逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果

陈红硕, 刘阳生. 逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果[J]. 环境工程学报, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064
引用本文: 陈红硕, 刘阳生. 逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果[J]. 环境工程学报, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064
CHEN Hongshuo, LIU Yangsheng. Effect of countercurrent extracting+ozone oxidation combined process treating oil-based cuttings[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064
Citation: CHEN Hongshuo, LIU Yangsheng. Effect of countercurrent extracting+ozone oxidation combined process treating oil-based cuttings[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064

逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果

    作者简介: 陈红硕(1988—),男,博士研究生,工程师。研究方向:固废处置。E-mail:chenhongshuo2011@163.com
  • 基金项目:
    国家自然科学基金资助项目(21077002)
  • 中图分类号: X741

Effect of countercurrent extracting+ozone oxidation combined process treating oil-based cuttings

  • 摘要: 为解决页岩气开采过程中产生的油基岩屑的资源化、无害化处理问题,采用逆流萃取+臭氧氧化联合的方法对其进行处理,并分别对逆流萃取、臭氧氧化环节的工艺参数进行了优化。结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由原始的39.42%降低到0.18%,达到了GB 4284-2018中规定的处置要求,处理过程中回收的油分可重新用于配制钻井液。通过对油基岩屑固相的表征,发现其具备臭氧催化氧化催化剂的明显特征,是一种天然的臭氧催化氧化催化剂,并从反应动力学角度对臭氧氧化环节的反应特性进行了定量分析。结果表明,其满足一级反应动力学特征,反应活化能为6.194 kJ·mol−1。以逆流萃取+臭氧氧化为核心的联合工艺为油基岩屑的资源化、无害化处理提供了参考。
  • 据中国自行车协会统计,2020年中国电动自行车产量达到4 126.1×104[1],截至2020年全社会电动自行车保有量接近3×109[2]。由于疫情的影响,外卖、快递的延展变得更加广泛,电动自行车需求量呈爆发式增长,其生产过程产生大量工业废水。其中,电泳涂装废水具有组分复杂、水质水量变化大、难降解等特点[3-5],成为高效处理电泳涂装废水的关键。

    芬顿法为通过H2O2与Fe2+在酸性条件下生成强氧化能力的·OH,进而降解废水中有机污染物,同时生成的Fe(OH)3可以通过絮凝以沉淀有机物和磷酸盐。因其不会产生二次污染,被广泛应用于工业废水处理。王小晓等[6]采用Fenton-混凝应急处理汽车涂装废水,在pH=3~5、H2O2为1.7 g·L−1、FeSO4·7H2O为1.75 g·L−1时,反应10 min后,COD、TP、SS及各种金属离子均达到一级排放标准。杨晨曦等[7]在处理涂料废水时发现,在pH=2、H2O2投量为理论投加量的1.5倍、n(H2O2/Fe2+)=8时,COD去除率可达60.12%。陈烨等[8]使用Fenton法处理汽车涂装废水时发现,在pH=4、H2O2为2.97 g·L−1n(H2O2/Fe2+)=3、反应70 min后,COD去除率为71.4%。刘强[9]的研究表明,在H2O2投量为0.6 g·L−1、FeSO4·7H2O投量为0.2 g·L−1、氧化反应60 min后,COD和SS去除率分别为90.0%和98.3%。其他研究者[10-13]采用Fenton方法处理涂装废水,也取得较好的处理效果。但因为不同的生产工艺和原料所产生各废水污染物的组分和浓度不同,以上Fenton处理涂装废水的反应条件和处理效果有差异。因此,针对某种涂装废水,需做小试研究其适宜的Fenton氧化反应条件。因实际涂装废水的水质有波动,研究Fenton氧化涂装废水的反应动力学可指导实际废水处理工程。本研究以某电动自行车生产企业的涂装废水为研究对象,探索了温度、底物对其反应动力学影响的规律,优化了Fenton处理涂装废水的工艺条件,以期为类似涂装废水的处理提供参考.

    实验原水取自江苏某电动自行车制造企业的涂装车间,该车间生产工序包括脱脂、陶化、电泳和喷涂。其中采用新型陶化工艺取代了传统的磷化工艺,具有不含Fe、Zn、Pb等重金属的优点。原水主要含有苯类、醇类和助剂等,pH=6.0~8.0,COD为1 000~1 500 mg·L−1,TP为10~15 mg·L−1,B/C比约为0.12。实验所用试剂为30%H2O2(质量分数)、NaOH、 H2SO4、七水合硫酸亚铁(FeSO4·7H2O)、聚丙烯酰胺(PAM)。

    芬顿氧化实验:取100 mL原水于若干个烧杯中,并放于恒温磁力搅拌器上,调节pH,投加H2O2和FeSO4·7H2O,以200 r·min−1进行搅拌,反应结束后将pH调至10,加入适量PAM,搅拌后静置沉淀0.5 h。每组平行实验3次。

    pH条件优化。在H2O2为0.6 g·L−1、FeSO4·7H2O为0.8 g·L−1、反应时间为2.5 h的条件下,分别在pH为1、2、3、4、5、6的条件下进行芬顿实验。

    H2O2投加量优化。在上述优化后的最佳pH、FeSO4·7H2O为3 g·L−1、反应时间为2.5 h的条件下,H2O2投加量分别为1、2、3、4、5、6 g·L−1,进行芬顿氧化实验。

    H2O2的理论投加量按式(1) [7]进行计算。

    D=C(COD)M(H2O2)M(O)=2.215C(COD) (1)

    式中:D为H2O2理论投加量,g·L−1C(COD)为耗氧有机物(以COD计)的质量浓度,g·L−1M(H2O2)为H2O2的摩尔质量,g·mol−1M(O)为O的摩尔质量,g·mol−1

    FeSO4·7H2O投加量优化:在最佳pH、最佳H2O2、氧化反应时间2.5 h的条件下,设置FeSO4·7H2O分别为1、2、3、4、5、6 g·L−1进行芬顿实验。

    氧化时间优化:在最佳pH、H2O2、FeSO4·7H2O条件下,设置氧化时间分别为30、60、90、120、150、180、210 min进行芬顿实验。

    依据Box-Benhnken实验设计原理,固定反应时间,以COD去除率为响应值,以单因素实验中pH(A)、H2O2(B)、FeSO4·7H2O(C)的最优结果为中心水平(0),结合高水平(+1)和低水平(-1),利用响应曲面法优化Fenton氧化条件,各因素水平和编码见表1

    表 1  响应面设计因素与水平
    Table 1.  Factors and levels of response surface design
    因素因素编码因素水平
    pHA−101
    H2O2/(g·L−1)B−101
    FeSO4·7H2O/(g·L−1)C−101
     | Show Table
    DownLoad: CSV

    分别以零级反应动力学(式(2))、一级反应动力学(式(3))、二级反应动力学(式(4))和三级反应动力学(式(5))对Fenton氧化有机物的降解过程进行拟合。

    Ct=C0kt (2)
    lnCtC0=kt (3)
    C1tC10=kt (4)
    12(C2tC20)=kt (5)

    式中:Ctt时刻的COD值,mg·L−1C0为原水COD值,mg·L−1k为动力学反应速率常数,min−1t为反应时间,min。

    根据Arrhenius方程,建立Fenton完全氧化最优工艺条件时的表观动力学模型,lnk与1/T之间存在线性关系,如式(5)所示。探索Fenton在15、25、35 ℃时完全氧化本涂装废水的动力学特性,获得反应速率常数的温度修正关系。

    lnk=lnA0EaRT (6)

    式中:k为速率常数,min−1A0为频率因子,min−1Ea为活化能,J·mol−1R为通用气体常数,J·(mol·K)−1T为反应绝对温度,K。

    在响应面实验得到的最优pH和n(H2O2/Fe2+)条件下,固定Fenton完全氧化反应时间,改变H2O2投加量分别为0.4、0.5、0.7、1、1.3、2、4 g·L−1,研究其对COD去除率与B/C比的影响,探索Fenton氧化作为电动自行车涂装废水预处理工艺的可能性。

    COD采用重铬酸盐法测定(HJ 828-2017);TP采用钼酸铵分光光度法测定(GB 11893-89);BOD5采用稀释培养法测定(HJ 505-2009);pH采用玻璃电极法测定(上海仪电PHS-3C)。

    1) pH条件优化。如图1所示,pH从1升至6的过程中,COD去除率先增加再降低。反应体系中过量的H+会阻碍Fe3+转变为Fe2+,抑制催化反应的氧化能力[14],因此,pH并非越低越好。当pH由1增大至3时,随着活性位点数量增加[15],反应速率大幅升高,COD去除率随之升高;当pH 3时,COD去除率达到最高。由式(7)可知,溶液中不断增加的OH会使(·OH)供应不足,且易造成Fe(OH)3铁盐沉淀,阻断链式反应,H2O2和Fe2+难以形成有效的氧化还原系统[16]。因此,在本研究中,当pH ≥ 5时,COD去除率大幅度降低。溶液中TP含量随着pH的增大而逐渐升高。这是由于当氢氧根离子含量变多时,会优先与Fe3+反应生成铁盐沉淀[17],减少了Fe3+与磷酸盐的结合量,使TP去除率下降。王小晓等[6]采用Fenton工艺应急处理某涂装废水,溶液初始pH为3~5;杨晨曦等[7]研究Fenton氧化处理涂料废水,初始pH为2;LI 等[10]研究表明在酸性条件下,Fenton可以氧化涂装废水中的有机物,但涂装废水中主要有机物组分和浓度的不同导致各研究的最优pH条件略有不同。综合COD和TP的去除效果,本研究中最优pH为3。

    图 1  pH对COD和TP去除的影响
    Figure 1.  Effect of pH on COD and TP removal
    H2O2+Fe2++H+Fe3++H2O+OH (7)

    2) H2O2投加量优化。如图2所示,H2O2投加量从1 g·L−1增加到4 g·L−1时,COD最高去除效率达77.75%。增加H2O2能分解产生更多的(·OH)量,有利于提高污染物去除率[18]。但由式(8)可知,H2O2过量会强化(·OH)与H2O2发生复合反应,造成产生的·OH湮灭,导致氧化能力下降;另一方面,过量H2O2分解的O2会携带小絮体上浮,形成浮泥[19]。TP的去除效率无较大波动,为97.50%~99.19%,TP出水浓度稳定在1 mg·L−1以下。故可由COD的去除效果判定H2O2投加量4 g·L−1为宜。由式(1)可得H2O2投加量为1.7 D。于常武等[11]的研究表明,在原水COD为3 280 mg·L−1、pH=3、n(COD/H2O2)=1∶3,即H2O2投加量为6 D时,COD去除率为86%。本研究中COD去除率虽然略低,但H2O2的相对投量比较低。

    图 2  H2O2投加量对COD和TP去除的影响
    Figure 2.  Effect of H2O2 dosage on COD and TP removal
    H2O2+OHH2O+HO2 (8)

    3) FeSO4·7H2O投加量优化。如图3所示,当催化剂Fe2+含量较少时,COD去除率不高。这是因为活性位点少,有效氧化剂(·OH)产生的速度较慢[20-21]。随着FeSO4·7H2O投加量的加大,产生更多(·OH),使体系内有机物的去除效率逐步提高。当投加量为5 g·L−1时,获得COD最高去除效率达84%。但投加量为4 g·L−1和5 g·L−1时,COD出水浓度只相差4 mg·L−1。氧化后生成的Fe3+是去除PO43-的主要物质,所以FeSO4·7H2O投加量与TP去除率的关系表现为正相关。但溶液中Fe2+过量时,会导致(·OH)不必要消耗,且Fe2+还会被氧化成有色的Fe3+,造成出水溶液偏棕黄色,增加废水的后续处理难度。综合反应效果及经济成本,FeSO4·7H2O投量4 g·L−1(H2O2/Fe2+摩尔比为8.2:1)为宜。陈烨等[8]Fenton氧化某汽车涂装废水,得到n(H2O2/Fe2+)=3时处理效果最优,COD去除率达71.4%;孙水裕等[12]在进水COD为1.5~2.5 g·L−1n(H2O2/Fe2+)=3时处理效果最优,COD去除率达75%左右;谢永华等[13]得到n(H2O2/Fe2+)=6时处理效果最优,COD去除率达到峰值53%左右。本实验得到的n(H2O2/Fe2+)=8.2,FeSO4·7H2O投药量更少且去除率更高,达80%,更具有优势。

    图 3  FeSO4·7H2O投加量对COD和TP去除的影响
    Figure 3.  Effect of FeSO4·7H2O dosage on COD and TP removal

    4)反应时间优化。如图4所示,在反应时间0~120 min内,COD去除率呈线性增长趋势,120 min时反应已基本完成,随后的COD去除率曲线逐渐趋于平缓。TP的去除率基本保持稳定,TP出水小于1 mg·L−1。当反应时间足够时,Fenton试剂与原水的分子接触碰撞概率较大,能使工艺处理效能最大化[22]。因此,确定本涂装废水的最佳氧化反应时间为120 min。

    图 4  反应时间对COD和TP去除的影响
    Figure 4.  Effect of reaction time on COD and TP removal

    当反应时间为120 min时,Fenton氧化已基本完成,TP去除率始终高于98%,因此反应时间、TP去除率不作为影响因素。仅以COD去除率为响应值Ƞ,利用响应曲面法研究pH、H2O2和FeSO4·7H2O对Fenton氧化涂装废水的影响,实验结果如表2所示。

    表 2  响应曲面法实验结果
    Table 2.  Experimental results of response surface method
    实验号A(pH)B(H2O2 /(g·L−1))C(FeSO4·7H2O /(g·L−1))COD去除率/%
    123467.54
    233372.93
    334481.65
    444374.77
    534481.19
    635576.97
    734482.26
    845473.98
    935371.74
    1044578.04
    1133569.16
    1234481.53
    1325468.82
    1434481.97
    1524573.53
    1643469.51
    1724372.16
     | Show Table
    DownLoad: CSV

    通过多元回归拟合,获得关于响应值Ƞ的回归方程(式(9))。其方差分析和显著性检验如表3所示。

    表 3  COD去除率的响应面模型方差分析极显著性检验
    Table 3.  Analysis of variance and extreme significance test of response surface model based on COD removal rate
    方差来源平方和自由度均方FP显著性
    模型422.83946.98163.020.000 1显著
    A25.70125.7089.190.000 1显著
    B19.41119.4167.340.000 1显著
    C4.6514.6516.140.005 1显著
    AB2.4012.408.340.023 4显著
    AC0.9010.903.130.120 1不显著
    BC20.25120.2570.270.000 1显著
    A2102.231102.23354.740.000 1显著
    B2197.711197.71686.040.000 1显著
    C219.78119.7868.640.000 1显著
    残差2.0270.29
    失拟1.3430.452.650.185 3不显著
    纯误差0.6840.17
    总和424.8516
     | Show Table
    DownLoad: CSV
    η=81.72+1.79A+1.56B+0.76C+0.78AB+0.48AC+2.25BC4.93AA6.85BB2.17CC (9)

    COD去除率响应面模型P<0.000 1,有极其显著的统计学差异;而失拟项P>0.05,不显著,回归模型显著可靠。根据模型中P值的显著性分析,A、B、BC、A2、B2、C2对COD响应值的影响为极显著;C、AB为显著影响;AC无显著影响。F值可以判断实验因素对实验结果的影响程度[23-24]。本研究中,各因素对Fenton氧化电动自行车涂装废水的影响显著性为pH>H2O2>FeSO4·7H2O。

    等高线可直观呈现反应条件之间交互作用的显著情况,越倾斜椭圆状则交互作用越强烈[25]。如图5(a)所示,当固定FeSO4·7H2O浓度时,响应值随H2O2浓度的增大呈现先升高后降低的明显变化,变化梯度较大。而当H2O2浓度稳定在投量区间时,响应值随FeSO4·7H2O浓度的增大而先升高后降低,但变化幅度小于H2O2图5(b)的紧密等高线和对角线方向的斜椭圆,表明H2O2和FeSO4·7H2O的交互作用非常显著,说明对Fenton氧化过程至关重要。由图5(c)和图5(d)可见,响应值随着H2O2和pH的升高而先增加后降低,陡峭的曲面证明了H2O2和pH存在一定的交互作用,pH对H2O2生成(·OH)有很大影响。由图5(e)和图5(f)可见,FeSO4·7H2O和pH交互作用的响应面陡峭程度相比于其他2个交互作用略平缓,表3方差分析也表明两者交互作用不突出。

    图 5  COD去除率的等高线图和三维图
    Figure 5.  Contour map and 3D map of COD removal rate

    通过响应曲面法得到Fenton完全氧化本涂装废水的最优条件为pH=3.21、H2O2为4.17 g·L−1(H2O2/COD质量比为4.17∶1)、硫酸亚铁为4.29 g·L−1(H2O2/Fe2+摩尔比为8∶1)、反应时间为120 min。对该实验条件进行了验证,得到实际的COD去除率为81.32%,与模型预测值82.15%仅相差1.01%。这表明式(8)可以较好地模拟Fenton完全氧化本废水的处理效果。

    图4反映了涂装废水COD随反应时间的变化,对其进行反应动力学拟合,结果如图6所示。涂装废水的Fenton 完全氧化反应与一级反应动力学拟合度最高,可决系数为0.996,与三级反应动力学拟合度最小,可决系数为0.879。因此,Fenton完全氧化电动自行车涂装废水的反应符合一级反应动力学(式(10))。

    图 6  反应级数线性拟合回归结果
    Figure 6.  Linear fitting regression results of reaction orders
    lnCtC0=0.0139t+2.698 39×10-4 (10)

    图7(a)所示,k值随着T的增大而升高,在15、25、35 ℃时,k分别为0.013 0、0.014 2、0.014 9 min−1。这是由于温度升高可提高(·OH)与有机物的碰撞概率,从而强化氧化效果。但在15~35 ℃,COD去除率并没有得到很大提升,仅提高了7%左右,表明季节变化对Fenton去除涂装废水的COD影响并不显著,无需加热措施,可节省运行成本。

    图 7  温度对COD去除的影响以及反应速率常数与温度的关系
    Figure 7.  Effect of temperature on COD removal and correlation between reaction rate constants k and temperature

    依据图7(b)计算可得反应活化能Ea为4.76 kJ·mol−1,频率因子A0为0.10 min−1Ea较低,说明反应较易进行,且温度对反应影响不大,Fenton降解涂装废水的降解速率的温度修正根据式(11)计算。

    k=0.10exp(4.76RT) (11)

    实际电动自行车涂装废水易受车间生产线等多方面的影响,其水质水量有波动,H2O2的投加量直接关系到废水的处理成本。单一的Fenton完全氧化工艺不仅经济成本高,且不能保证所有时刻的水质指标均稳定达标排放。故在实际工程中常将Fenton氧化作为预处理工艺,与生物方法耦合。Fenton半氧化工艺在去除一部分有机物的同时,改善废水可生化性,为后续生物处理创造有利条件。

    图8可见,当pH=3.21、n(H2O2/Fe2+)=8:1、反应时间为120 min时,随着H2O2投量的增加,废水中COD去除率升高,BOD5先升高后降低,废水B/C比升高。这说明芬顿氧化可以有效去除有机物,并且可较好地改善废水的可生化性。当H2O2为0.7 g·L−1时,COD去除率为25.1%,B/C比为0.22;当H2O2为1 g·L−1时,COD值由1 290 mg·L−1降低至742 mg·L−1,COD去除率为42.5%,B/C比从0.12提高至0.35;当H2O2为1.3 g·L−1时,COD去除率为48.9%,B/C比为0.33。一般认为,B/C>0.3的废水可利用生物处理。LI等[10]利用Fenton预处理工业喷涂废水,废水B/C由0.08增加到0.25,可使后续生物法更容易降解有机物。伊学农等[26]在研究Fenton预处理对汽车零部件涂装废水处理的过程中发现,当pH=3~4、FeSO4·7H2O投加量为1.68 g·L−1、H2O2投加量为2.05 g·L−1时,COD去除率为50%,B/C比由0.18提高到0.57,完全满足后续生化处理要求。韩勇刚[27]利用Fenton氧化喷漆废水,初始COD为2 927 mg·L−1,H2O2投加量为0.25 D,H2O2/FeSO4(质量比)为1.6∶1 时,COD去除率为17%,B/C比由0.31提高到0.49。以上研究结果说明,在一定的反应条件下,Fenton处理可以提高废水的B/C值。在本研究中,为节省药剂投加量,对于COD为1 290 mg·L−1的涂装废水,在pH=3.21、n(H2O2/Fe2+)=8:1、反应时间120 min,H2O2投加量为1 g·L−1,也即0.36 D(m(H2O2/COD)=0.78:1)时,经Fenton氧化后的出水可满足与生物处理耦合的要求。

    图 8  H2O2投量与COD、BOD5、B/C的关系
    Figure 8.  Effect of H2O2 dosage on COD、BOD5 and B /C

    Fenton全氧化常温降解系数k=0.014 2 min−1,H2O2投加量为1.7 D,根据式(9)可预测当pH=3.21、n(H2O2/Fe2+)=8:1、COD去除率为42.5%所需的反应时间为39 min。由2.4节可知,当pH=3.21、n(H2O2/Fe2+)=8:1、H2O2投加量为0.36 D ,COD去除率为42.5%的反应时间为120 min。虽然采用Fenton全氧化的条件进行半氧化,可使反应器体积减少67.5%,但投药量增加317%。因此,从长远看,减少投药量比减少反应体积更具经济优势。

    以实验所用废水的实际流量165 m3·d−1为例,评估Fenton全氧化处理工艺与Fenton半氧化预处理+生物处理耦合工艺的投资及运行成本。Fenton全氧化工艺的投资费用为53.5×104元,Fenton半氧化预处理+生物处理耦合工艺的投资费用为161.3×104[28]

    2种工艺的运行费用的差异主要包括电费、药剂费和污泥费,具体比较结果见表4。Fenton全氧化的总装机容量为138.24 kW,电费以0.8元计,则电费为0.76元·t−1;以COD为1 000 mg·L−1计,需688 kg·d−1 H2O2 ,707 kg·d−1 FeSO4·7H2O,药耗成本为7.94元·t−1;每2 d脱泥1次,污泥费用为3.1元·t−1。Fenton全氧化的运行费用合计为11.8元·t−1。吨水处理费用高,受水质波动影响大。

    表 4  Fenton全氧化与半氧化-生物处理运行费用比较
    Table 4.  Comparison of operation cost between Fenton alone treatment and Fenton-biological treatment 元·t−1
    处理工艺电费药剂费污泥费合计
    Fenton全氧化0.767.043.111.8
    Fenton半氧化-生物处理1.32.125.7
     | Show Table
    DownLoad: CSV

    Fenton半氧化耦合生物处理的总装机容量约为273.84 kW,则电费为1.3元·t−1;以COD为1 000 mg·L−1来计,双氧水用量165 kg·d−1,FeSO4·7H2O用量169 kg·d−1,药耗成本为2.1元·t−1;每3 d进行1次脱泥,污泥费用为2元·t−1。Fenton半氧化预处理+生物处理的运行费用合计为5.4元·t−1。日常运行费用低,工艺运行稳定,约2.8 a即可弥补投资高的不足。因此,Fenton半氧化耦合生物处理具有明显优势。

    1) Fenton完全氧化本涂装废水的最佳条件为pH=3、H2O2为4 g·L−1、FeSO4·7H2O为4 g·L−1、氧化反应时间为120 min,COD去除率达80.1%,TP去除率达98%。

    2)各因素对Fenton完全氧化涂装废水COD去除率影响的顺序为pH>H2O2>FeSO4·7H2O,H2O2与FeSO4·7H2O交互极显著,pH与H2O2交互显著,pH与FeSO4·7H2O交互不突出。最优条件为pH=3.21、m(H2O2/COD)为4.17:1、n(H2O2/Fe2+)为8:1、反应时间为120 min,η=81.72+1.79A+1.56B+0.76C+0.78AB+0.48AC+2.25BC-4.93AA-6.85BB-2.17CC,预测电动自行车涂装废水COD去除率为82.15%,实际COD去除率达81.32%,说明预测模型可靠。

    3) Fenton完全氧化电动自行车涂装废水符合一级动力学,室温(25 ℃)下降解系数k为0.014 2 min−1,反应活化能Ea为4.76 kJ·mol−1K=0.10exp(−4.76/RT)。

    4)综合经济效益和处理效果,Fenton处理电动自行车涂装废水的最佳反应条件为pH=3.21、n(H2O2/Fe2+)=8:1、反应时间120 min、H2O2投加量为理论投加量的0.36倍,在此条件下COD去除率为42.5%,B/C比可提高至0.35,可满足与生物处理耦合,更具经济优势。

  • 图 1  油基岩屑处理总体工艺流程

    Figure 1.  Overall process of oil-based cuttings treatment

    图 2  逆流提取环节工艺流程

    Figure 2.  Process flow of countercurrent extraction

    图 3  固相不同放大倍数下的扫描电镜图

    Figure 3.  SEM images of solid phase at different magnification

    图 4  不同萃取剂对萃取后油基岩屑含油率的影响

    Figure 4.  Influence of different extraction agents on oil content of the extracted oil-based cuttings

    图 5  萃取级数对萃取后油基岩屑含油率的影响

    Figure 5.  Influence of extraction series on oil content of the extracted oil-based cuttings

    图 6  液固比对萃取后油基岩屑含油率的影响

    Figure 6.  Influence of liquid-solid ratio on oil content of the extracted oil-based cuttings

    图 7  萃取时间对萃取后油基岩屑含油率的影响

    Figure 7.  Influence of extraction time on oil content of the extracted oil-based cuttings

    图 8  臭氧氧化时间对臭氧氧化后油基岩屑含油率的影响

    Figure 8.  Influence of time on oil content of ozone oxidized oil-based cuttings

    图 9  臭氧氧化温度对臭氧氧化后油基岩屑含油率的影响

    Figure 9.  Influence of temperature on oil content of ozone oxidized oil-based cuttings

    图 10  臭氧用量对臭氧氧化后油基岩屑含油率的影响

    Figure 10.  Influence of amount of ozone on oil content of ozone oxidized oil-based cuttings

    图 11  pH对臭氧氧化后油基岩屑含油率的影响

    Figure 11.  Influence of pH on oil content of ozone oxidized oil-based cuttings

    图 12  不同温度下的反应速率拟合图

    Figure 12.  Fitting diagram of reaction rates at different temperatures

    表 1  尾矿重金属含量

    Table 1.  Heavy metal content in tailing mg·kg−1

    重金属类别测定值GB 4284-2018 B级标准值
    镉及其化合物(以Cd计)<10<15
    汞及其化合物(以Hg计)0<15
    铅及其化合物(以Pb计)<160<1 000
    铬及其化合物(以Cr计)175<1 000
    砷及其化合物(以As计)<60<75
    铜及其化合物(以Cu计)260<1 500
    锌及其化合物(以Zn计)335<3 000
    镍及其化合物(以Ni计)80<200
    重金属类别测定值GB 4284-2018 B级标准值
    镉及其化合物(以Cd计)<10<15
    汞及其化合物(以Hg计)0<15
    铅及其化合物(以Pb计)<160<1 000
    铬及其化合物(以Cr计)175<1 000
    砷及其化合物(以As计)<60<75
    铜及其化合物(以Cu计)260<1 500
    锌及其化合物(以Zn计)335<3 000
    镍及其化合物(以Ni计)80<200
    下载: 导出CSV
  • [1] 李开环. 涪陵地区页岩气开采固体废物污染特性及资源化环境风险研究[D]. 重庆: 重庆交通大学, 2018.
    [2] MONIKA D, ANIL K, ANJANA J, et al. Assessment of hydrocarbon degradation potentials in a plant-microbe interaction system with oil sludge contamination: A sustainable solution[J]. International Journal of Phytoremediation, 2017, 19(12): 1085-1092. doi: 10.1080/15226514.2017.1328388
    [3] 罗振华, 梁泊, 李虎, 等. 我国页岩气开发环境影响评价模型研究[J]. 现代化工, 2017, 37(11): 10-16.
    [4] YUAN J H, LUO D K, XIA L Y, et a1. Policy recommendations to promote shale gas development in China based on a technical and economic evaluation[J]. Energy Policy, 2015, 85(4): 194-206.
    [5] 孙根行, 王丽芳, 符丹, 等. 废弃油基钻井岩屑焚烧处理基础[J]. 钻井液与完井液, 2017, 34(3): 59-63. doi: 10.3969/j.issn.1001-5620.2017.03.011
    [6] 郑婷婷, 涂妹, 刘莎丽, 等. 含油钻屑热解析及焚烧处理技术研究[J]. 化工管理, 2015, 2(4): 146-147. doi: 10.3969/j.issn.1008-4800.2015.04.075
    [7] 苏勤, 何青水, 张辉, 等. 国外陆上钻井废弃物处理技术[J]. 石油钻探技术, 2010, 12(9): 106-110.
    [8] 丛培超, 秦宗伦, 刘阳, 等. 页岩气钻井平台含油废弃物治理技术研讨[J]. 环保钻井液, 2014, 12(6): 144-150.
    [9] 谢水祥, 蒋官澄, 陈勉, 等. 利用化学强化分离-无害化技术处理废弃油基钻井液[J]. 环境工程学报, 2011, 5(2): 425-430.
    [10] 张博廉, 操卫平, 赵继伟. 油基钻井岩屑处理技术展望[J]. 当代化工, 2014, 5(12): 2603-2605. doi: 10.3969/j.issn.1671-0460.2014.12.038
    [11] 李赵, 杜国勇, 朱盟翔, 等. 超临界CO2萃取废弃油基钻屑的实验研究[J]. 安全与环保, 2016, 45(3): 93-96. doi: 10.3969/j.issn.1008-4495.2016.03.025
    [12] 单海霞, 何焕杰, 王中华, 等. 咪唑类离子液体对油基钻屑的处理[J]. 环境工程学报, 2017, 11(3): 1837-1841. doi: 10.12030/j.cjee.201511126
    [13] 国家市场监督管理总局, 中国国家标准化管理委员会. 农用污泥污染物控制标准: GB 4284-2018[S]. 北京: 中国标准出版社, 2018.
    [14] 仝坤, 宋启辉, 刘光全. 固废及土壤含油量检测方法研究进展[J]. 油气田环境保护, 2017, 27(6): 5-7. doi: 10.3969/j.issn.1005-3158.2017.06.002
    [15] AZIM A A A, ABDUL-RAHEIM A R M, KAMEL R K, et al. Demulsifier systems applied to breakdown petroleum sludge[J]. Journal of Petroleum Science and Engineering, 2011, 78(2): 364-370. doi: 10.1016/j.petrol.2011.07.008
    [16] KHAIRUTDINOV V F, AKHMETZYANOV T R, GABITOV F R, et al. Extraction of oil-products from oil sludge with the use of liquid and supercritical fluid extraction processes with propane-butane extractant[J]. Petroleum Science and Technology, 2016, 34(4): 372-378. doi: 10.1080/10916466.2015.1136951
    [17] 秦宏, 马金鞍, 王擎, 等. 热化学清洗与溶剂萃取法处理页岩油泥[J]. 环境工程学报, 2016, 10(2): 851-857. doi: 10.12030/j.cjee.20160254
    [18] ALTENOR S, CARENE B, EMMANUE E, et al. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1029-1039.
    [19] WANG D, XU H D, MA J, et al. Strong promoted catalytic ozonation of atrazine at low temperature using tourmaline as catalyst: Influencing factors, reaction mechanisms and pathways[J]. Chemical Engineering Journal, 2018, 354(6): 113-125.
    [20] BAI Z Y, YANG Q, WANG J L. Catalytic ozonation of sulfamethazine antibiotics using Fe3O4/multiwalled carbon nanotubes[J]. Environmental Progress & Sustainable Energy, 2018, 37(2): 678-685.
    [21] ZHANG T, MA J. Catalytic ozonation of trace nitrobenzene in water with synthetic goethite[J]. Journal of Molecular Catalysis A: Chemical, 2008, 279(1): 82-89. doi: 10.1016/j.molcata.2007.09.030
    [22] TISA F, RAMAN A A A, DAUD W M A W. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review[J]. Journal of Environmental Management, 2014, 146(4): 260-275.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.1 %DOWNLOAD: 8.1 %HTML全文: 84.1 %HTML全文: 84.1 %摘要: 7.8 %摘要: 7.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.5 %其他: 94.5 %XX: 4.0 %XX: 4.0 %上海: 0.2 %上海: 0.2 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.4 %北京: 0.4 %天津: 0.1 %天津: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.1 %成都: 0.1 %海东: 0.1 %海东: 0.1 %郑州: 0.1 %郑州: 0.1 %阳泉: 0.1 %阳泉: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %其他XX上海内网IP北京天津宝鸡惠州成都海东郑州阳泉马鞍山Highcharts.com
图( 12) 表( 1)
计量
  • 文章访问数:  3493
  • HTML全文浏览数:  3493
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-09
  • 录用日期:  2019-05-17
  • 刊出日期:  2020-01-01
陈红硕, 刘阳生. 逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果[J]. 环境工程学报, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064
引用本文: 陈红硕, 刘阳生. 逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果[J]. 环境工程学报, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064
CHEN Hongshuo, LIU Yangsheng. Effect of countercurrent extracting+ozone oxidation combined process treating oil-based cuttings[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064
Citation: CHEN Hongshuo, LIU Yangsheng. Effect of countercurrent extracting+ozone oxidation combined process treating oil-based cuttings[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 209-216. doi: 10.12030/j.cjee.201903064

逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果

    作者简介: 陈红硕(1988—),男,博士研究生,工程师。研究方向:固废处置。E-mail:chenhongshuo2011@163.com
  • 北京大学环境科学与工程学院,北京 100871
基金项目:
国家自然科学基金资助项目(21077002)

摘要: 为解决页岩气开采过程中产生的油基岩屑的资源化、无害化处理问题,采用逆流萃取+臭氧氧化联合的方法对其进行处理,并分别对逆流萃取、臭氧氧化环节的工艺参数进行了优化。结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由原始的39.42%降低到0.18%,达到了GB 4284-2018中规定的处置要求,处理过程中回收的油分可重新用于配制钻井液。通过对油基岩屑固相的表征,发现其具备臭氧催化氧化催化剂的明显特征,是一种天然的臭氧催化氧化催化剂,并从反应动力学角度对臭氧氧化环节的反应特性进行了定量分析。结果表明,其满足一级反应动力学特征,反应活化能为6.194 kJ·mol−1。以逆流萃取+臭氧氧化为核心的联合工艺为油基岩屑的资源化、无害化处理提供了参考。

English Abstract

  • 在页岩气的开采过程中,产生了大量的油基岩屑,典型单井产生的油基岩屑可高达150~220 m3[1]。由于油基岩屑中含有多环芳烃、重金属、蒽、芘、酚类等物质[2],在长期堆放而不及时处理的情况下,会对周边的地下水、土壤以及大气产生严重污染,从而可进一步影响动植物的正常生长及人类的健康[3]。我国已将其列入《国家危险废物目录》,隶属于其中的HW08大类[4]。油基岩屑的高效、环保处理已成为制约页岩气开采的一个重要因素[3]

    在油基岩屑处理领域,目前常见的处理工艺主要包括焚烧处理工艺[5-6]、热脱附处理工艺[7-8]、热水洗处理工艺[9-10]以及萃取处理工艺[11-12]等4种工艺。相比较而言,焚烧处理工艺不能实现对油基岩屑中油分的回收利用,造成资源的浪费,且在焚烧过程中会产生NOx、SOx等二次污染物[12];热脱附工艺存在着易结焦、能耗高且经其处理后的油基岩屑无合理用途等缺陷[1];单纯的热水洗工艺仅能实现油基岩屑的资源化、减量化目标,难以达到无害化的处理要求[10];传统的萃取工艺存在着溶剂用量大、运行成本高且处理后的油基岩屑无法满足无害化目标等不足[10-11]。开发一种高效、环保且可实现资源化与无害化双重目标的油基岩屑处理技术已成为油基岩屑处理领域的一个关键难题[1]

    为解决油基岩屑的资源化、无害化处理问题,研究了以逆流萃取+臭氧氧化为核心的联合工艺的处理效果,并分别对逆流萃取、臭氧氧化环节的工艺参数进行了优化。结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由原始的39.42%降低到0.18%,达到了GB 4284-2018中规定的处置要求[13],处理过程中回收的油分可重新用于配制钻井液。以逆流萃取+臭氧氧化为核心的联合工艺为油基岩屑的资源化、无害化处理提供了一种参考。

  • 实验的主要原料包括氢氧化钠(NaOH)、盐酸(HCl)、正己烷(C6H14)、甲苯(C7H8)、碳酸钠(Na2CO3),均为分析纯;四氯化碳(CCl4)为色谱级;石油醚、石脑油,均为工业级;所用油基岩屑来源于某页岩气开采井场。

  • 实验装置包括分析天平(AL104型,上海梅特勒-托利仪器公司)、真空烘箱(DZF-1B型,长沙金拓实验器材有限公司)、机械搅拌装置(E60-H型,上海欧河机械设备有限公司)、红外测油仪(ET1200型,上海欧陆科仪有限公司)、旋转蒸发仪(RE-52AA型,上海亚荣生化仪器厂)、台式离心机(TGL-10B型,上海安亭科学仪器厂)、水浴锅(HH-11-1型,常州蒙特仪器制造有限公司)、臭氧发生器(RQ-A-5型,山东瑞清臭氧设备有限公司)、孟氏洗瓶(1313型,泰兴市铭泰科教仪器设备有限公司)。

  • 将油基岩屑搅拌均匀后,称取250 g加入到2 000 mL的烧杯中,按照设定好的液固比(萃取剂与油基岩屑的质量比)加入萃取剂,搅拌均匀后,将烧杯放入水浴锅,设定好萃取级数、萃取温度、萃取时间等条件后,完成逆流萃取实验。实验结束后,进行连续分离操作,分离出来的油分进行回收,萃取剂进行回用,分离出来的油基岩屑放入到真空烘箱(−0.1 MPa,60 ℃)烘干后,取出5 g进行含油率的测试实验,剩余部分作为臭氧氧化环节的用料。

    将逆流萃取处理后的油基岩屑加入到孟氏洗瓶中,调整液固比为3∶1,采用HCl或NaOH对其pH进行调节后,将孟氏洗瓶放入水浴锅中进行臭氧氧化实验。臭氧氧化实验结束后,将孟氏洗瓶中的浆液在3 000 r·min−1的离心条件下完成固液分离操作,液相进行回用,固相(尾矿)在真空烘箱(−0.1 MPa,60 ℃)烘干后,测试含油率。总体工艺流程如图1所示,其中逆流提取环节的工艺流程如图2所示。

  • 油基岩屑的含水率采用烘干法[14]进行测试,含油率采用索氏抽提-分光光度法[13]进行测试,含固率采用差量法[15]进行测试,油分中的元素组成采用元素分析仪来进行测定,其中C、H、N、S等4种元素的含量通过燃烧色谱法[15]来定量分析,O含量通过差量法[16]来测定。

    油基岩屑固相的表面形态由扫描电子显微镜(SEM)法[17]进行分析;催化剂的组分与比例情况由X-ray fluorescence(XRF)法[18]进行分析;催化剂的零电荷点pH(pH of zero point charge,pHpzc)根据文献中提到的方法[17]进行测定,比表面积、孔径和孔体积等参数采用氮气吸附/解吸的方法[19]进行研究。

  • 实验研究中所用到的油基岩屑外观呈油黑色且伴有明显的油味,其三相组成为39.42%油相、0%水相、60.58%固相。油基岩屑中油分的密度、黏度、pH依次为0.917 6 g·cm−3、38.72 mm2·s−1、8.75。油分的元素分析依次为82.06% C、14.54% H、1.96% O、0.35% N、1.09% S。说明其油分具有较高的回收利用价值。基于此,在工艺的定型过程中,先采用逆流萃取的方式将其大部分油分进行回收利用,实现资源化目标,针对残余的难以清洗的油分,进一步采用臭氧氧化的方式进行无害化处理。

  • 采用SEM、XRF和BET等手段分别对油基岩屑固相的表面形态、化学组成及比表面积、孔径和孔体积等参数进行了表征。结果表明,该油基岩屑表面具有较多的孔结构,其平均孔径为22.35 nm,属于介孔范畴,孔体积为1.06 cm3·g−1,其比表面积为240.20 m2·g−1。其化学组成为SiO2 65.75%,Al2O3 19.32%,CaO 5.56%,Fe2O3 3.52%,MgO 1.55%,Na2O 1.67%,K2O 2.10,其他0.53%。其中Fe、Al、Na、K等均为臭氧催化剂所需要的活性金属元素[19],是一种天然的臭氧催化剂。基于此,采用臭氧氧化的方式作为其深度处理的方法,以实现其无害化目标。图3为扫描电镜图。

  • 1)不同萃取剂对萃取后油基岩屑含油率的影响。在萃取剂与油基岩屑质量比(液固比)为3∶1、萃取时间为30 min的条件下,研究了复合萃取剂、甲苯、石油醚、石脑油和正己烷5种不同萃取剂对萃取效果的影响,萃取结果如图4所示。可以看出,5种萃取剂均在40 ℃左右取得最佳的萃取效果,其中甲苯的萃取效果最优,为3.24%,复合萃取剂次之,为3.85%,考虑到二者的萃取效果相差不多,但甲苯的危险性较高,因此,确定复合萃取剂为萃取环节的优选萃取剂。

    2)萃取级数对萃取后油基岩屑含油率的影响。在萃取温度为40 ℃、液固比为3∶1、萃取时间为30 min的条件下,研究了萃取级数对萃取效果的影响,依次设定萃取级数为1~5级,萃取结果如图5所示。可以看出,当萃取级数增加到3级时,萃取效果开始趋于稳定,后续进一步增加萃取级数,含油率变化不明显。因此,将最佳萃取级数定为3级。

    3)液固比对萃取后油基岩屑含油率的影响。在萃取温度为40 ℃、萃取级数为3级、萃取时间为30 min的条件下,研究了液固比对萃取效果的影响,萃取结果如图6所示。可以看出,最佳液固比为3∶1。

    4)萃取时间对萃取后油基岩屑含油率的影响。在萃取温度为40 ℃、萃取级数为3级、液固比为3∶1的条件下,进一步研究了萃取时间对萃取效果的影响,结果如图7所示。可以看出,最佳萃取时间为30 min。综上,确定出萃取段的最优条件为萃取温度40 ℃、液固比3∶1、萃取时间30 min,由图7可以看出,在最优条件下,经萃取后的油基岩屑含油率可降低到3.85%。

  • 1)臭氧氧化时间对臭氧氧化后油基岩屑含油率的影响。在臭氧氧化温度为45 ℃、pH为9、臭氧通量为3.5 mg·min−1的条件下,研究了臭氧氧化时间对臭氧氧化效果的影响,结果如图8所示。由图8可以看出,随着臭氧氧化时间的增加,油基岩屑的含油率整体呈先逐步降低后趋于平缓的趋势,在30 min之前,油基岩屑的含油率变化较为明显,30 min之后,变化逐步平缓。综合考虑处理效果与处理成本,确定臭氧氧化段的适宜处理时间为30 min。

    2)臭氧氧化温度对臭氧氧化后油基岩屑含油率的影响。在pH为9、臭氧用量为3.5 mg·min−1、臭氧氧化时间为30 min的条件下,研究了臭氧氧化温度对臭氧氧化效果的影响,结果如图9所示。由图9可以看出,随着温度的升高,油基岩屑的含油率呈先降低后又逐步升高的趋势,其拐点出现在45 ℃左右。出现这种现象的原因是由于提高臭氧氧化过程的反应温度有助于臭氧分子的分解,以产生活性更高的·OH,从而加强去油的效果;但当溶液中·OH过量时,会发生淬灭反应,并且随着温度的升高,臭氧在水中的溶解度也会呈逐渐降低的趋势[20],这2个方面导致了温度超过45 ℃后,油基岩屑含油率不降反升。因此,确定臭氧氧化段的最佳温度为45 ℃。

    3)臭氧用量对臭氧氧化后油基岩屑含油率的影响。在pH为9、臭氧氧化时间为30 min、臭氧氧化温度为45 ℃的条件下,研究了臭氧用量对臭氧氧化效果的影响,结果如图10所示。由图10可以看出,在臭氧用量由1.5 mg·min−1逐步增加到3.5 mg·min−1的过程中,油基岩屑的含油率呈快速降低的趋势,出现这种现象的原因是:在1.5~3.5 mg·min−1,随着臭氧浓度的增加,溶液中的O3和·OH都会快速增加,加强了油基岩屑中油分的分解;进一步增加臭氧用量,在3.5~5.5 mg·min−1,油基岩屑含油率的变化不再明显,主要是由于溶液中O3达到了饱和状态。因此,确定臭氧的最佳用量为3.5 mg·min−1

    4) pH对处理效果的影响。在臭氧用量为3.5 mg·min−1、臭氧氧化温度为45 ℃、臭氧氧化时间为30 min的条件下,研究了pH对臭氧氧化效果的影响,结果如图11所示。由图11可以看出,在pH为3~11时,油基岩屑含油率的整体变化趋势为先升高后降低再逐步平缓。pH能够影响含油率,主要是由于OH 能够引发O3分解产生·OH[21],此外,pH还能决定水分子中或油基岩屑固相表面的羟基带电情况[20],即当溶液的pH高于催化剂的零点电荷pH时,催化剂的表面将会发生去质子化反应,反之将会发生质子化反应。在较低的pH范围内,反应以单独的O3作用为主,随着pH的升高,·OH的作用逐渐加强[21],这2种作用的相互抑制导致了pH在3~5内油基岩屑的含油率不降反升。随着pH的进一步升高,·OH的产生量逐步增多,其反应优势逐步体现,因此,在pH为5~9内,油基岩屑的含油率快速降低,但当·OH的量增大到一定程度后,其相互之间会发生淬灭反应,这导致pH大于9之后,油基岩屑含油率的变化呈平缓的趋势。因此,确定臭氧氧化段的最佳pH为9。

  • 图12可以看出,油基岩屑的臭氧氧化过程满足一级反应动力学规律。根据Arrhenius公式(式(1))以及一级反应动力学方程[22](式(2)),可以求出该臭氧氧化过程的反应速率常数k及反应的活化能Ea,求解结果:臭氧氧化段的反应活化能为6.194 kJ·mol−1,35 ℃下的反应速率为0.076 min−1,45 ℃下的反应速率常数k为0.082 min−1

  • 臭氧氧化后的油基岩屑(尾矿)经过真空烘干后,进行了含油率及常见重金属元素含量的测试分析实验。尾矿含油率的测试结果为0.18%,达到了GB 4284-2018中规定的0.3%的处理要求[13];重金属的检测结果见表1,可以看出,尾矿中各项重金属的含量满足了GB 4284-2018中的B级标准[13]

  • 1)以逆流萃取+臭氧氧化为核心的联合工艺较好地解决了页岩气开采过程中产生的油基岩屑的处理难题,为油基岩屑的无害化、资源化处理提供了一种参考。

    2)逆流萃取段的最佳工艺参数为萃取温度40 ℃、液固比3∶1、萃取时间30 min。在此条件下,经萃取后的油基岩屑含油率可由最初的39.42%降低到0.18%。臭氧氧化段的最佳工艺参数为臭氧氧化温度45 ℃、臭氧氧化时间30 min、臭氧用量3.5 mg·min−1、pH 9。在此条件下,经臭氧氧化处理后的油基岩屑含油率可降低到0.18%,达到了GB 4284-2018中规定的0.3%的处理要求,且各项重金属含量也完全满足了GB 4284-2018中的B级标准。

    3)通过对油基岩屑固相的表征,发现其具有比表面积大、孔隙度高,且Fe、Al、Na、K等活性金属元素丰富的特征,是一种天然的臭氧氧化用催化。该臭氧氧化过程满足一级反应动力学模型,其反应活化能为6.194 kJ·mol−1

参考文献 (22)

返回顶部

目录

/

返回文章
返回