjtu.edu.cn
  • 摘要: 为有效去除化学镀镍废水中的主要污染物质磷与镍,采用H2O2氧化、芬顿氧化、铁碳处理、次氯酸钙氧化4种方法进行同步除磷去镍效果研究。结果表明:H2O2可有效去除废水中的镍,但单独氧化除磷效果不佳,芬顿氧化可增强其对磷的去除率,在一定的反应时间下达到良好的同步除磷去镍的效果;铁碳处理可基本达到同步除磷去镍的效果,但反应时间长;次氯酸钙可快速去除水中的磷与镍,是一种理想的同步除磷去镍试剂。通过分析可知,4种方法对化学镀镍废水中的磷与镍的去除均具有一定效果,且各具优势。研究为实现化学镀镍废水中同步除磷去镍的目标提供参考。
  • 城市范围内的河流、湖泊及其他景观水体,担负着提供水资源、发挥生态效应、承载城市生活等多种功能[1-2]。2015年,国务院正式出台《水污染防治行动计划》(简称“水十条”),将城市黑臭水体整治作为重要内容,全面控制污染物排放,并提出明确要求:加大黑臭水体治理力度,于2020年底前完成地级及以上城市建成区黑臭水体均控制在10%以内的治理目标[3-5]

    城市河流黑臭水体是呈现令人不悦或散发不适气味水体的统称,是河流水体受污染的一种极端现象[6-8]。尤其对于南方城市河流,河流类型多为中小型河流,环境容量小,容易受到污染,且呈现以城市为中心的污染特点。污水主要来源为生活污水,以有机污染物质和细菌污染为主,可生化性较好,重金属及其他难降解的有毒有害污染质一般不超标。河流污水主要污染物指标BOD5、COD、SS值比北方城市河流污水稍低,其原因在于南北方居民生活习惯的差异[9-10]。针对黑臭水体治理,目前普遍采用控源截污、清淤疏浚和生态修复等治理手段,治理成效显著,黑臭水体数量大幅度减少,河流水质明显改善。

    本研究以南方城市深圳市的观澜河流域(龙华区段)为研究对象,通过对观澜河龙华区段干支流河流年际水质变化进行监测分析,结合该河段的治理工程措施,评估黑臭水体治理成效,总结工程治理措施及实施成效,以期为城市河流水质改善和水环境提升提供参考。

    观澜河流域位于深圳市中北部,发源于龙华区民治街道大脑壳山(见图1),自南向北贯穿整个龙华区。河流部分支流分布于龙岗区西南部,光明区东南角,干流在观澜企坪以北汇入东莞市境内石马河,属东江水系一级支流石马河的上游段。观澜河流域(龙华区段)面积为175.58 km2,流域内积雨面积1.0 km2及以上河流有34条,其中龙华区内有19条。

    图 1  观澜河流域(龙华区段)水系图
    Figure 1.  Map of river systems in the Longhua district section of the Guanlan River basin

    观澜河流域(龙华区段)内共有干支流24条,其中干流1条,独立河流2条(君子布河、牛湖水),一级支流14条,二、三级支流7条。各水体均为雨源性河流,根据对观澜河流域内各降雨站点多年降雨系列的分析,多年平均降雨量为1 606 mm。降雨年际变化较大,最大年降雨量2 080 mm,最小年降雨量780 mm;降雨年内分配极不均匀,汛期(4—9月份)降雨量大且集中,约占全年降雨总量的80%,并且降雨强度大,多以暴雨形式出现,极易形成洪涝地质灾害。

    1)调研对象。观澜河流域(龙华区段)干支流共计24条;通过查阅当地相关资料和结合现场踏察发现岗头河已为干涸状态,仅作为泄洪渠道;其余23条干支流均为本次研究对象,分别为观澜河干流、白花河、大水坑河、牛湖水、君子布河、樟坑径河、横坑水、大布巷河、丹坑水、茜坑水、长坑水、清湖水、横坑仔河、黄泥塘河、龙华河、大浪河、冷水坑河、高峰水、上芬水、坂田河、油松河、塘水围河、牛咀水。经统计,河道长度合计106.44 km。

    2)调研方法。参照《水质 采样方案设计技术规定》(HJ 495-2009)结合现场情况按照科学有效的布点原则,充分考虑河段取水口、排污口数量和分布及污染物排放状况、水文及河道地形、支流汇入及水工程情况、植被与水土流失情况、其他影响水质及其均匀程度的因素等。污染严重的河段可根据污水口分布及排污状况,设置若干控制断面,控制的排污量不得小于本河段总量的80%。

    3)样品采集。根据观澜河流域特征,选择水流相对缓慢平直的节点区域设置采样点。从观澜河上游到下游的顺序,每条支流从上游到下游的采样点位顺序,以每条河的前2个字母为样点代号依次命名,共定位176个点位。水质数据采集时间是从2017年11月—2020年5月,采样频次为每周1次。水样共分4瓶,采集的水样储存于提前加入HgCl2的250 mL塑料样品中,以抑制微生物的氧化分解,用于测定水样中的氨氮(NH3-N)含量;同时,现场采用多功能水质检测仪(HQ43d,德国WTW)测定水温T、溶解氧DO和pH;对每个采样点处的水样利用ULTRAMETERⅡ 6PFC型号的便携式水质分析仪对其氧化还原电位(oxidation-reduction potential)进行准确测定;并对每个采样点处的水质透明度运用塞氏盘法进行测定。每次水样采集完毕后快速置于4 ℃的车载冰箱中进行冷藏保存。

    4)数据处理。采用纳氏试剂分光光度法测定(HJ 535-2009)NH3-N。测定原理是碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425 mm内测其吸光度,计算其含量。水样经过0.45 μm尼龙膜过滤后留滤液(空白和标曲不需要过滤),依据稀释倍数取样,加入到哈希管,用无氨水加至总体积为10 mL。加0.2 mL酒石酸钾钠溶液,混匀。加0.3 mL纳氏试剂,混匀。放置10 min后,在波长420 mm处,用光程10 mm比色皿,以无氨水为参比,测定吸光度。

    黑臭水体治理措施实施之前,观澜河流域(龙华区段)河流黑臭严重。流域内22条河流全部为黑臭河流,其中重度黑臭河流有坂田河、长坑水、大水坑河、牛湖水、清湖水、大布巷河、丹坑水、塘水围河、上芬水、高峰水、横坑水、横坑仔河、黄泥塘河和樟坑径河等14条支流,河流水质差,DO平均值为5.63 mg·L−1,氨氮平均值为22.86 mg·L−1,黑臭长度62.04 km,黑臭面积1.226 km2,感官黑色,有明显臭味,河面漂浮物较多,沿途排污口较多;轻度黑臭河流有白花河、牛咀水、茜坑水、油松河、冷水坑河、君子布河、龙华河和大浪河等8条支流,河流水质较差,DO平均值为4.27 mg·L−1,氨氮平均值为8.01 mg·L−1,黑臭长度7.05 km,黑臭面积0.051 km2,河流沿岸也存在污水直排口,数量较少,但仍有明显黑臭现象。

    氨氮是影响我国地表水水环境质量的首要指标[11]。相关参考资料显示,观澜河流域(龙华区段)水量总计约9.2×105 m3·d−1,由式(1)计算得出观澜河流域(龙华区段)黑臭水体治理之前,水体中氨氮含量总负荷为14.20 t·d−1

    W=C×Q (1)

    式中:W为氨氮含量负荷,td1C为氨氮,mgL1Q为水量,m3d1

    1)外源污染输入量大,污染负荷重。造成水体黑臭的主要原因分为外源污染物质输入、内源隐性污染和水生态退化严重。外源污染是水体黑臭的重要原因之一,主要为城市人口密集,城中存在众多散乱污小作坊偷排污水,并且市政管网系统不健全,污水处理能力严重不足[12]。当地提供的勘察资料显示,观澜河流域(龙华区段)入河污水排口共计533个,管径最大有2 000 mm,主要为居民生活污水,水量少,但污染物浓度较高。当地有关部门资料显示,2017年观澜河流域(龙华区段)沿岸排扣污水直排入河现象严重,排污量大,大部分排放入河的污水均为生活污水,观澜河流域(龙华区段)年排口入河污水量达8.196 57×107 t。

    2)河道存在隐性污染,内源污染问题突出。内源污染通常指的是水中底泥释放的污染物不断污染水体,使水体富营养化,并含有一些有毒有害物质,污染物厌氧发酵产生的甲烷和氮气导致底泥上浮造成水体黑臭[13]。当地提供的勘察资料得出,观澜河流域(龙华区段)的河道纵坡较大,底泥淤积量相对较少,总河道底泥量约为20×104 m3,且底泥中的pH平均值为7.83,最大值为8.45,最小值为7.22,有机质质量含量为0.08%~16.2%,部分河段Cu浓度高达422~500 mgkg1,Pb的平均浓度值为10.4 mgkg1,同时也检测出了Zn、Cr、Hg等重金属物质,且含量较高。

    3)河流水生态退化严重,流域水环境容量低。观澜河流域(龙华区段)内建设开发强度高,开发利用超50%,自然河流属性退化;干流滨河生态空间不足,支流人工渠道化;流域蓝绿生态空间为42.6%,水域所占比重仅为4.25%,生态安全保障低、服务能力差。

    水环境容量是指在流域系统内,在不影响流域水质、水生态等水环境的情况下,流域水体所能容纳污染物的最大量,具体计算方法见式(2)。

    W=W稀释+W自净=0.001Q(CjC0)+0.001KVCj (2)

    Cj<C0时,式(2)转换为式(3)。

    W=W自净=0.001KVCj (3)

    式中:W为观澜河留水环境容量,kgd1Q为稀释水量,m3d1V为河道水位库容量,m3K为污染降解系数,d−1;COD降解系数,取0.1 d−1,TP降解系数,取0.02 d−1Cj为目标水质,mgL1,取地表水V类标准;C0为补水水质,mgL1

    采用式(1)和式(2)计算观澜河流域水环境容量得到观澜河流域旱季水环境容量氨氮容量为0.072 td1,远小于旱季入河污染物总量。

    根据上述问题分析,流域内水质改善工程治理从以下3个方面开展:1)针对城中村散乱污小作坊偷排漏排、市政基础设施不健全等外源污染问题,通过实施正本清源、雨污分流、管网提质增效、污水处理厂提标改造等工程措施,彻底切断污水来源;2)针对河道黑臭底泥淤积等内源污染问题,开展河道清淤工程措施,实现污染物的永久去除;3)针对流域水生态退化问题,开展碧道建设和生态补水工程措施,提高流域水环境容量。

    1)外源截污措施。①雨污分流工程。对原有排水管网实施雨、污分流制改造,现状合流管可保留使用的改作雨水管,同时新增一条污水管,以达到雨、污分流的目的,龙华区雨污分流工程共实施了5期,完成973 km的雨污分流管网建设。②正本清源工程。主要分为污染源调查、现状排水系统梳理、建筑排水小区调研等,根据不同类型小区排水管网的特征,结合实际制定不同的设计方案,先已完成正本清源工程7个批次,共完成2 032个小区的正本清源改造。③管网提质增效工程。重点开展干管修复,解决市政高水位运行、淤堵等问题,并全面覆盖正本清源工程所遗漏的小区,实现龙华区管网全覆盖,保证污水处理厂进水浓度合格,同时协助解决暴雨积水点和雨天溢流等问题,实现污染全面防治。④污水处理设施提标改造工程。修建了8座临时污水处理设施,处理沿河截污管道收集的生活污水,污水处理能力为2.05×105m3d1,出水水质达准Ⅳ类。观澜、龙华污水处理厂用于处理市政管网收集的污废水,处理规模为7.6×105m3d1,出水水质已全部达地表水准Ⅳ类,民治污水厂目前在建,处理规模为9.0×104 m3·d−1,预计2020年投入使用。

    外源治理共计整治污水直排口547个,截留直排污水8 196.57×104 t,完成973 km的雨污分流管网建设,完成2 032个小区的正本清源改造,城市污水收集率达83%,完成氨氮负荷削减8 720.88 t。

    2)内源治理措施。内源治理技术是指通过打捞、净化等途径使水体中的垃圾、淤泥等污染物得以清除,实现河流水质改善[14-16]。实施了清淤疏浚措施,主要采用的是机械清淤的方式(小型装载机外形尺寸5.45 m×1.96 m×2.52 m),对全流域23条支流进行清淤,底泥被运往处理中心进行集中处理。同时,对全区83段22.31 km暗涵实施清淤、总口截污、揭盖复涌工作,分别在暗涵段出口处新建高约30 cm的截污挡墙,截流暗涵内污水。共计清理底泥93 077 m3,削减氨氮污染负荷2 180.22 t,有效的清除了河道中隐性的污染源。

    3)流域生态化改造措施。①河道生态化改造,恢复滨河生态空间。结合流域蓝线管控,以河岸带人工干扰程度40%以下为目标,拆除了河道违建并逐步拓宽滨岸带,在位于人民路-环观南路地段,开展了1.3 km碧道建设,沿岸新建主题公园,依托现有体育馆等建筑,打造了特色滨水跑道。②综合利用多种水源,保障河道生态基流。当地积极运用活水循环技术,通过向黑臭水体中加入洁净水的方式[17],即生态补水工程,通过新建补水管道和提升泵站的方式进行河流生态补水,补水工程实施2期,共新建DN300~DN1200的补水管道61.07 km管道,6座提升泵站,总规模为4.5×105td1。同时,构建了流域污水处理设施-水库群-河道分类分区补水系统,实现干支流的科学补水。

    通过上述工程措施的实施,极大地改善了观澜河(龙华区段)河流水系的水环境状况。外源治理措施和内源治理措施降低了河流上覆水的污染负荷,河流生态化改造措施提高了河流自净能力。在时间尺度上,治理后(2020年)的监测数据表明,氨氮和DO在流域范围内得到较大改善,已实现全面“消黑”;在空间分布上,除塘水围、上芬水、大布巷等支流氨氮超过地表水环境质量Ⅴ标准类外,其余干支流均能满足地表水环境质量Ⅴ标准。

    1)河流水质年际变化趋势。观澜河流域水文气候独特,汛期降雨量充沛、雨天水量大而急、季节性水量差异明显等。选取DO和氨氮作为典型指标[18]进行评价分析。图2(a)图2(b)分别为观澜河流域(龙华区段)黑臭水体治理之前DO、氨氮含量分布图,可知流域DO含量平均值为4.95 mg·L−1,各种浮游生物即不能生存[19-22],各条河流DO含量基本大于2.0 mg·L−1,有个别河段如坂田河、大水坑河、横坑水、樟坑径河存在局部DO含量小于2.0 mg·L−1,其中横坑仔河全河段DO含量小于2.0 mg·L−1,为流域内DO含量最低的河流,整条河段水体也为缺氧状态;而氨氮含量平均值高达15.44 mg·L−1,其剧烈的毒性直接导致河流水体中水生生物的死亡,严重破坏水环境生物链[23-24],表明观澜河流域(龙华区段)河流水生态是基本丧失的。全流域所有河流均为达黑臭水体标准,即氨氮含量大于8.0 mg·L−1,且坂田河、长坑水、大水坑河等14条河流氨氮含量大于15.0 mg·L−1,水质恶化非常严重。通过增设河道跌水设施,对河流水体进行“充氧”,实施控源截污措施,将直排入河的生活污水引入市政管网,使得入河污染负荷减少,并且对河道进行了清淤疏浚工作,将河道内污染物质彻底清理,流域内水质因此得到大幅度提升。如图3(a)所示,流域内各河流DO含量均符合黑臭标准,且DO含量平均值达5.78 mg·L−1,基本满足水体中浮游生物、鱼类、好氧微生物等的生存条件,且长坑水2020年5月DO含量为8.13 mg·L−1,则可划分为清洁河流水准;且图3(b)中氨氮含量已稳步下降,均低于国家黑臭水体标准值(8.0 mg·L−1),且流域内氨氮含量平均值降至1.81 mg·L−1,氨氮污染负荷减少了10 901.1 t,实现全流域黑臭水体的全面消除。其中,观澜河流域各条河流DO和氨氮年际变化趋势见图4图5

    图 2  观澜河流域(龙华区段)治理前DO、氨氮含量分布图
    Figure 2.  Map of distribution of DO and ammonia nitrogen levels in the Guanlan River Basin (Longhua section) before treatment
    图 3  观澜河流域(龙华区段)治理后DO、氨氮含量分布图
    Figure 3.  Map of distribution of DO and ammonia nitrogen levels in the Guanlan River Basin (Longhua section) after treatment
    图 4  观澜河流域(龙华区段)DO年际变化趋势
    Figure 4.  Trend chart of interannual variations in DO in the Guanlan River Basin (Longhua section)
    图 5  观澜河流域(龙华区段)氨氮年际变化趋势图
    Figure 5.  Annual trend chart of ammonia nitrogen level in the Guanlan River Basin (Longhua section)

    2)河流水质年内变化趋势分析。观澜河流域属南亚热带海洋性季风气候区,降雨年内分配极不均匀,即导致河流水质年内变化幅度较大(见图6)。总体来看,流域内河流汛期DO含量整体高于非汛期,汛期流域内河流氨氮含量整体高于非汛期。河流水质受水量、点源与非点源污染共同作用的影响,非汛期水质主要反映点源污染情况,而汛期则主要反映面源污染和稀释作用的影响[25]。图中数据可知,汛期该流域水质整体受水量增大的影响程度低于面源污染所带来的影响,如黄泥塘河汛期氨氮含量(21.39 mg·L−1)为非汛期氨氮值(13.35 mg·L−1)的1.6倍,其原因在于汛期雨天合流制排口溢流严重且河流受面源污染严重;而上芬水汛期氨氮含量(9.26 mg·L−1)远低于非汛期(16.72 mg·L−1),其原因在于该河流存在排口截流不彻底、晴天污水溢流现象。可见,该流域整体河流水质受点源和非点源污染物的共同影响。

    图 6  观澜河流域汛期、非汛期溶解氧、氨氮年内变化趋势
    Figure 6.  Annual variation trend of dissolved oxygen and ammonia nitrogen in flood season and non-flood season in the Guanlan River Basin

    1)干流与支流水质变化。为更直观地了解观澜河流域干流与一级支流之间的空间变化,对干流及15条一级支流进行了箱式图分析。箱式图可反应数据的离散程度,尽可能排除随机干扰和异常极端值的影响,且可以表现数据的分布结构,并进行多批数据的时空比较和分析[26]。如图7所示,观澜河干流DO含量的平均值为流域内最高值,并且数值主要集中在5.6~7 mg·L−1,氨氮含量数值集中在0.44~1.87 mg·L−1,优于地表水V类水标准。观澜河干流氨氮含量的平均值为流域内最低值,其余一级支流从汇入干流上游至下游的顺序,整体呈现缓慢上升趋势。其原因在于,观澜河上游段位民治街道,地理位置靠近市区中心,经济发展相对较好,市政基础设施建设较为完善,污水入河现象较少;相反,观澜河下游段,市政配套设施不完备,存在污水入河现象,则导致汇入下游一级支流氨氮含量上升。部分河流DO和氨氮数值存在异常点,其原因为治理前存在雨天排口污水溢流导致水质短期恶化。

    图 7  观澜河流域干流与支流DO和氨氮空间变化分析图
    Figure 7.  Spatial Variation of DO and ammonia nitrogen levels in the main stream and tributary of the Guanlan River Basin

    2)河流水质变化比较。为探究影响水体黑臭重要指标(DO、氨氮)之间的相关性,选取了具有4条河流(观澜河干流、白花河、坂田河、大浪河)进行了线性回归分析,结果如图8所示。DO和氨氮的线性拟合度较高,其中观澜河干流R2=0.68,坂田河R2=0.57,白花河R2=0.28,大浪河R2=0.15,且4条河流DO和氨氮均呈相反的数量关系。这表明氨氮在城市黑臭水体中可能是造成溶解氧降低的关键因素。河流水质产生黑臭的重要原因即为人类活动所造成的生活污水、工业废水等直排入河,含氮有机物进入水体后,亚硝酸菌和硝酸菌消耗氧气,有机物逐步被分解为或氧化为无机氨(NH3)、铵(NH+4)、亚硝酸盐(NO2)和最终产物硝酸盐(NO3)。因此,河流水体中氨氮升高导致了水体DO的降低,进而对水生生物的新陈代谢产生影响[27-28]

    图 8  部分河流水质变化比较分析图
    Figure 8.  Comparative analysis of water quality changes in some rivers

    1)深圳市龙华区经过数年黑臭水体治理,已实现观澜河流域(龙华区段)黑臭水体的全面消除,河流水质明显改善。观澜河流域(龙华区段)水质年际变化显著,汛期DO、氨氮含量均高于非汛期,干流DO、氨氮含量主要受汇入支流含量的影响。

    2)绿色市政基础设施建设工程、多水源生态补水工程、河道生态化改造工程、河道清淤疏浚工程等工程措施的开展,支撑了观澜河流域(龙华区段)河流水质的改善和提升。

    3)虽然观澜河流域(龙华区段)黑臭水体已全面消除,但是汛期雨天溢流等问题仍旧无法彻底解决,需进一步深入研究并提出对策,以保障城市河流长制久清。

  • 图 1  H2O2投加量对总磷去除效果的影响

    Figure 1.  Effect of H2O2 dosage on total phosphorus removal

    图 2  H2O2投加量对镍去除效果的影响

    Figure 2.  Effect of H2O2 dosage on nickel removal

    图 3  芬顿对总磷的去除效果

    Figure 3.  Removal of total phosphorus by Fenton

    图 4  芬顿对镍的去除效果

    Figure 4.  Removal of nickel by Fenton

    图 5  废水中总磷含量的变化

    Figure 5.  Change of total phosphorus content in wastewater

    图 6  废水中镍含量的变化

    Figure 6.  Change of nickel content in wastewater

    图 7  Ca(ClO)2投加量对镍去除效果的影响

    Figure 7.  Effect of Ca(ClO)2 dosage on nickel removal

    图 8  温度与时间对总磷去除效果的影响

    Figure 8.  Effect of temperature and time on total phosphorus removal

    图 9  Ca(ClO)2投加量对总磷去除效果的影响

    Figure 9.  Effect of Ca(ClO)2 dosage on total phosphorus removal

    表 1  除磷去镍效果对比

    Table 1.  Comparison of phosphorus and nickel removal efficiency

    项目H2O2氧化芬顿氧化铁碳处理次氯酸钙氧化
    除磷条件不理想10 mL·L−1,20 °C,2 h,pH=33 mL·L−1 H2O2,20 °C,>48 h8 g·L−1,60 °C,1 h
    除镍条件5 mL·L−1,20 °C,1 h,pH=35 mL·L−1,20 °C,1 h,pH=320 °C,36 h8 g·L−1,20 °C,30 min
    同步除磷去镍效果不理想良好基本满足良好
    优点无须加热,无二次污染去除效果好,反应时间较短,无须加热无须加热,操作简单去除效果好,反应时间短,操作简单
    缺点除磷效果差产生大量沉淀,反应时间较长,反应条件需为酸性产生大量铁泥,存在二次污染,反应时间过长产生大量沉淀,加热成本高
    项目H2O2氧化芬顿氧化铁碳处理次氯酸钙氧化
    除磷条件不理想10 mL·L−1,20 °C,2 h,pH=33 mL·L−1 H2O2,20 °C,>48 h8 g·L−1,60 °C,1 h
    除镍条件5 mL·L−1,20 °C,1 h,pH=35 mL·L−1,20 °C,1 h,pH=320 °C,36 h8 g·L−1,20 °C,30 min
    同步除磷去镍效果不理想良好基本满足良好
    优点无须加热,无二次污染去除效果好,反应时间较短,无须加热无须加热,操作简单去除效果好,反应时间短,操作简单
    缺点除磷效果差产生大量沉淀,反应时间较长,反应条件需为酸性产生大量铁泥,存在二次污染,反应时间过长产生大量沉淀,加热成本高
    下载: 导出CSV
  • [1] KUNDU S, DAS S K, SAHOO P. Properties of electroless nickel at elevated temperature: A review[J]. Procedia Engineering, 2014, 97: 1698-1706. doi: 10.1016/j.proeng.2014.12.321
    [2] 李宁, 袁国伟, 黎德育. 化学镀镍基合金理论与技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000.
    [3] 刘鹏. 紫外催化氧化处理高浓度难降解化学镀废液研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [4] 姜承志, 李飞飞, 孙许可, 等. 镀镍废水处理技术的研究进展[J]. 电镀与精饰, 2015, 37(9): 42-46. doi: 10.3969/j.issn.1001-3849.2015.09.011
    [5] BULASARA V K, THAKURIA H, UPPALURI R, et al. Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths[J]. Journal of Materials Processing Technology, 2011, 211(9): 1488-1499. doi: 10.1016/j.jmatprotec.2011.03.022
    [6] LI L Y, TAKAHASHI N, KANEKO K, et al. A novel method for nickel recovery and phosphorus removal from spent electroless nickel-plating solution[J]. Separation and Purification Technology, 2015, 147: 237-244. doi: 10.1016/j.seppur.2015.04.029
    [7] 赵榕烨, 谷麟, 闻海峰, 等. 破络-Fenton法处理化学镀镍废水并回收水中的磷酸盐[J]. 环境工程学报, 2017, 11(4): 2097-2102. doi: 10.12030/j.cjee.201510200
    [8] TANAKA M, HUANG Y, YAHAGI T, et al. Solvent extraction recovery of nickel from spent electroless nickel plating baths by a mixer-settler extractor[J]. Separation and Purification Technology, 2008, 62(1): 97-102. doi: 10.1016/j.seppur.2007.12.022
    [9] 王韬, 李鑫钢, 杜启云. 含重金属离子废水治理技术的研究进展[J]. 化工环保, 2008, 28(4): 323-326. doi: 10.3969/j.issn.1006-1878.2008.04.010
    [10] 靳俊玲, 戴玲, 丁祥. 分步电解法回收化学镀镍废液的研究[J]. 电镀与环保, 2017, 37(6): 70-73. doi: 10.3969/j.issn.1000-4742.2017.06.021
    [11] 齐延山, 陈晶晶, 高灿柱. 活性炭吸附处理化学镀镍废液的研究[J]. 电镀与精饰, 2011, 33(6): 39-43. doi: 10.3969/j.issn.1001-3849.2011.06.012
    [12] 施银燕, 徐玉福, 胡献国. 化学沉淀法回收化学镀镍废水中镍的研究[J]. 电镀与环保, 2011, 31(5): 44-46. doi: 10.3969/j.issn.1000-4742.2011.05.015
    [13] 刘玉兵, 蒋小友. 从电镀含镍污泥中回收硫酸镍的工艺[J]. 电镀与涂饰, 2017, 36(13): 720-723.
    [14] ASHTIANI A A, FARAJI S, IRANAGH S A, et al. The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate[J]. Arabian Journal of Chemistry, 2013, 10(S2): 1541-1545.
    [15] LI C L, ZHAO H X, TSURU T, et al. Recovery of spent electroless nickel plating bath by electrodialysis[J]. Electroplating & Finishing, 2007, 157(2): 241-249.
    [16] 何明, 梁振驹, 李红进. 铁屑内电解法处理PCB络合废水[J]. 水处理技术, 2008, 34(6): 84-86.
  • 期刊类型引用(9)

    1. 韩琦,陈晓丹,王小江,王宏杰,顾玉蓉. “芬顿+重捕剂”组合工艺处理电镀化镍废水效能研究. 水处理技术. 2024(06): 97-101+107 . 百度学术
    2. 张晨阳,王嵘,岳彤,孙伟,余恒,韩明君,李赛,李文渊,张文龙,李轶. 基于分类处理-分质利用的电子电镀废水中金属离子资源化处理新技术研究进展. 有色金属(冶炼部分). 2024(09): 14-24 . 百度学术
    3. 王嵘,李俊仪,魏鑫,孙伟,张晨阳,李赛,余恒. 化学镀镍废水处理研究进展. 中南大学学报(自然科学版). 2023(09): 3379-3393 . 百度学术
    4. 王添火. 化学镀镍废水中总镍和总磷达标排放的实验研究. 中国环保产业. 2022(04): 65-68 . 百度学术
    5. 边琳. 基于UV/H_2O_2技术的化学镀镍废水处理方法. 清洗世界. 2022(09): 48-50 . 百度学术
    6. 陈艺敏,陈建福. 响应面法优化镀镍废水中磷处理工艺的研究. 电镀与精饰. 2021(05): 23-29 . 百度学术
    7. 张博,李金花,周保学,袁玥文,袁华. 镀镍废水的资源化回收利用. 电镀与精饰. 2021(10): 46-50 . 百度学术
    8. 黄辉樟. 铝阳极氧化废水处理工程改造实例. 电镀与精饰. 2021(12): 47-51 . 百度学术
    9. 肖勇俊,李姗婷,张艳华,朱军强,徐文彬. 次氯酸钙对高浓度次磷酸钠废水氧化除磷的研究. 广东化工. 2020(22): 77-78 . 百度学术

    其他类型引用(6)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.3 %DOWNLOAD: 3.3 %HTML全文: 93.6 %HTML全文: 93.6 %摘要: 3.1 %摘要: 3.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 83.5 %其他: 83.5 %Ashburn: 0.3 %Ashburn: 0.3 %Beijing: 4.1 %Beijing: 4.1 %Beiwenquan: 0.0 %Beiwenquan: 0.0 %Brooklyn: 0.0 %Brooklyn: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Chang-hua: 0.0 %Chang-hua: 0.0 %Changsha: 0.1 %Changsha: 0.1 %Changzhou: 0.0 %Changzhou: 0.0 %Chengdu: 0.2 %Chengdu: 0.2 %Choa Chu Kang New Town: 0.0 %Choa Chu Kang New Town: 0.0 %Chongqing: 0.0 %Chongqing: 0.0 %Datun: 0.1 %Datun: 0.1 %Deyang: 0.0 %Deyang: 0.0 %Dongguan: 0.1 %Dongguan: 0.1 %Douliu: 0.0 %Douliu: 0.0 %Fangqian: 0.1 %Fangqian: 0.1 %Guangzhou: 0.2 %Guangzhou: 0.2 %Haikou: 0.0 %Haikou: 0.0 %Haining: 0.1 %Haining: 0.1 %Hangzhou: 0.4 %Hangzhou: 0.4 %Hefei: 0.1 %Hefei: 0.1 %Hsinchu: 0.1 %Hsinchu: 0.1 %Huizhou: 0.0 %Huizhou: 0.0 %Jiangchuanlu: 0.0 %Jiangchuanlu: 0.0 %Jiangyin: 0.0 %Jiangyin: 0.0 %Jiaxing: 0.1 %Jiaxing: 0.1 %Jinrongjie: 0.9 %Jinrongjie: 0.9 %Kajang: 0.0 %Kajang: 0.0 %Kaohsiung City: 0.2 %Kaohsiung City: 0.2 %Kunshan: 0.1 %Kunshan: 0.1 %luohe shi: 0.0 %luohe shi: 0.0 %Moore: 0.0 %Moore: 0.0 %Mountain View: 0.1 %Mountain View: 0.1 %Nanchang Shi: 0.1 %Nanchang Shi: 0.1 %Nanjing: 0.1 %Nanjing: 0.1 %Nanning: 0.0 %Nanning: 0.0 %New Taipei: 0.1 %New Taipei: 0.1 %Newark: 0.3 %Newark: 0.3 %Osaka: 0.0 %Osaka: 0.0 %Petaling Jaya: 0.1 %Petaling Jaya: 0.1 %Qinnan: 0.3 %Qinnan: 0.3 %Quanzhou: 0.1 %Quanzhou: 0.1 %Rongcheng: 0.1 %Rongcheng: 0.1 %Seoul: 0.1 %Seoul: 0.1 %Shanghai: 0.9 %Shanghai: 0.9 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.2 %Shenzhen: 0.2 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Shizishan: 0.0 %Shizishan: 0.0 %Songling: 0.2 %Songling: 0.2 %Suzhou: 0.7 %Suzhou: 0.7 %Tai'an: 0.1 %Tai'an: 0.1 %Taichung: 0.1 %Taichung: 0.1 %Taiyuan: 0.2 %Taiyuan: 0.2 %Taizhou: 0.2 %Taizhou: 0.2 %Taoyuan District: 0.1 %Taoyuan District: 0.1 %Tianjin: 0.2 %Tianjin: 0.2 %Wenzhou: 0.1 %Wenzhou: 0.1 %Wuxi: 0.2 %Wuxi: 0.2 %Xi'an: 0.0 %Xi'an: 0.0 %Xiamen: 0.1 %Xiamen: 0.1 %Xiangfan: 0.0 %Xiangfan: 0.0 %Xining: 0.0 %Xining: 0.0 %Xuzhou: 0.1 %Xuzhou: 0.1 %XX: 2.0 %XX: 2.0 %Yancheng: 0.1 %Yancheng: 0.1 %Yuncheng: 0.0 %Yuncheng: 0.0 %Zama: 0.0 %Zama: 0.0 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %Zhongba: 0.0 %Zhongba: 0.0 %上海: 0.1 %上海: 0.1 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.4 %北京: 0.4 %北海: 0.0 %北海: 0.0 %南京: 0.0 %南京: 0.0 %厦门: 0.0 %厦门: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.0 %哈尔滨: 0.0 %商丘: 0.0 %商丘: 0.0 %大庆: 0.0 %大庆: 0.0 %常州: 0.0 %常州: 0.0 %廊坊: 0.0 %廊坊: 0.0 %晋中: 0.0 %晋中: 0.0 %朔州: 0.0 %朔州: 0.0 %沈阳: 0.0 %沈阳: 0.0 %泰州: 0.0 %泰州: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.0 %济南: 0.0 %海得拉巴: 0.0 %海得拉巴: 0.0 %深圳: 0.1 %深圳: 0.1 %烟台: 0.0 %烟台: 0.0 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 0.0 %石家庄: 0.0 %苏州: 0.0 %苏州: 0.0 %茂名: 0.0 %茂名: 0.0 %荆州: 0.0 %荆州: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.0 %衡水: 0.0 %衢州: 0.0 %衢州: 0.0 %西安: 0.0 %西安: 0.0 %贵阳: 0.0 %贵阳: 0.0 %遂宁: 0.0 %遂宁: 0.0 %郑州: 0.3 %郑州: 0.3 %阳泉: 0.0 %阳泉: 0.0 %其他AshburnBeijingBeiwenquanBrooklynChang'anChang-huaChangshaChangzhouChengduChoa Chu Kang New TownChongqingDatunDeyangDongguanDouliuFangqianGuangzhouHaikouHainingHangzhouHefeiHsinchuHuizhouJiangchuanluJiangyinJiaxingJinrongjieKajangKaohsiung CityKunshanluohe shiMooreMountain ViewNanchang ShiNanjingNanningNew TaipeiNewarkOsakaPetaling JayaQinnanQuanzhouRongchengSeoulShanghaiShenyangShenzhenShijiazhuangShizishanSonglingSuzhouTai'anTaichungTaiyuanTaizhouTaoyuan DistrictTianjinWenzhouWuxiXi'anXiamenXiangfanXiningXuzhouXXYanchengYunchengZamaZhengzhouZhongba上海内网IP北京北海南京厦门呼和浩特哈尔滨商丘大庆常州廊坊晋中朔州沈阳泰州洛阳济南海得拉巴深圳烟台石嘴山石家庄苏州茂名荆州葫芦岛衡水衢州西安贵阳遂宁郑州阳泉Highcharts.com
图( 9) 表( 1)
计量
  • 文章访问数:  7409
  • HTML全文浏览数:  7409
  • PDF下载数:  124
  • 施引文献:  15
出版历程
  • 收稿日期:  2019-03-29
  • 录用日期:  2019-06-14
  • 刊出日期:  2020-01-01
李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
引用本文: 李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
Citation: LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196

化学镀镍废水中磷和镍的同步去除

    通讯作者: 孙同华(1963—),男,博士,教授。研究方向:工业废水及废气治理技术。E-mail:sunth@sjtu.edu.cn
    作者简介: 李洋(1994—),女,硕士研究生。研究方向:金属表面处理废水净化。E-mail:sjtu_liyang@sjtu.edu.cn
  • 1. 上海交通大学环境科学与工程学院,上海 200240
  • 2. 江苏华伦化工有限公司,扬州 225266
基金项目:
国家自然科学基金资助项目(21876107)

摘要: 为有效去除化学镀镍废水中的主要污染物质磷与镍,采用H2O2氧化、芬顿氧化、铁碳处理、次氯酸钙氧化4种方法进行同步除磷去镍效果研究。结果表明:H2O2可有效去除废水中的镍,但单独氧化除磷效果不佳,芬顿氧化可增强其对磷的去除率,在一定的反应时间下达到良好的同步除磷去镍的效果;铁碳处理可基本达到同步除磷去镍的效果,但反应时间长;次氯酸钙可快速去除水中的磷与镍,是一种理想的同步除磷去镍试剂。通过分析可知,4种方法对化学镀镍废水中的磷与镍的去除均具有一定效果,且各具优势。研究为实现化学镀镍废水中同步除磷去镍的目标提供参考。

English Abstract

  • 化学镀是一种新型的金属表面处理工艺,同电镀工艺相比,反应过程不需外部电源,具有镀层均匀、孔隙率低、耐腐蚀和耐磨性良好、节能等优势,近年来广泛应用于电子、机械、航天等许多领域[1-2]。然而,化学镀废液具有污染物浓度高、成分复杂以及处理难度大等特点[3-4],若排放到环境中会对环境造成极大危害,所以它的无害化处理已成为近年来环境领域的研究热点。

    化学镀镍是化学镀领域应用最广的工艺,其化学原理为利用还原剂将离子形态的镍还原为单质镍并沉淀到基体表面。目前,常用次磷酸钠作为还原剂[5],因此,化学镀镍废液中主要的污染物质是磷和重金属镍。化学镀镍废液中的磷主要为残留的次磷酸根和反应产生的亚磷酸根,部分磷会以磷酸根的形式存在。溶液中的磷酸根通常可用氢氧化钙沉淀的方式去除[6],但次磷酸根和亚磷酸根却不易被去除。去除重金属离子的处理方法包括化学沉淀、电解法、离子交换法、反渗透、吸附法等[7-12],根据重金属离子存在状态与浓度的差异,可选择采用不同的处理方法。游离态重金属一般可通过加入氢氧化钠、碳酸钠等药剂,通过沉淀的方法直接去除,处理难度较低[13]。然而,由于化学镀镍过程中通常须添加柠檬酸钠等络合剂,使得化学镀镍废液中的镍离子通常以稳定的络合态存在[14],因此,一般的加碱沉淀法不能对其进行有效的去除[15]

    针对化学镀镍废水中2类主要污染物处理难度高且达标困难的问题,本研究采用H2O2氧化、芬顿氧化、铁碳处理、次氯酸钙氧化4种方法进行实验研究,探究各类方法对化学镀废水中磷、镍的同步去除效果,以寻找高效的去除路径,为实现化学镀镍废水中同步除磷去镍的目标提供参考。

  • 研究中的化学镀镍废水为取自某电镀园区化学镀镍车间的生产废水,废水水质如下:COD 172 mg·L−1、TP 138.5 mg·L−1、Ni 81.4mg·L−1、NH3-N 242 mg·L−1、pH=8。

  • 总磷的测定采用钼酸铵分光光度法(GB 11893-1989);镍采用火焰原子吸收分光光度法(GB 11812-1989);pH采用玻璃电极法。

  • 利用强氧化剂将水中各种形态的含磷化合物转化为正磷酸根,再通过化学沉淀法形成难溶的Ca3(PO4)2(Ksp=2.0×10−29),将磷从水中去除。

    利用强氧化剂破除水中络合物,将络合态镍转变为离子态,再通过调节系统pH,形成难溶的Ni(OH)2(Ksp=5.48×10−16),将水中金属镍去除。

  • 用硫酸调节原水pH=3,投加一定量的H2O2(30%),在20 °C下搅拌反应1 h,Ca(OH)2调节pH>12,过滤。

    用硫酸调节原水pH=3,投加4.8 g·L−1的FeSO4·7H2O和一定量的H2O2(30%),在20 °C下搅拌反应1~2 h,Ca(OH)2调节pH>12,过滤。

    投加一定量的Ca(ClO)2,用硫酸调节反应初始pH,在一定温度下搅拌,反应一定时间,测定反应结束pH,使用Ca(OH)2,使体系pH>12,过滤。

    在上述各实验方法中,各试剂投加量均以初始化学镀镍废水量为基准。

    经实验测定,各方法均可有效去除废水中COD,使COD在50 mg·L−1以下,满足国家《电镀污染物排放标准》(GB 21900-2008)中的COD的要求限值。

    用硫酸调节原水pH=4,投加一定量的H2O2(30%)和铁碳烧结固体(铁精粉≥70%,精焦煤≥20%),铁碳与废水体积比为1∶4,在20 °C下浸泡一定时间,过滤。

  • 研究中采用的化学试剂主要包括30%过氧化氢(上海凌峰,分析纯)、七水合硫酸亚铁(国药沪试,分析纯)、次氯酸钙(麦克林,化学纯)、硫酸(国药沪试,分析纯)和氢氧化钙(上海凌峰,分析纯)。

  • 在酸性条件下(pH=3),选取反应温度为20 °C,当反应时间为1 h时,H2O2投加量对磷、镍处理效果的影响如图1图2所示。随着药剂投加量的增加,水中剩余的磷、镍含量均相应下降。可以看出,H2O2作为氧化剂,可破坏水中络合物的结构,将络合态镍转化为游离态镍离子,进而通过沉淀的方式去除,同时,可将部分次磷酸根和亚磷酸根氧化为正磷酸盐。H2O2可实现镍的有效去除,当投加量为5 mL·L−1时,剩余镍含量低于0.1 mg·L−1,满足排放标准。H2O2投加量的增加可降低总磷含量,但下降速率逐步减缓,最终基本稳定在49 mg·L−1。对体系进行加热,去除效果也未有提升。可见,即使在酸性条件下,H2O2仍不能实现对总磷的有效去除。推测原因为,H2O2自身的氧化能力不能实现大量次磷酸根和亚磷酸根的全部氧化过程,且未在过程中有效产生自由基,导致氧化过程不能顺利进行。

  • 图3图4分别为芬顿氧化对化学镀镍废液中总磷、镍的去除效果随H2O2投加量的变化情况。可以看出,在适宜条件下,芬顿氧化对总磷、镍均具有良好的去除效果。其去除原理为芬顿反应中产生的·OH具有极强的氧化能力,可有效破坏水中的络合物,释放镍离子;同时可与次磷酸根和亚磷酸根反应,将其氧化为正磷酸根。且去除效果与H2O2的投加量、反应时间成正比。当H2O2投加量大于3 mL·L−1时,增加投加量或增加反应时间均可促进氧化还原反应的发生,使废水中磷含量低于0.5 mg·L−1,镍含量低于0.1 mg·L−1,均达到国家排放标准。投加量不少于10 mL·L−1,反应时间不少于2 h时,可将废水中的总磷含量降低至0.5 mg·L−1以下;投加量不少于5 mL·L−1,反应时间不少于1 h时,可将废水中的镍含量降低至0.1 mg·L−1以下。在芬顿体系中,相较金属镍,总磷的去除需要更多的投药量或反应时间,因此,总磷的去除是同步除磷去镍的关键步骤。与H2O2氧化方法相比,芬顿工艺可达到同步除磷去镍的目的,并在去除速率、去除效果方面存在显著优势,特别是在总磷的去除方面,优势更加明显。

  • 图5反映了总磷含量变化与铁碳处理中H2O2投加量和反应时间之间的关系。随着浸泡时间的延长,水中总磷含量先下降,后上升,再逐步下降并趋于稳定。在浸泡时间为3 h时,H2O2的投加情况对总磷的去除效果并无显著影响,水中总磷含量均低于10 mg·L−1。但当时间为12 h时,总磷含量均增加,其中,未投加H2O2的增加程度更为显著。之后,总磷浓度降低,并趋于稳定,投加H2O2实验的48 h浸泡处理效果为0.64 mg·L−1,而未投加的为26.84 mg·L−1,此值较3 h处理效果更差。

    分析认为,铁碳处理分为快速吸附和氧化反应2个阶段,初始的总磷含量下降主要是由于铁碳固体快速吸附造成的,故而是否投加H2O2对去除效果未表现出显著影响。随着反应时间的延长,铁碳表面发生微电解反应,产生氢气(或原子态氢[H])和亚铁离子,气体作用导致部分被吸附的磷脱附进入水中,这是导致水中总磷含量提升的原因。铁碳形成的电位差使得一部分次磷酸根、亚磷酸根在阳极发生氧化反应,被氧化为正磷酸根从水中去除,随着时间的延长,水中H+逐步被消耗,使得微电解反应逐渐被抑制,故未添加H2O2的体系中总磷含量稳定在较高浓度。体系中产生的亚铁离子可与H2O2共同作用,氧化水中的次磷酸根等物质为正磷酸盐。芬顿反应仅在投加H2O2的体系中存在,故导致了3 h之后2个体系的去除差异。

    图6反映了废水中镍含量的变化情况与H2O2投加量和反应时间之间的关系。由图6可以看出,水中的镍被有效去除,故铁碳体系可有效实现破络过程。推测体系产生的新生态的氢和亚铁离子是破络过程的活性成分[16]。同时发现,去除率与时间成正比,投加H2O2对镍的去除效果影响不大,二者均在36 h时将水中镍含量降低至0.1 mg·L−1以下。3 h时,体系中pH较低且氧化还原反应(破络)尚未进行完全,这是导致Ni浓度较高的主要原因。随着微电解反应的进行,破络过程逐渐完成,镍离子被释放,体系pH逐步提高,在沉淀和吸附的共同作用下,使得废水中的镍得到去除。

    在投加H2O2的条件下,铁碳处理工艺可基本实现化学镀废水同步除磷去镍的过程,但去除时间过长,且期间会产生大量铁泥和固体废物,造成二次污染。

  • 次氯酸根具有强氧化性,可破坏水中络合物的结构,从而释放络合态镍离子,使镍可进一步通过化学沉淀的方式去除。图7为反应温度为20 °C时,30 min次氯酸钙除镍效果同投加量的关系。可以看出,次氯酸钙除镍效果理想,可在常温(20 °C)条件下快速进行,提高Ca(ClO)2投加量对破络反应的发生以及沉淀反应的正向进行具有同步促进作用。当投加量为2 g·L−1时,对镍的去除率可达到95.97%。在投加量不少于8 g·L−1时,30 min即可使水中镍含量降低至0.1 mg·L−1以下。并且,当投加量不少于4 g·L−1时,反应过程中体系pH始终呈强碱性,反应结束无须调节体系pH,操作简单。但其对磷的去除效果受多种因素影响。

    图8为次氯酸钙投加量为8 g·L−1时,温度与时间对总磷去除效果的影响。可以看出,磷的去除效果与时间呈正相关。在常温(20 °C)和加热的条件下,次氯酸钙对总磷均具有一定的去除效果,但随着温度的升高,去除速率相应提升,20 °C和80 °C的最高去除率可分别达到84.23%和99.97%,故加热更有利于反应的进行。可以看出,80 °C较60 °C的反应温度除磷效果更佳,但相差不大,且1 h时均可使水中磷含量低于0.5 mg·L−1。综合考虑经济因素与处理效果,认为次氯酸钙除磷的最佳加热温度为60 °C,最佳反应时间为1 h。

    图9为反应温度为60 °C,反应时间为1 h时,次氯酸钙添加量与总磷去除效果的关系。在加热条件下,次氯酸钙的投加量与1 h总磷去除效果呈正相关,且除磷效果比较理想。增加Ca(ClO)2,可对反应起到促进作用,有助于废水中磷的完全去除。当投加量仅为2 mg·L−1时,即可去除水中62.39%的总磷;当投加量为8 g·L−1时,水中磷含量为0.49 mg·L−1,再次增加投药量,可进一步去除水中的磷,但从经济性考虑,可行性不高。因此,Ca(ClO)2的投加量为8 g·L−1时,可以实现对废液中磷和镍同步去除的效果。

  • 表1为4种处理方法的去除效果的对比结果。

  • 1) 在酸性条件下,H2O2可有效去除化学镀废水中的镍,但除磷效果不佳。添加铁盐的芬顿氧化过程可增强磷的去除效果,实现化学镀废水的同步除磷去镍过程,且总磷的去除为关键步骤。

    2) 添加H2O2的铁碳处理过程可基本去除化学镀废水中的磷与镍,但反应时间过长,且易产生二次污染。

    3) 次氯酸钙是一种理想的同步除磷去镍试剂,在投加量为8 g·L−1、反应温度为60 °C、反应时间为1 h的条件下,可达到同步除磷去镍的效果,且操作简单。

参考文献 (16)

返回顶部

目录

/

返回文章
返回