-
印染废水具有高化学需氧量、高色度的特点,含有大量“三致”毒性的难降解有机污染物,是一种很难处理的废水[1]。现阶段,国内外处理印染废水的方法有吸附法、高级氧化法和膜过滤等[2]。纳米氧化锰八面体分子筛(manganese oxide octahedral molecular sieve,OMS-2)含有不同价态的Mn 离子,结构上又是多孔形貌,具备良好的离子交换性[3],作为高级氧化技术中的一种,纳米催化剂在近年获得广泛的关注[4];DUAN 等[5]采用OMS-2/PMS 体系,研究酸性橙II(AO7)在可见光下的降解,发现OMS-2/PMS能明显提高印染废水的脱色率。喻阳等[2]采用磁性OMS-2/SBR耦合处理活性染料X-3B废水发现,发现处理磁性OMS-2在酸性条件下,催化PMS氧化去除X-3B的效果较好。
但是,纳米OMS-2这一类人工纳米材料(manufactured nanomaterials,MNMs)释放到水体后,在水环境中会发生一系列的行为变化,如分散-团聚-沉降-再悬浮、吸附-解吸-被吸附、生物黏附-吞食-累积-放大等[6]。微生物在城市污水处理厂(wastewater treatment plants,WWTPs)的污水生物处理系统中发挥着至关重要的作用,WWTPs的处理效率很大程度上取决于微生物群落的组成和活性。现阶段,已有研究表明,在WWTPs中检出了纳米TiO2[7],这些MNMs独特的物理化学属性可能给污水生物处理的效果带来难以预料的影响,其与污泥的相互作用可能会对污水处理效能和微生物特性产生影响。CHEN等[8]发现,暴露于50 mg·L−1纳米Al2O3颗粒后,大量吸附于活性污泥表面的纳米Al2O3颗粒降低了反硝化菌的数量。LIANG等[9]发现,经过纳米Ag颗粒的冲击负荷后,氨氧化菌和亚硝化菌的数量均出现降低,而硝化菌则完全消失。SIMONIN等[10]研究发现,纳米TiO2能显著影响硝化菌及反硝化菌的活性及丰度,而亚硝酸盐氧化菌的活性则基本不受纳米TiO2投加量的影响。
本研究在前期研究的基础上,针对纳米材料残留对污水生物处理系统混合菌群影响尚未明确的问题,将不同浓度的纳米OMS-2混入序批式反应器(sequencing batch reactor,SBR)中,探讨纳米OMS-2对SBR运行情况和活性污泥微生物菌群的影响,为MNMs的实际应用和环境风险的研究提供参考。
基于高通量测序的OMS-2对序批式反应器系统微生物群落的影响
Effect of OMS-2 on microbial community of SBR system through high-throughput sequencing
-
摘要: 随着纳米材料的广泛应用,越来越多的纳米材料随着废水进入污水处理厂,纳米材料对污水生物处理系统的潜在影响越来越受到重视。探讨了氧化锰八面体分子筛(manganese oxide octahedral molecular sieve, OMS-2)纳米颗粒对序批式反应器(sequencing batch reactor,SBR)中活性污泥微生物群落结构的影响;以活性艳红X-3B溶液模拟印染废水,将不同浓度的OMS-2混入稳定运行的SBR中,采用Illumina MiSeq高通量测序分析技术,对不同SBR中微生物分布规律进行了研究。结果表明:SBR添加0.25 g·L−1的OMS-2后,其COD去除率和脱色率分别提升了6%和13.6%;Illumina MiSeq高通量测序显示,在混入0.25 g·L−1的OMS-2后,SBR内污泥菌群中拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria)的微生物DNA序列操作分类单元(operational taxonomic units,OTU)分别增加了16.8%和96.4%,这2类菌种可能提升了SBR降解有机污染物的能力;不同浓度的OMS-2改变了菌群的多样性和结构,低浓度的OMS-2可以提升微生物菌群的多样性和改变菌群的结构。X射线光电子能谱(XPS)分析表明,OMS-2在SBR中存在锰(Ⅳ)/锰(Ⅲ)转变为锰(Ⅱ)的氧化还原反应,该过程可能影响了菌群的组成。研究为纳米材料的实际应用和环境风险提供了参考。Abstract: With widely using of the nano-particles, more and more nano-particles have entered the sewage treatment plant with wastewater, and more and more attentions have been paid to the potential impact of nano-particles on sewage biological treatment system. In this study, the effects of nano manganese oxide octahedral molecular sieve (OMS-2) nanoparticles on the microbial community in activated sludge of sequencing batch reactor (SBR). The dyeing and printing wastewater was simulated by X-3B, and different dosages of nano OMS-2 were added into SBR. The microbial distribution rules in different SBRs were studied by the Illumina MiSeq high-throughput sequencing of 16S rRNA gene. Results showed that the COD removal and decolorization increased by 6% and 13.6%, respectively, at OMS-2 dosage of 0.25 g·L−1 in the SBR, and the OTU of Bacteroidetes and Proteobacteria increased by 16.8% and 96.4%, respectively, based on the Illumina MiSeq high-throughput sequencing of 16S rRNA gene, and these two types of microorganisms could enhance the ability of organic pollutants degradation by SBR. Moreover, the small dosage of nano OMS-2 could enhance the microbial diversity and alter the community structure. The X-ray photoelectron spectroscopy illustrated that the redox reaction of Mn(Ⅳ)/Mn(Ⅲ) to Mn(Ⅱ) in nano OMS-2 occurred in the SBR, and in turn affected the microbial community. This study provides innovative ideas for the practical application of nano-particles and their environmental risks assesment.
-
表 1 不同SBR中细菌多样性指数的变化
Table 1. Change of microbial diversity indices in different SBRs
样品 有效序列 ACE指数 Chao1指数 Simpson指数 Shannon指数 S0 42 460 801.90 785.64 0.92 5.16 S1 34 409 805.63 833.05 0.95 5.73 S2 41 819 1 436.40 1 404.69 0.96 7.92 S3 52 657 694.18 682.19 0.59 2.82 -
[1] 钟笑涵, 喻阳, 刘思莹, 等. 纳米零价铁/EGSB耦合深度处理印染废水的研究[J]. 环境科学与技术, 2016, 39(5): 80-84. [2] 喻阳, 钟笑涵, 徐爱华, 等. 磁性OMS-2/SBR耦合处理活性染料X-3B废水[J]. 环境工程学报, 2016, 10(10): 5555-5560. doi: 10.12030/j.cjee.201504029 [3] LUO S L, DUAN L, SUN B, et al. Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2015, 164: 92-99. doi: 10.1016/j.apcatb.2014.09.008 [4] PAN F, YU Y, XU A, et al. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community[J]. Journal of Hazardous Materials, 2017, 340: 36-46. doi: 10.1016/j.jhazmat.2017.06.062 [5] DUAN L, SUN B, WEI M, et al. Catalytic degradation of acid orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation[J]. Journal of Hazardous Materials, 2015, 285: 356-365. doi: 10.1016/j.jhazmat.2014.12.015 [6] KISER M A, RYU H, JANG H, et al. Biosorption of nanoparticles to heterotrophic wastewater biomass[J]. Water Research, 2010, 44: 4105-4114. doi: 10.1016/j.watres.2010.05.036 [7] 李慧婷, 崔福义. 长期暴露下纳米TiO2对厌氧颗粒污泥体系稳定性的影响[J]. 环境科学, 2017, 38(12): 5229-5236. [8] CHEN Y, SU Y, ZHENG X, et al. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure[J]. Water Research, 2012, 46: 4379-4386. doi: 10.1016/j.watres.2012.05.042 [9] LIANG Z, DAS A, HU Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment system[J]. Water Research, 2010, 44: 5432-5438. doi: 10.1016/j.watres.2010.06.060 [10] SIMONIN M, MARTINS J M F, ROUX X L, et al. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose-response relationships[J]. Nanotoxicology, 2017, 11: 247-255. doi: 10.1080/17435390.2017.1290845 [11] PAN F, XU A, XIA D, et al. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor[J]. Water Research, 2015, 87: 127-136. doi: 10.1016/j.watres.2015.09.022 [12] PAN F, LIU W, YU Y, et al. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment[J]. Scientific Reports, 2016, 6: 37518. doi: 10.1038/srep37518 [13] 吴晓玉, 储炬, 李昌灵, 等. Mn2+对菌株Y57生长及合成冠毒素的影响[J]. 江西农业大学学报, 2007, 29(5): 827-829. doi: 10.3969/j.issn.1000-2286.2007.05.029 [14] SHU D, HE Y, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015, 196: 621-633. doi: 10.1016/j.biortech.2015.07.107 [15] 赵诗惠, 吕亮, 蒋志云, 等. ABR-MBR组合工艺短程硝化过程的微生物种群[J]. 中国环境科学, 2018, 38(2): 566-573. doi: 10.3969/j.issn.1000-6923.2018.02.019 [16] 陈重军, 张海芹, 汪瑶琪, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学, 2016, 37(7): 2652-2658. [17] BARCZYNSKA R, SLIZEWSKA K, LITWIN M, et al. The effect of dietary fibre preparations from potato starch on the growth and activity of bacterial strains belonging to the phyla Firmicutes, Bacteroidetes, and Actinobacteria[J]. Journal of Functional Foods, 2015, 19: 661-668. doi: 10.1016/j.jff.2015.10.001 [18] PAN F, ZHONG X, XIA D, et al. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community[J]. Scientific Reports, 2017, 7: 44626. doi: 10.1038/srep44626 [19] KONG Y, XIA Y, NIELSEN J L, et al. Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant[J]. Microbiology, 2007, 153: 4061-4073. doi: 10.1099/mic.0.2007/007245-0 [20] 端正花, 潘留明, 陈晓欧, 等. 低温下活性污泥膨胀的微生物群落结构研究[J]. 环境科学, 2016, 37(3): 1070-1074. [21] NADAIS H, BARBOSA M, CAPELA I, et al. Enhancing wastewater degradation and biogas production by intermittent operation of UASB reactors[J]. Energy, 2011, 36: 2164-2168. doi: 10.1016/j.energy.2010.03.007 [22] 隋心, 张荣涛, 许楠, 等. 三江平原不同退化阶段小叶章湿地土壤真菌群落结构组成变化[J]. 环境科学, 2016, 37(9): 3598-3605. [23] JAKUBOVICS N S, JENKINSON H F. Out of the iron age: New insights into the critical role of manganese homeostasis in bacteria[J]. Microbiology, 2001, 147: 1709-1718. doi: 10.1099/00221287-147-7-1709 [24] 周娜娜, 柏耀辉, 梁金松, 等. Pseudomonas sp. QJX-1的锰氧化特性研究[J]. 环境科学, 2014, 35(2): 740-745.