-
城市污水处理厂进水碳源不足是一个普遍存在的问题,导致后续脱氮效率较低。目前,解决该问题的主要方法之一是外加部分碳源,如甲醇和乙酸钠等。添加的部分碳源还有毒性,而且药剂成本较高。如何以较低的成本提高脱氮效率是低碳氮比污水生物脱氮亟待解决的问题,因此,寻找合适的外加碳源成为目前关注的热点[1]。水解酸化是把污泥中的大分子有机物分解成小分子有机物,得到挥发性脂肪酸(VFAs)的过程。而VFAs中的乙酸和丙酸是增强生物脱氮的有利碳源,其反硝化速率比甲醇和乙醇更高[2]。
超磁分离水体净化工艺是近年来发展起来的一种物化水处理技术。磁分离技术借助外加磁场强化固液分离效率,较生物吸附技术处理效率高,较膜分离技术能耗低,能弥补现有碳源浓缩技术各自的劣势,满足节能降耗需求[3-5]。其能快速有效地去除生活污水中的大部分有机物,COD分离去除率约为75%,SCOD的分离去除率超过60%,TP去除率接近90%[6]。本研究所采用的超磁分离设备的进水为生化处理前的污水,所以超磁分离污泥类似于初沉污泥。而初沉污泥中含有大量的有机物,是很好的发酵底物[7]。目前,国内外有许多关于初沉污泥[7]、剩余污泥[8]以及两者混合污泥[9]的水解产酸的研究报道。但是对于超磁分离污泥与剩余污泥协同水解酸化的相关研究,还很少见。现有研究[10]发现,在不调控pH,温度为30 ℃的反应条件下,既可以为生化系统提供更多的SCOD,又可以避免系统过高的N、P负荷。
本研究在维持温度30 ℃,不调控pH条件下,选取了2种超磁分离后污泥(R1、R2)、剩余污泥(W1、W2),设置R1、W1为一组,设置R2、W2为另一组,进行了超磁分离污泥、混合污泥以及剩余污泥3种不同类型污泥水解酸化的对比研究,其中混合污泥为超磁分离污泥以及剩余污泥按不同比例混合后的污泥(5组)。探究了污泥性质的差异对水解酸化及酸化产物组分的影响,为污水厂通过污泥产酸发酵获得碳源进行污泥种类的选择提供参考。
超磁分离污泥与剩余污泥协同水解酸化
Synergistic hydrolysis and acidification of ReCoMag sludge and excess sludge
-
摘要: 以超磁分离污泥作为研究对象,用2种不同的剩余污泥作为接种污泥,维持温度在30 ℃,探究了剩余污泥对超磁分离污泥厌氧水解酸化产物及产率的影响。结果表明:随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加;接种剩余污泥量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并会促进丙酸的累积;混合污泥较之于超磁分离和剩余污泥具有快速、高效的产酸优势,且随着剩余污泥接种量的增加,加快了水解酸化的速率并且加深了酸化的程度,但会延长其达到最大值的时间。污泥产酸发酵获得内碳源的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,这种伴随现象更明显。对比2种剩余污泥(W1、W2)发现,W1作为接种污泥时,并没有明显的P元素的释放;当W2作为接种污泥时,伴随着比较明显的P元素的释放。综合考虑剩余污泥对于超磁分离污泥水解酸化效果的影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。Abstract: ReCoMag sludge was used as the research object, two different types of excess sludge were used as inoculated sludge, the effects of excess sludge on anaerobic hydrolysis acidification products and their yields of ReCoMag sludge were investigated when the temperature was maintained at 30 ℃. The experimental results show that the SCOD releasing amount from mixed sludge gradually increased with the increase of inoculum amount of excess sludge. The increase of the excess sludge inoculum amount promoted VFAs formation of mixed sludge; acetic acid has obvious advantages among various sludge-producing VFAs, and it could promote the accumulation of propionic acid. Mixed sludge had a fast and efficient acid-producing advantage over super-magnetic separation and excess sludge, and the increase of the inoculum amount of excess sludge accelerated hydrolysis acidification rate and deepened the acidification degree, but it extended the time reaching the maximum value. When the sludge was acidified and fermented to obtain the internal carbon source, N element release also occurred at the same time, and the more inoculation amount of excess sludge, the more obvious above concomitant phenomenon. Comparing two types of excess sludge (W1, W2), no obvious P element release occurred for W1 as inoculated sludge, while obvious P element release occurred for W2. Considering the effect of excess sludge on the hydrolysis and acidification effect of ReCoMag sludge, the inoculum amounts of 12.2% W1 and 13.6% W2 with ReCoMag sludge could produce more SCOD for the system and avoid excessively high N load.
-
Key words:
- ReCoMag sludge /
- excess sludges /
- hydrolysis acidification /
- internal carbon source
-
表 1 4种污泥的主要理化指标
Table 1. Main physical and chemical indicators of four types of sludge
mg·L−1 污泥类型 TCOD SCOD SS VSS $ {\rm{NH}}_4^ + $ -NTN TP R1 14 004.3 388.63 16 280 9 980 26.86 35.55 0.97 W1 13 476.3 32.10 23 900 15 240 0 1.95 1.09 R2 36 270.3 444.42 32 480 18 350 36.025 48.33 1.74 W2 25 893.8 208.76 22 980 15 700 17.092 33.24 42.27 表 2 实验设计污泥投加量
Table 2. Experimental designed sludge dosages
% 污泥类型 1号 2号 3号 4号 5号 6号 7号 R1、W1(以体积计) 0 4 8 12 16 20 100 R1、W1(以VSS计) 0 6.1 12.2 18.3 24.4 30.5 100 R2、W2(以体积计) 0 8 16 24 32 40 100 R2、W2(以VSS计) 0 6.8 13.6 20.5 27.4 34.2 100 -
[1] 刘绍根, 徐锐, 胡星梅. 污泥性质对污泥水解酸化效果的影响[J]. 环境工程学报, 2015, 9(2): 572-578. doi: 10.12030/j.cjee.20150212 [2] 苏高强, 王淑莹, 郑冰玉, 等. 温度和污泥浓度对碱性条件下剩余污泥水解酸化的影响[J]. 环境工程学报, 2013, 7(4): 1231-1236. [3] 陈远炎, 郭苗芬. 磁絮凝的原理及其工业应用[J]. 有色金属(选矿部分), 1988(1): 42-47. [4] 李永泰. 永磁分离滚筒设计制造中的几个问题[J]. 铸造机械, 1973(5): 26-34. [5] DUANG D C, NATHAPORN A, KITIPHATMONTREE M. The effects of magnetic field on the removal of organic compounds and metals by coagulation and flocculation[J]. Physica Status Solidi, 2006, 3(9): 3201-3205. [6] 何秋杭, 金正宇, 宫徽, 等. 基于强化磁分离的市政污水碳源浓缩技术研究[J]. 水处理技术, 2018, 44(10): 114-118. [7] 李军, 任健, 王洪臣, 等. 初沉污泥水解酸化试验研究[J]. 北京工业大学学报, 2008, 12(12): 1304-1308. doi: 10.11936/bjutxb2008121304 [8] 李斯施, 刘东方, 赵乐军, 等. 臭氧预处理促进剩余污泥的水解酸化[J]. 环境工程学报, 2015, 9(7): 3426-3430. doi: 10.12030/j.cjee.20150757 [9] 苏高强, 彭永臻, 汪传新, 等. 污泥类型对污泥碱性发酵的影响[J]. 化工学报, 2011, 12(12): 3492-3497. doi: 10.3969/j.issn.0438-1157.2011.12.028 [10] 赵峰辉, 于德爽, 刘杰, 等. 温度对超磁分离初沉污泥水解酸化影响的研究[J]. 环境工程学报, 2019, 13(6): 1374-1381. doi: 10.12030/j.cjee.201812016 [11] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [12] 苏高强, 汪传新, 郑冰玉, 等. pH对混合污泥水解酸化的影响[J]. 环境工程学报, 2012, 12(12): 4257-4262. [13] 雷彩虹, 孙颖, 杨英. 絮凝剂聚丙烯酰胺对高固体污泥厌氧消化的影响[J]. 工业安全与环保, 2018, 44(1): 24-26. doi: 10.3969/j.issn.1001-425X.2018.01.007 [14] 高永青, 张晶宇, 彭永臻, 等. pH值对剩余污泥水解酸化溶出物的影响[J]. 北京工业大学学报, 2011, 37(1): 139-145. doi: 10.11936/bjutxb2011010139 [15] YUAN Q, SPARLING R, OLESZKIEWICZ J A. VFA generation from waste activated sludge: Effect of temperature and mixing[J]. Chemosphere, 2011, 83(4): 603-607. [16] 刑光熹, 曹亚烃. 太湖地区水体氮的污染源和反硝化[J]. 中国科学(B辑), 2001, 31(2): 130-136. [17] ELEFSINIOTIS P, WAREHAM D G, SMITN M O. Use of volatile fatty acids from an acid-phase digester for denitrification[J]. Journal of Biotechnlogy, 2004, 114(3): 289-297. doi: 10.1016/j.jbiotec.2004.02.016 [18] CHEN Y G, ANDREW A R, TERRENCE M. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research, 2004, 38(1): 27-36. doi: 10.1016/j.watres.2003.08.025 [19] 吴昌生, 徐锐, 刘绍根, 等. 温度对碱预处理絮凝污泥水解酸化影响研究[J]. 安徽建筑大学学报, 2016, 24(1): 59-64. doi: 10.11921/j.issn.2095-8382.20160113 [20] FENG L, WANG H, CHEN Y, et al. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flowreactors[J]. Bioresource Technology, 2009, 100(1): 44-49. doi: 10.1016/j.biortech.2008.05.028 [21] 郭京京. 强化污水处理厂剩余污泥微氧水解酸化的研究[D]. 北京: 北京工业大学, 2017. [22] 温沁雪, 薛莲, 陈志强. 污泥浓度对剩余污泥水解酸化过程的影响[J]. 中国给水排水, 2012, 28(21): 103-106. doi: 10.3969/j.issn.1000-4602.2012.21.030