Processing math: 100%

化学镀镍废水中磷和镍的同步去除

李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
引用本文: 李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
Citation: LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196

化学镀镍废水中磷和镍的同步去除

    作者简介: 李洋(1994—),女,硕士研究生。研究方向:金属表面处理废水净化。E-mail:sjtu_liyang@sjtu.edu.cn
    通讯作者: 孙同华(1963—),男,博士,教授。研究方向:工业废水及废气治理技术。E-mail:sunth@sjtu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(21876107)
  • 中图分类号: X703.1

Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater

    Corresponding author: SUN Tonghua, sunth@sjtu.edu.cn
  • 摘要: 为有效去除化学镀镍废水中的主要污染物质磷与镍,采用H2O2氧化、芬顿氧化、铁碳处理、次氯酸钙氧化4种方法进行同步除磷去镍效果研究。结果表明:H2O2可有效去除废水中的镍,但单独氧化除磷效果不佳,芬顿氧化可增强其对磷的去除率,在一定的反应时间下达到良好的同步除磷去镍的效果;铁碳处理可基本达到同步除磷去镍的效果,但反应时间长;次氯酸钙可快速去除水中的磷与镍,是一种理想的同步除磷去镍试剂。通过分析可知,4种方法对化学镀镍废水中的磷与镍的去除均具有一定效果,且各具优势。研究为实现化学镀镍废水中同步除磷去镍的目标提供参考。
  • 零价镁(zero-valent magnesium, ZVMg)是一种银白色的碱土金属,具有化学性质活泼、低密度 (1.74 g/cm3)、高强度和地壳中高丰度的特点,镁合金已经在航空、育种、自动化和电器工业中有广泛应用[1]。ZVMg的活性较强,在污染物的还原降解方面具有诸多优势[2-3]:ZVMg的氧化还原电位(−2.37 V)是零价铁(ZVI,−0.44 V)的5.4倍,具有更强的还原活性;Mg(OH)2的沉淀平衡常数(Ksp)为7.08×10−12 (25 ℃),显著高于Fe(OH)2 (7.943×10−16[4],因此ZVMg表面形成的Mg(OH)2氧化膜比ZVI表面形成的Fe(OH)3膜更疏松易溶,有利于ZVMg传递电子;ZVI只适用于厌氧环境,而ZVMg能同时用于有氧和无氧环境[5-6];镁广泛存在于天然环境中,是植物光合作用和人体细胞必需的元素之一,对环境友好。因此,ZVMg作为一种环境友好型高效还原剂,在环境修复领域具有较大应用潜力。

    ZVMg应用于污染物去除的研究始于20世纪末期[7],1998~2021年间,Web of Science上可统计的关于ZVMg降解污染物的文章50篇左右,而国内几乎没有相关研究。ZVMg与水之间发生强烈的腐蚀-钝化作用可能是限制其应用的重要因素[8];此外,对于ZVMg进入水环境后的生态影响及较高的使用成本等问题,目前尚缺少详细研究结果以支持ZVMg的环境应用。由于ZVMg具有负电位(<<−1 VSHE),其与水反应将在短时间内生成大量的H2[8],同时pH快速升至10以上,并且Mg2+和OH生成的Mg(OH)2沉淀层抑制Mg传递电子,导致ZVMg的还原效率降低[9-10],这与ZVI在水中的钝化机制类似。同时,由于ZVMg具有较高的氧化还原电势,很难通过化学还原方法得到纳米级的ZVMg,目前主要集中于微米颗粒的研究[11]。因此,虽然ZVMg在去除环境污染物方面具有较多优势,但目前仍存在较多问题。本文旨在详细介绍ZVMg的制备方法与性质特征,重点评述ZVMg独特的腐蚀特性和近年来ZVMg材料用于处理不同污染物的研究进展,指出现有研究存在问题及未来应用面临的挑战,并展望了ZVMg未来的研究方向,以期为ZVMg在环境修复领域的研究与应用提供关键理论基础。

    SOLANKI et al[12]提出可以利用NaBH4通过湿化学还原方法得到ZVMg纳米颗粒,但是由于ZVMg自身较强的还原特性,通常认为很难通过湿化学还原方法制备ZVMg。目前多数研究通过机械球磨法获得微纳米尺寸的ZVMg颗粒。该方法利用高速转动的研磨小球与罐体之间的碰撞作用力来改变颗粒表面的微观结构,降低颗粒粒径,增大比表面积,而且机械作用力能破坏金属表面的氧化层,使颗粒表面产生更多缺陷结构,增加活性位点[10, 13-14]。球磨过程中还需要添加过程控制剂,以防止或减弱球磨材料发生冷焊作用[15-16]。导电性能较好的石墨通常被用作球磨镁粉的控制剂[17-19],此外,活性炭(active carbon,AC)是一种较好的控制剂,并且活性炭是良好的多孔碳材料,对疏水性有机污染物具有强烈的吸附性能[19],有利于提高污染物的去除效率。

    球磨ZVMg的常见方法:利用Red Devil 5400系列油漆搅拌器,配备传统托盘承载研磨罐体,容器和磨球为不锈钢材质。镁粉(76 g)和石墨(9 g)混合置于研磨罐(内径5.5 cm,高17 cm)内,加研磨球,磨球与粉末的质量比3:1,容器充入氮气或氩气后密封,球磨约30~45 min、球磨转速为670 r/min[10, 18, 20] 。但有学者利用行星式球磨仪(BM40,北京格瑞德曼仪器设备有限公司)制备得到了微米级镁粉颗粒[21]。球磨参数:4.5 g镁粉、0.5 g石墨与100.0 g氧化锆小球混合,置于不锈钢球磨罐(内径7 cm,高10 cm)中密封,设定球磨仪的转速为300 r/min,球磨过程每运行5 min、暂停10 min,共循环9次。

    此外,合成ZVMg材料的方法还包括:氢气还原氧化镁(500 ℃以上);碱金属还原镁盐;氢化镁脱氢;在四氢呋喃条件下气化金属镁;超声电化学方法等[6, 22-24]。但这些方法的操作难度较高,实验室条件下较难制备ZVMg的微纳米颗粒,比较而言,机械球磨法制备ZVMg材料更为可行。

    在Mg表面掺杂其他过渡金属形成具有催化还原作用的双金属,是强化Mg还原效率的常见方法。Mg双金属合成方法与纳米Fe双金属的合成方法类似。一般是将Mg颗粒沉浸在第二相金属盐溶液中,利用Mg自身的强还原性,使催化金属盐在液相中直接被还原并负载到Mg颗粒表面,形成许多具有催化作用的金属“小岛”[11]。这种合成方法具有以下优势:操作过程简单;材料合成重复性好;催化金属均匀负载在Mg颗粒表面;可通过改变溶剂的种类、反应温度或添加不同的稳定剂等方式,合成不同的Mg双金属材料[25]

    有研究发现,球磨后ZVMg颗粒的比表面积为3.62 m2/g,是球磨前颗粒比表面积 (0.83 m2/g)的4.36倍[26],比纳米零价铁(nZVI)的比表面积(10~50 m2/g)[27]低一个数量级。但是由于nZVI颗粒自身强烈的磁引力作用,它们进入水溶液后容易形成链状或树枝状的聚集体,导致nZVI颗粒粒径比原来增大几十甚至几百倍[28],而ZVMg颗粒则不存在磁性吸引导致的颗粒团聚问题。

    MOGHARBEL et a[19]通过扫描电镜(scanning electron microscopy,SEM)图发现ZVMg和AC球磨后为圆粒状颗粒,见图1(a)和(b)。但魏鹏刚等[21]的研究发现,ZVMg与石墨(C)球磨后由不规则的粒状变为较光滑的片状结构,见图1(c)和(d)。

    图 1  扫描电镜图像
    (a)球磨后ZVMg;(b)球磨后ZVMg/AC[19];(c)球磨前ZVMg;(d)球磨后ZVMg/C[21]

    ZHANG et al[26]利用X-射线衍射(XRD)分析了ZVMg/C表面的晶体结构,发现ZVMg的特征衍射峰包括32.16°、34.40°、36.62°、47.74°、57.26°和63.06°,见图2,这与SICILIANO et al[4]报道的XRD分析结果一致。ZVMg与水溶液反应后,ZVMg的特征衍射峰信号显著减弱,而在2θ 为 18.5°、38.0°、50.8°、58.7°和62.1°处出现了Mg(OH)2的特征衍射峰,并且通过扫描电镜(SEM)谱图,见图3[26],也证明了ZVMg表面形成了花瓣状疏松多孔的Mg(OH)2氧化层结构[29]

    图 2  ZVMg/C的X射线衍射谱图
    注:(1)反应前;(2)反应后;(3)在空气中老化6 d
    图 3  不同放大倍数下ZVMg/C与水溶液反应后的扫描电镜图

    在空气中自然老化6 d后,ZVMg/C的XRD衍射峰与新鲜制备的ZVMg/C几乎没有差异,见图2[26],表明老化时间内空气对ZVMg/C的氧化作用比较微弱。并且通过高分辨率透射电镜(HRTEM)分析并没有发现ZVMg/C颗粒表面形成明显的氧化壳结构,见图4[26],与nZVI的壳-核结构存在明显差异[30],因此,ZVMg在空气中老化速率较慢。

    图 4  不同放大倍数下在空气中老化6 d后ZVMg/C的高分辨率透射电镜图

    当ZVMg颗粒进入水溶液中,将自发与水发生电化学腐蚀反应,生成氢氧化镁[Mg(OH)2] 和氢气 (H2),见式 (1) 。尽管O2/H2O的标准氧化还原电位(+1.23 V)明显高于Mg2+/Mg的标准氧化还原电位 (E0SHE=−2.37 V),但事实证明溶解氧的浓度对ZVMg的溶解程度和反应速率几乎没有影响,因此一般认为溶解氧对ZVMg的氧化作用微乎其微[31-33]

    stringUtils.convertMath(!{formula.content}) (1)

    分解反应式,见式(2 ~ 4):

    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)

    式中,ZVMg腐蚀产生释放Mg2+,同时水中产生大量OH,导致pH上升到10.5左右,而Mg(OH)2在pH>10.7将形成饱和沉淀[34]。当Mg与其他过渡金属形成微电解体系,Mg表面的过渡金属作为阴极有助于加速阳极Mg的腐蚀作用;而Mg腐蚀形成的Mg(OH)2中,有一部分用于修复Mg表面的氧化膜。因此水溶液中,Mg表面的腐蚀-氧化作用形成了一套循环调控机制。Mg颗粒表面独特的腐蚀特性具有较大的环境应用潜力,这使得ZVMg可以自然存储在环境中,仍然可以保持其还原活性。LEE et al[31]研究了粒状ZVMg在开放的缓冲溶液中的溶解动力学,结果表明,浓度为10~50 mg/L的ZVMg在200 min内可以完全溶解,主要的氧化剂为水分子而非氧气。

    ZVMg或Mg的双金属材料已被证明对多种有机和无机污染物具有还原降解功能,并具有较高的去除效率和反应速率,见表1。ZVMg去除有机或重金属污染物的概念模型图,见图5。与ZVI结构类似,ZVMg同样具有核-壳结构,ZVMg单质表面覆盖着一层镁氧化物或氢氧化物氧化层,但氧化层的结构具有分散性和多孔状,有利于内部ZVMg传递电子。理论上,ZVMg与ZVI发生还原作用的机理基本一致,过程主要包括:1)有机污染物,尤其是卤代烷烃或芳香烃污染物主要通过得电子和加氢脱氯作用被还原[10, 35],见式(5);2)重金属阳离子作为电子受体,直接接受ZVMg单质传递的电子,从高价态被还原为低价态,见式(6),如Cr(VI)被ZVMg还原为Cr(III)[2];3)还原后的重金属离子,如Cr(III)可能形成Cr(OH)3沉淀在ZVMg表面或与Mg2+发生共沉淀作用[2];4)一些相对稳定的无机盐离子,如高氯酸盐和硝酸盐也可能被ZVMg还原。如,硝酸盐离子能直接被ZVMg还原为氨根离子[36];5)而某些不易被还原的金属离子也有可能单纯被ZVMg吸附。此外,在ZVMg单质的还原过程中,同时伴随着ZVMg与水的腐蚀反应产生过量H2,尽管H2通常被认为在没有催化的条件下很难具有还原作用,但有研究发现Mg-水反应过程中,H2的逐渐生成会增加阳极ZVMg的电位,这是一个较为特殊的现象[31]。因此有研究者提出ZVMg可能首先生成了Mg+,并且与水分子反应首先产生一个活性中间体:水合氢电子(eaq),它是生成H2的前体物,同时也是一种良好的还原剂,能够与污染物发生电子传递作用[31]

    表 1  ZVMg或Mg的双金属材料还原去除污染物研究总结
    材料制备方法投加量/g·L−1污染物初始浓度/mg·L−1反应溶液反应速率常数/min−1 (除非特别标注)去除率/%参考文献
    商业镁粉-2硝酸盐50水溶液0.3591[37]
    商业镁粉-0.65硝酸盐90水溶液-80[36]
    Mg/Ag湿式化学沉淀法5五氯苯酚10丙酮、乙醇30 a> 85[14, 38]
    Mg/Pd湿式化学沉淀法252-氯联苯4丙酮0.33> 90[11]
    Mg/Pd湿式化学沉淀法10, 12多氯联苯3乙醇-> 90[11]
    Mg/Pd湿式化学沉淀法4、62-氯联苯4乙醇、丙酮-> 99[39]
    ZVMg/Ag湿式化学沉淀法0.54-氯苯酚10--99[12]
    Mg/Zn湿式化学沉淀法2.5对硝基苯酚19.8-0.066 9-[40]
    Mg/Cu、Mg/Ni、Mg/Zn湿式化学沉淀法52,4-二硝基苯甲醚250水溶液-35~100[41]
    Mg/Pd机械球磨25多氯联苯5甲醇0.002 26~0.007 16 a> 90[5]
    Mg/Pd机械球磨25多氯联苯20甲醇1.72×10−4 a80[42]
    ZVMg机械球磨50多氯联苯1乙醇-> 94[43]
    Mg/Pd机械球磨25多氯联苯10甲醇0.001 76 a-[44]
    ZVMg/C机械球磨25~50多环芳烃44.9~250乙醇/乙酸乙酯0.000 128~0.004 366~97[18, 20, 45]
    ZVMg/C机械球磨50五氯苯酚20乙醇0.038 3~0.23737~99[18, 20, 45]
    ZVMg/C机械球磨50六氯苯20乙醇/乳酸乙酯0.22299[10]
    ZVMg, ZVMg/AC机械球磨50八氯二苯并呋喃、2,8-二氯二苯并呋喃20乙醇0.000 269~0.251 9> 99[19]
    2-丁氧基乙醇0.000 503~0.338
    ZVMg超声活化5硝酸盐50水溶液-90[9]
      注: a 表示反应速率常数的单位为L·(min·g)−1;- 表示文献里未说明。
     | Show Table
    DownLoad: CSV
    图 5  ZVMg去除有机或重金属污染物概念模型
    stringUtils.convertMath(!{formula.content}) (5)
    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)

    在已有研究报道中,有机污染物被ZVMg或Mg的双金属降解研究多数在酸性有机溶剂体系中开展,以避免Mg与水分子的剧烈反应导致Mg利用效率下降的问题,有机溶剂主要包括乙醇[45]、1:1乙醇/乳酸乙酯[46]和丙酮[47]等。如,美国中佛罗里达大学YESTREBSKY课题组[10, 46]以冰醋酸 (1% v/v) 作为活化剂,利用球磨后的ZVMg/C分别在1:1乙醇/乳酸乙酯 (v/v) 和无水乙醇溶液体系中降解六氯苯和五氯酚。

    与单独ZVMg材料相比,Mg双金属材料能显著提高污染物的降解效率[12]。常见过渡金属包括Pd[11, 18, 45-48]、Ni[41]、Cu[41]和Ag[14]等。Mg的双金属材料已经被证明能有效去除各种高毒性的氯代有机物,如滴滴涕[49]、六氯苯[10]、多氯联苯[5, 11, 42]和氯酚类[12-13, 46]等物质。关于Mg的双金属降解氯代有机污染物的作用机理,加氢脱氯作用普遍被认为是高氯代有机污染物 (氯苯类、多氯联苯) 逐渐被转化为低毒性、易生物降解的低氯代有机物的主要过程[11, 42, 48]。活性氢原子 (H·) 被认为是铁基或镁基双金属体系在活化催化条件下产生的主要还原物质。CWIERTNY et al[50]甚至提出吸附在金属催化剂表面H·的量决定了其还原能力。PATEL et al[38]发现在水溶液中,单独ZVMg难以降解五氯酚,但利用ZVMg在五氯酚溶液中原位还原Ag+生成Mg/Ag (Ag=3.1w%) 双金属后,可以降解约35%的五氯酚;加入醋酸 (6.25%) 后,ZVMg可去除80%以上的五氯酚,而Mg/Ag双金属可以在1 h内降解90%以上的五氯酚。此外,PATEL et al[51]也发现原位还原合成的Mg/Pd双金属比非原位合成的材料对五氯酚降解更有效。而且,单独ZVMg和Mg/Pd双金属对五氯酚的降解效果优于Fe/Pd双金属和单纯ZVI[13]。MORALES[52]研究证实,Mg/Pb双金属在室温和常压条件下可将苯酚氢化成环己醇和环己酮。Mg/Pd也被用于有机氯农药和二噁英的去除研究,结果表明,滴滴涕、滴滴滴和滴滴伊可以被Mg/Pd完全还原脱氯至烃类化合物,且脱氯过程中无有毒中间体生成[49, 53]。THANGADURAI et al[47]利用Mg/Pd实现了对硫丹的完全脱硫和脱氯,最终产物为碳氢化合物。BEGUM et al[54]也证实了Mg/Zn体系可将硫丹和林丹这2种内分泌干扰物完全脱氯成碳氢化合物。

    虽然ZVMg被证明在有机溶剂体系中能有效去除目标污染物,但是添加有机溶剂容易导致环境次生污染、增加环境修复成本等问题,对环境和经济并不友好,在有机体系中ZVMg很难原位应用于场地地下水的修复技术中。在有限的水溶液体系研究中,ZVMg仍然可以实现对污染物的降解目的,但可能存在反应速率下降、溶液pH显著上升导致Mg钝化等问题。ZHANG et al[26]探索了ZVMg降解地下水典型污染物三氯乙烯 (TCE) 的应用潜力和内在作用机制。结果表明,在未调节pH的水溶液体系中,10 g/L的球磨ZVMg/C能够将初始浓度为38 μmol/L的TCE在24 h降解91%,与其在添加冰醋酸(1 vol.%)的有机溶剂体系中的降解率相当。TCE通过加氢脱氯途径被降解生成甲烷 (62.51%)、正己烷 (11.86%) 和乙烷 (7.40%) 等烯烃和炔烃产物去除,见图6(a)。在添加或未添加冰醋酸 (1 vol.%) 的水溶液中,TCE降解速率常数 (KSA) 分别为1.42×10−1和9.31×10−2 L/(m2·h)。在TCE水溶液中,ZVMg的利用率约为60%,见图6(b)[26],与对照实验(未添加TCE的背景溶液)中ZVMg的利用率相当,表明ZVMg/C在2种体系中具有相似的供电子能力。此外,研究表明,ZVMg与水反应后,由于pH短时间(~10 min)内上升到11左右,导致Mg2+会迅速生成Mg(OH)2沉淀。在未调节溶液pH条件下,投加量为10 g/L的ZVMg反应后溶液中Mg2+的浓度约为1.05 mg/L,远低于白云质石灰岩含水层中Mg2+的背景浓度(22~43 mg/L)[55],同时也远低于我国《地下水质量标准:GB/T 14848—2017》I类水的总硬度指标(≤150 mg/L)[56]。其次,通过老化实验发现,当ZVMg/C在空气中自然暴露2、4和6 d,TCE的KSA分别降至2.52×10−2、2.07×10−2 和1.90×10−2 L/(m2·h),这主要是因为空气氧化使得ZVMg的含量由最初的85.2%下降了5.3%~7.3%,研究结果初步证明了ZVMg/C对工业污染场地地下水氯代烃污染去除的应用潜力。

    图 6  ZVMg/C降解水溶液中TCE作用机理图

    Cr(VI) 作为最常见的无机污染物之一,可以被Fe2+、硫化零价铁、ZVI等还原剂转化为毒性较低、迁移性较差的Cr(III),但在中性、碱性或溶解氧存在条件下,Cr(VI) 的还原效率较低,而LEE et al[31]则发现ZVMg能在中性缓冲溶液中将Cr(VI) 完全还原去除,研究还发现,当质量比ZVMg:Cr(VI) <100时,ZVMg会被水分子快速消耗,并且Cr(VI)被还原生成的Cr(III) 会大量沉淀在ZVMg表面,因而降低了ZVMg的还原速率,但是提高ZVMg的投加量将显著提高还原效率。LEE et al[31]提出,Cr(VI) 并非被ZVMg直接还原,而是被ZVMg-水反应生成的活性中间物质 (eaq 和/或H·) 还原:1)Mg与水反应生成活性中间物质I:Mg + H2O → Mg2+ + I;2)Cr(VI) 与活性中间物质I反应生成Cr(III):Cr(VI) + I → Cr(III);3)同时活性中间物质I与另一种活性物质S反应可以生成氢气:I + S → H2

    ZVMg也能高效处理水中硝酸盐,MIRABI et al[36]发现用Mg/AC可以完全去除水中硝酸盐,而且在相同实验条件下,Mg/AC体系对硝酸盐的去除效率显著优于Fe/AC。ILERI et al[9]通过超声活化ZVMg还原水中硝酸盐,发现单独超声或单独ZVMg均不能有效降低硝酸盐的浓度,但两者联合可将50 mg/L的NO3-N在60 min内降解90%以上,降解产物主要是亚硝酸盐和氮气,并且可以通过增加超声功率或ZVMg剂量提高亚硝酸盐转化成氮气的比例。

    溶液中背景电解质对ZVMg腐蚀或溶解的影响主要分为抑制和促进作用[57]。在溶液pH为10~11条件下,Mg在不同电解质溶液中的腐蚀速率为NaCl > Na2SO4 > MgSO4 > NaIO4;并且Mg在Na2SO4溶液中的腐蚀速率要比在MgSO4溶液中低2个数量级,这可能是由于Na2SO4能促进ZVMg表面形成Mg(OH)2氧化膜的缘故[31]

    AGARWAL et al[39]利用Mg/Pd降解2-氯联苯时也考察了不同阴离子对降解速率的影响,见图7。在Mg/Pd投加量为4 g/L,2-氯联苯初始浓度为4 mg/L,阴离子浓度为50 mmol/L条件下,研究发现醋酸根 (CH3COO)、氯离子 (Cl)、碳酸氢根 (HCO3)和磷酸一氢根 (HPO32−)均可作为质子供体增强Mg/Pd的腐蚀性;而乙二胺四乙酸 (EDTA)、硫酸根 (SO42−) 和磷酸二氢根 (H2PO3) 分别与2-氯联苯溶液共存时,则表现为先促进后抑制的作用。这是由于EDTA作为螯合剂容易与Mg2+结合,因而最初能降低Mg(OH)2膜的形成,增强ZVMg的腐蚀性,但是EDTA可能迫使过多ZVMg进入溶液,反而降低了Mg对2-氯联苯的降解速率。SO42−是一种弱腐蚀剂,一般被认为能够加速ZVMg的腐蚀,但该研究中,SO42−可能导致ZVMg表面形成了较厚的氧化膜,正如BARIL et al[33]发现将Mg浸入0.1 mol/L的Na2SO4溶液3.5 h,ZVMg表面形成了较厚的膜,但这层孔隙性较好的膜没有完全抑制ZVMg的腐蚀,因而说明SO42−最初促进了ZVMg腐蚀,但随着膜增厚而逐渐降低腐蚀速率。NO3的存在也会降低2-氯联苯的脱氯速率,因为NO3可以与污染物竞争电子,被还原为NH4+

    图 7  溶液中共存阴离子对镁双金属材料降解2-氯联苯速率的影响

    魏鹏刚等[21]也考察了不同阴离子 (Cl、HCO3、SO42−和NO3) 对ZVMg/C降解TCE的影响,见图8。在高浓度 (50 mmol/L) 或低浓度 (50 mmol/L) 共存阴离子溶液中,ZVMg/C降解TCE的反应速率在前2 h内均受到不同程度的抑制作用,但2 h后又呈现出不同的影响趋势,可分为促进、抑制和无影响3种作用,且同种离子在不同浓度下对TCE降解的影响程度也有差异。具体来说,Cl具有先抑制后促进作用;而SO42−对ZVMg的腐蚀影响较小;HCO3和NO3则具有明显的抑制作用。但是也有研究发现共存Cl对Mg/Pd降解五氯酚速率有明显的抑制作用[14]。因此,与阴离子对ZVI降解污染物的影响类似,不同阴离子对金属还原剂的腐蚀影响并不完全一致,这可能取决于离子-金属-污染物三者的共同作用。

    图 8  不同浓度常见阴离子对TCE降解的影响

    魏鹏刚等[21]研究了水溶液中不同浓度的Fe3+和Cu2+与TCE共存时对其降解的影响,发现两者均可以提高ZVMg的还原活性。相比于对照实验,TCE的降解率从原来的89%分别提升至94%~96%和99%~100%,见图9,说明共存金属阳离子对ZVMg起到了催化活化作用,提高了ZVMg的利用率[11, 48];而且共存Cu2+能够使TCE在15 min内被完全降解,比共存Fe3+的反应速率更快,这主要是由于Mg/Cu的电势差 (2.71 V) 高于Mg/Fe (1.93 V)[3],对Mg的催化效果更显著。并且,双金属形成有利于降低整个反应体系的pH (<10.5),这将抑制Mg(OH)2的沉淀,进而减缓了ZVMg表面的钝化作用。因此,溶液中共存的过渡金属阳离子能优先被ZVMg原位还原并对Mg起到化学催化作用,显著提高ZVMg的还原活性。

    图 9  不同浓度常见阳离子对TCE降解的影响

    ZVMg材料虽然在环境修复领域具有较大的应用潜力,对多种难降解污染物具有较高的还原去除效率,但仍有许多关键科学问题亟待解决。

    (1)ZVMg与水的腐蚀-钝化作用显著影响ZVMg与污染物的相互作用,但该过程对ZVMg降解污染物的长期作用机制目前尚不十分清楚。

    (2)ZVMg与环境持久性难降解污染物的相互作用机理及关键影响因素有待进一步研究,尤其是ZVMg的强还原作用对地下水中高浓度、高异质性和高复合有机污染物的去除效果尚不可知,对相关作用机制的认知还处于空白。

    (3)在特定环境条件下,水化学成分与ZVMg的相互作用及其对污染物降解的构-效关系研究目前还很缺乏,关于ZVMg在水环境中的老化作用和对污染物的长效机制及其对生态环境的长期影响尚未见报道。

    (4)地下水是一个复杂的环境体系,涉及地下水、地层结构、地球化学和水化学等多种特征的综合作用,因此地下水污染修复不仅仅是修复材料在水溶液中对污染物的处理或降解。ZVMg材料在降解污染物的处理工艺、批量生产、与修复技术和设备上的匹配和工程应用方面还需要大量的基础研究和实践探索。

    ZVMg作为一种绿色高效的还原材料,相比于ZVI,具有反应活性更高,表面不易钝化、在空气中更稳定和制备工艺简单等特点,已经被证明对多种难降解污染物具有很好的去除效果,在环境污染修复领域中具有重要的应用潜力,但ZVMg在水溶液中的化学稳定性、使用安全性和长效机制还有待于进一步研究,未来实际应用的可能性还需要大量验证工作。ZVMg材料的研发、改性和降解污染物机理研究和工程化应用,以及材料对生态环境的影响研究将成为未来研究的重点。ZVMg材料的研发应用,或将成为ZVI修复材料的替代产品,为地下水污染的绿色可持续修复提供先进理论基础和关键技术储备。

  • 图 1  H2O2投加量对总磷去除效果的影响

    Figure 1.  Effect of H2O2 dosage on total phosphorus removal

    图 2  H2O2投加量对镍去除效果的影响

    Figure 2.  Effect of H2O2 dosage on nickel removal

    图 3  芬顿对总磷的去除效果

    Figure 3.  Removal of total phosphorus by Fenton

    图 4  芬顿对镍的去除效果

    Figure 4.  Removal of nickel by Fenton

    图 5  废水中总磷含量的变化

    Figure 5.  Change of total phosphorus content in wastewater

    图 6  废水中镍含量的变化

    Figure 6.  Change of nickel content in wastewater

    图 7  Ca(ClO)2投加量对镍去除效果的影响

    Figure 7.  Effect of Ca(ClO)2 dosage on nickel removal

    图 8  温度与时间对总磷去除效果的影响

    Figure 8.  Effect of temperature and time on total phosphorus removal

    图 9  Ca(ClO)2投加量对总磷去除效果的影响

    Figure 9.  Effect of Ca(ClO)2 dosage on total phosphorus removal

    表 1  除磷去镍效果对比

    Table 1.  Comparison of phosphorus and nickel removal efficiency

    项目H2O2氧化芬顿氧化铁碳处理次氯酸钙氧化
    除磷条件不理想10 mL·L−1,20 °C,2 h,pH=33 mL·L−1 H2O2,20 °C,>48 h8 g·L−1,60 °C,1 h
    除镍条件5 mL·L−1,20 °C,1 h,pH=35 mL·L−1,20 °C,1 h,pH=320 °C,36 h8 g·L−1,20 °C,30 min
    同步除磷去镍效果不理想良好基本满足良好
    优点无须加热,无二次污染去除效果好,反应时间较短,无须加热无须加热,操作简单去除效果好,反应时间短,操作简单
    缺点除磷效果差产生大量沉淀,反应时间较长,反应条件需为酸性产生大量铁泥,存在二次污染,反应时间过长产生大量沉淀,加热成本高
    项目H2O2氧化芬顿氧化铁碳处理次氯酸钙氧化
    除磷条件不理想10 mL·L−1,20 °C,2 h,pH=33 mL·L−1 H2O2,20 °C,>48 h8 g·L−1,60 °C,1 h
    除镍条件5 mL·L−1,20 °C,1 h,pH=35 mL·L−1,20 °C,1 h,pH=320 °C,36 h8 g·L−1,20 °C,30 min
    同步除磷去镍效果不理想良好基本满足良好
    优点无须加热,无二次污染去除效果好,反应时间较短,无须加热无须加热,操作简单去除效果好,反应时间短,操作简单
    缺点除磷效果差产生大量沉淀,反应时间较长,反应条件需为酸性产生大量铁泥,存在二次污染,反应时间过长产生大量沉淀,加热成本高
    下载: 导出CSV
  • [1] KUNDU S, DAS S K, SAHOO P. Properties of electroless nickel at elevated temperature: A review[J]. Procedia Engineering, 2014, 97: 1698-1706. doi: 10.1016/j.proeng.2014.12.321
    [2] 李宁, 袁国伟, 黎德育. 化学镀镍基合金理论与技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000.
    [3] 刘鹏. 紫外催化氧化处理高浓度难降解化学镀废液研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [4] 姜承志, 李飞飞, 孙许可, 等. 镀镍废水处理技术的研究进展[J]. 电镀与精饰, 2015, 37(9): 42-46. doi: 10.3969/j.issn.1001-3849.2015.09.011
    [5] BULASARA V K, THAKURIA H, UPPALURI R, et al. Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths[J]. Journal of Materials Processing Technology, 2011, 211(9): 1488-1499. doi: 10.1016/j.jmatprotec.2011.03.022
    [6] LI L Y, TAKAHASHI N, KANEKO K, et al. A novel method for nickel recovery and phosphorus removal from spent electroless nickel-plating solution[J]. Separation and Purification Technology, 2015, 147: 237-244. doi: 10.1016/j.seppur.2015.04.029
    [7] 赵榕烨, 谷麟, 闻海峰, 等. 破络-Fenton法处理化学镀镍废水并回收水中的磷酸盐[J]. 环境工程学报, 2017, 11(4): 2097-2102. doi: 10.12030/j.cjee.201510200
    [8] TANAKA M, HUANG Y, YAHAGI T, et al. Solvent extraction recovery of nickel from spent electroless nickel plating baths by a mixer-settler extractor[J]. Separation and Purification Technology, 2008, 62(1): 97-102. doi: 10.1016/j.seppur.2007.12.022
    [9] 王韬, 李鑫钢, 杜启云. 含重金属离子废水治理技术的研究进展[J]. 化工环保, 2008, 28(4): 323-326. doi: 10.3969/j.issn.1006-1878.2008.04.010
    [10] 靳俊玲, 戴玲, 丁祥. 分步电解法回收化学镀镍废液的研究[J]. 电镀与环保, 2017, 37(6): 70-73. doi: 10.3969/j.issn.1000-4742.2017.06.021
    [11] 齐延山, 陈晶晶, 高灿柱. 活性炭吸附处理化学镀镍废液的研究[J]. 电镀与精饰, 2011, 33(6): 39-43. doi: 10.3969/j.issn.1001-3849.2011.06.012
    [12] 施银燕, 徐玉福, 胡献国. 化学沉淀法回收化学镀镍废水中镍的研究[J]. 电镀与环保, 2011, 31(5): 44-46. doi: 10.3969/j.issn.1000-4742.2011.05.015
    [13] 刘玉兵, 蒋小友. 从电镀含镍污泥中回收硫酸镍的工艺[J]. 电镀与涂饰, 2017, 36(13): 720-723.
    [14] ASHTIANI A A, FARAJI S, IRANAGH S A, et al. The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate[J]. Arabian Journal of Chemistry, 2013, 10(S2): 1541-1545.
    [15] LI C L, ZHAO H X, TSURU T, et al. Recovery of spent electroless nickel plating bath by electrodialysis[J]. Electroplating & Finishing, 2007, 157(2): 241-249.
    [16] 何明, 梁振驹, 李红进. 铁屑内电解法处理PCB络合废水[J]. 水处理技术, 2008, 34(6): 84-86.
  • 期刊类型引用(1)

    1. 张志强,韦亮,耿丽平,刘峰,赵全利,吴鸿斌,薛培英,刘文菊. 农田土壤和辣椒/甘薯可食部位镉砷铅污染特征及健康风险评价. 环境科学. 2025(01): 470-477 . 百度学术

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.5 %DOWNLOAD: 3.5 %HTML全文: 95.6 %HTML全文: 95.6 %摘要: 1.0 %摘要: 1.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.3 %其他: 99.3 %北京: 0.3 %北京: 0.3 %深圳: 0.2 %深圳: 0.2 %西宁: 0.2 %西宁: 0.2 %其他北京深圳西宁Highcharts.com
图( 9) 表( 1)
计量
  • 文章访问数:  7412
  • HTML全文浏览数:  7412
  • PDF下载数:  124
  • 施引文献:  2
出版历程
  • 收稿日期:  2019-03-29
  • 录用日期:  2019-06-14
  • 刊出日期:  2020-01-01
李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
引用本文: 李洋, 陈忠平, 孙萌萌, 孟祥龙, 孙同华. 化学镀镍废水中磷和镍的同步去除[J]. 环境工程学报, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196
Citation: LI Yang, CHEN Zhongping, SUN Mengmeng, MENG Xianglong, SUN Tonghua. Simultaneous removal of phosphorus and nickel from electroless nickel plating wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 96-102. doi: 10.12030/j.cjee.201903196

化学镀镍废水中磷和镍的同步去除

    通讯作者: 孙同华(1963—),男,博士,教授。研究方向:工业废水及废气治理技术。E-mail:sunth@sjtu.edu.cn
    作者简介: 李洋(1994—),女,硕士研究生。研究方向:金属表面处理废水净化。E-mail:sjtu_liyang@sjtu.edu.cn
  • 1. 上海交通大学环境科学与工程学院,上海 200240
  • 2. 江苏华伦化工有限公司,扬州 225266
基金项目:
国家自然科学基金资助项目(21876107)

摘要: 为有效去除化学镀镍废水中的主要污染物质磷与镍,采用H2O2氧化、芬顿氧化、铁碳处理、次氯酸钙氧化4种方法进行同步除磷去镍效果研究。结果表明:H2O2可有效去除废水中的镍,但单独氧化除磷效果不佳,芬顿氧化可增强其对磷的去除率,在一定的反应时间下达到良好的同步除磷去镍的效果;铁碳处理可基本达到同步除磷去镍的效果,但反应时间长;次氯酸钙可快速去除水中的磷与镍,是一种理想的同步除磷去镍试剂。通过分析可知,4种方法对化学镀镍废水中的磷与镍的去除均具有一定效果,且各具优势。研究为实现化学镀镍废水中同步除磷去镍的目标提供参考。

English Abstract

  • 化学镀是一种新型的金属表面处理工艺,同电镀工艺相比,反应过程不需外部电源,具有镀层均匀、孔隙率低、耐腐蚀和耐磨性良好、节能等优势,近年来广泛应用于电子、机械、航天等许多领域[1-2]。然而,化学镀废液具有污染物浓度高、成分复杂以及处理难度大等特点[3-4],若排放到环境中会对环境造成极大危害,所以它的无害化处理已成为近年来环境领域的研究热点。

    化学镀镍是化学镀领域应用最广的工艺,其化学原理为利用还原剂将离子形态的镍还原为单质镍并沉淀到基体表面。目前,常用次磷酸钠作为还原剂[5],因此,化学镀镍废液中主要的污染物质是磷和重金属镍。化学镀镍废液中的磷主要为残留的次磷酸根和反应产生的亚磷酸根,部分磷会以磷酸根的形式存在。溶液中的磷酸根通常可用氢氧化钙沉淀的方式去除[6],但次磷酸根和亚磷酸根却不易被去除。去除重金属离子的处理方法包括化学沉淀、电解法、离子交换法、反渗透、吸附法等[7-12],根据重金属离子存在状态与浓度的差异,可选择采用不同的处理方法。游离态重金属一般可通过加入氢氧化钠、碳酸钠等药剂,通过沉淀的方法直接去除,处理难度较低[13]。然而,由于化学镀镍过程中通常须添加柠檬酸钠等络合剂,使得化学镀镍废液中的镍离子通常以稳定的络合态存在[14],因此,一般的加碱沉淀法不能对其进行有效的去除[15]

    针对化学镀镍废水中2类主要污染物处理难度高且达标困难的问题,本研究采用H2O2氧化、芬顿氧化、铁碳处理、次氯酸钙氧化4种方法进行实验研究,探究各类方法对化学镀废水中磷、镍的同步去除效果,以寻找高效的去除路径,为实现化学镀镍废水中同步除磷去镍的目标提供参考。

  • 研究中的化学镀镍废水为取自某电镀园区化学镀镍车间的生产废水,废水水质如下:COD 172 mg·L−1、TP 138.5 mg·L−1、Ni 81.4mg·L−1、NH3-N 242 mg·L−1、pH=8。

  • 总磷的测定采用钼酸铵分光光度法(GB 11893-1989);镍采用火焰原子吸收分光光度法(GB 11812-1989);pH采用玻璃电极法。

  • 利用强氧化剂将水中各种形态的含磷化合物转化为正磷酸根,再通过化学沉淀法形成难溶的Ca3(PO4)2(Ksp=2.0×10−29),将磷从水中去除。

    利用强氧化剂破除水中络合物,将络合态镍转变为离子态,再通过调节系统pH,形成难溶的Ni(OH)2(Ksp=5.48×10−16),将水中金属镍去除。

  • 用硫酸调节原水pH=3,投加一定量的H2O2(30%),在20 °C下搅拌反应1 h,Ca(OH)2调节pH>12,过滤。

    用硫酸调节原水pH=3,投加4.8 g·L−1的FeSO4·7H2O和一定量的H2O2(30%),在20 °C下搅拌反应1~2 h,Ca(OH)2调节pH>12,过滤。

    投加一定量的Ca(ClO)2,用硫酸调节反应初始pH,在一定温度下搅拌,反应一定时间,测定反应结束pH,使用Ca(OH)2,使体系pH>12,过滤。

    在上述各实验方法中,各试剂投加量均以初始化学镀镍废水量为基准。

    经实验测定,各方法均可有效去除废水中COD,使COD在50 mg·L−1以下,满足国家《电镀污染物排放标准》(GB 21900-2008)中的COD的要求限值。

    用硫酸调节原水pH=4,投加一定量的H2O2(30%)和铁碳烧结固体(铁精粉≥70%,精焦煤≥20%),铁碳与废水体积比为1∶4,在20 °C下浸泡一定时间,过滤。

  • 研究中采用的化学试剂主要包括30%过氧化氢(上海凌峰,分析纯)、七水合硫酸亚铁(国药沪试,分析纯)、次氯酸钙(麦克林,化学纯)、硫酸(国药沪试,分析纯)和氢氧化钙(上海凌峰,分析纯)。

  • 在酸性条件下(pH=3),选取反应温度为20 °C,当反应时间为1 h时,H2O2投加量对磷、镍处理效果的影响如图1图2所示。随着药剂投加量的增加,水中剩余的磷、镍含量均相应下降。可以看出,H2O2作为氧化剂,可破坏水中络合物的结构,将络合态镍转化为游离态镍离子,进而通过沉淀的方式去除,同时,可将部分次磷酸根和亚磷酸根氧化为正磷酸盐。H2O2可实现镍的有效去除,当投加量为5 mL·L−1时,剩余镍含量低于0.1 mg·L−1,满足排放标准。H2O2投加量的增加可降低总磷含量,但下降速率逐步减缓,最终基本稳定在49 mg·L−1。对体系进行加热,去除效果也未有提升。可见,即使在酸性条件下,H2O2仍不能实现对总磷的有效去除。推测原因为,H2O2自身的氧化能力不能实现大量次磷酸根和亚磷酸根的全部氧化过程,且未在过程中有效产生自由基,导致氧化过程不能顺利进行。

  • 图3图4分别为芬顿氧化对化学镀镍废液中总磷、镍的去除效果随H2O2投加量的变化情况。可以看出,在适宜条件下,芬顿氧化对总磷、镍均具有良好的去除效果。其去除原理为芬顿反应中产生的·OH具有极强的氧化能力,可有效破坏水中的络合物,释放镍离子;同时可与次磷酸根和亚磷酸根反应,将其氧化为正磷酸根。且去除效果与H2O2的投加量、反应时间成正比。当H2O2投加量大于3 mL·L−1时,增加投加量或增加反应时间均可促进氧化还原反应的发生,使废水中磷含量低于0.5 mg·L−1,镍含量低于0.1 mg·L−1,均达到国家排放标准。投加量不少于10 mL·L−1,反应时间不少于2 h时,可将废水中的总磷含量降低至0.5 mg·L−1以下;投加量不少于5 mL·L−1,反应时间不少于1 h时,可将废水中的镍含量降低至0.1 mg·L−1以下。在芬顿体系中,相较金属镍,总磷的去除需要更多的投药量或反应时间,因此,总磷的去除是同步除磷去镍的关键步骤。与H2O2氧化方法相比,芬顿工艺可达到同步除磷去镍的目的,并在去除速率、去除效果方面存在显著优势,特别是在总磷的去除方面,优势更加明显。

  • 图5反映了总磷含量变化与铁碳处理中H2O2投加量和反应时间之间的关系。随着浸泡时间的延长,水中总磷含量先下降,后上升,再逐步下降并趋于稳定。在浸泡时间为3 h时,H2O2的投加情况对总磷的去除效果并无显著影响,水中总磷含量均低于10 mg·L−1。但当时间为12 h时,总磷含量均增加,其中,未投加H2O2的增加程度更为显著。之后,总磷浓度降低,并趋于稳定,投加H2O2实验的48 h浸泡处理效果为0.64 mg·L−1,而未投加的为26.84 mg·L−1,此值较3 h处理效果更差。

    分析认为,铁碳处理分为快速吸附和氧化反应2个阶段,初始的总磷含量下降主要是由于铁碳固体快速吸附造成的,故而是否投加H2O2对去除效果未表现出显著影响。随着反应时间的延长,铁碳表面发生微电解反应,产生氢气(或原子态氢[H])和亚铁离子,气体作用导致部分被吸附的磷脱附进入水中,这是导致水中总磷含量提升的原因。铁碳形成的电位差使得一部分次磷酸根、亚磷酸根在阳极发生氧化反应,被氧化为正磷酸根从水中去除,随着时间的延长,水中H+逐步被消耗,使得微电解反应逐渐被抑制,故未添加H2O2的体系中总磷含量稳定在较高浓度。体系中产生的亚铁离子可与H2O2共同作用,氧化水中的次磷酸根等物质为正磷酸盐。芬顿反应仅在投加H2O2的体系中存在,故导致了3 h之后2个体系的去除差异。

    图6反映了废水中镍含量的变化情况与H2O2投加量和反应时间之间的关系。由图6可以看出,水中的镍被有效去除,故铁碳体系可有效实现破络过程。推测体系产生的新生态的氢和亚铁离子是破络过程的活性成分[16]。同时发现,去除率与时间成正比,投加H2O2对镍的去除效果影响不大,二者均在36 h时将水中镍含量降低至0.1 mg·L−1以下。3 h时,体系中pH较低且氧化还原反应(破络)尚未进行完全,这是导致Ni浓度较高的主要原因。随着微电解反应的进行,破络过程逐渐完成,镍离子被释放,体系pH逐步提高,在沉淀和吸附的共同作用下,使得废水中的镍得到去除。

    在投加H2O2的条件下,铁碳处理工艺可基本实现化学镀废水同步除磷去镍的过程,但去除时间过长,且期间会产生大量铁泥和固体废物,造成二次污染。

  • 次氯酸根具有强氧化性,可破坏水中络合物的结构,从而释放络合态镍离子,使镍可进一步通过化学沉淀的方式去除。图7为反应温度为20 °C时,30 min次氯酸钙除镍效果同投加量的关系。可以看出,次氯酸钙除镍效果理想,可在常温(20 °C)条件下快速进行,提高Ca(ClO)2投加量对破络反应的发生以及沉淀反应的正向进行具有同步促进作用。当投加量为2 g·L−1时,对镍的去除率可达到95.97%。在投加量不少于8 g·L−1时,30 min即可使水中镍含量降低至0.1 mg·L−1以下。并且,当投加量不少于4 g·L−1时,反应过程中体系pH始终呈强碱性,反应结束无须调节体系pH,操作简单。但其对磷的去除效果受多种因素影响。

    图8为次氯酸钙投加量为8 g·L−1时,温度与时间对总磷去除效果的影响。可以看出,磷的去除效果与时间呈正相关。在常温(20 °C)和加热的条件下,次氯酸钙对总磷均具有一定的去除效果,但随着温度的升高,去除速率相应提升,20 °C和80 °C的最高去除率可分别达到84.23%和99.97%,故加热更有利于反应的进行。可以看出,80 °C较60 °C的反应温度除磷效果更佳,但相差不大,且1 h时均可使水中磷含量低于0.5 mg·L−1。综合考虑经济因素与处理效果,认为次氯酸钙除磷的最佳加热温度为60 °C,最佳反应时间为1 h。

    图9为反应温度为60 °C,反应时间为1 h时,次氯酸钙添加量与总磷去除效果的关系。在加热条件下,次氯酸钙的投加量与1 h总磷去除效果呈正相关,且除磷效果比较理想。增加Ca(ClO)2,可对反应起到促进作用,有助于废水中磷的完全去除。当投加量仅为2 mg·L−1时,即可去除水中62.39%的总磷;当投加量为8 g·L−1时,水中磷含量为0.49 mg·L−1,再次增加投药量,可进一步去除水中的磷,但从经济性考虑,可行性不高。因此,Ca(ClO)2的投加量为8 g·L−1时,可以实现对废液中磷和镍同步去除的效果。

  • 表1为4种处理方法的去除效果的对比结果。

  • 1) 在酸性条件下,H2O2可有效去除化学镀废水中的镍,但除磷效果不佳。添加铁盐的芬顿氧化过程可增强磷的去除效果,实现化学镀废水的同步除磷去镍过程,且总磷的去除为关键步骤。

    2) 添加H2O2的铁碳处理过程可基本去除化学镀废水中的磷与镍,但反应时间过长,且易产生二次污染。

    3) 次氯酸钙是一种理想的同步除磷去镍试剂,在投加量为8 g·L−1、反应温度为60 °C、反应时间为1 h的条件下,可达到同步除磷去镍的效果,且操作简单。

参考文献 (16)

返回顶部

目录

/

返回文章
返回