-
脉冲喷吹清灰除尘器通常被很多行业用于控制空气污染,如电力生产、煤矿挖掘[1]。灰尘通过烟气管道进入袋式除尘器而被滤袋收集,形成灰尘饼,由于灰尘的连续堆积,须定期对灰尘饼进行清洁[2]。脉冲喷吹清灰能周期性地进行定期清洁,所以这种清灰方式有着广泛的应用[3]。
在脉冲喷吹清灰时,脉冲阀释放一个短脉冲(50~150 ms),将干净的压缩空气分配到吹扫管的众多喷嘴中。每个喷嘴朝向滤袋开口端上方,压缩空气通过喷嘴的作用发生膨胀,形成脉冲射流,同时在脉冲射流周围的邻近区域,射流气体会夹带周围空气,与脉冲射流一同进入滤袋中,对滤袋进行清洁。关于脉冲喷吹清灰的研究有很多,多数都集中在高压清灰上,建立的CFD模型也仅仅是二维模型[4-6]。QIAN等[4]通过建立喷嘴与滤袋开口之间的最佳距离数值模型,研究了高压(0.6 MPa)清洁的清灰效果;万凯迪等[5]通过建立二维滤袋模型,研究了PPS针刺毡滤袋在高压(0.45 MPa)喷吹下的清灰效果;HAJEK[6]建立二维轴对称单滤袋模型,在不考虑射流偏移的情况下研究清灰效果。
近年来,人们对低压脉冲喷吹清灰的研究越来越感兴趣。低压清洁在0.2~0.3 MPa的罐压下运行,而传统的高压清洁可在更高的压力下运行,通常为0.4~0.7 MPa。本研究通过建立完整的三维CFD模型,考虑射流偏移,分析射流特性,并通过实际的实验测量验证了三维CFD模型的正确性;同时,使用三维CFD模型研究了低压(0.2 MPa)下不同喷嘴和文丘里管的设计对清灰效果的影响,为低压清灰系统的设计提供了参考。
低能耗脉冲喷吹袋式除尘器的三维数值模拟及工程应用
Three-dimensional numerical simulation and engineering application of pulse-jet cleaning bag filter under low energy consumption
-
摘要: 以袋式除尘器装置为研究对象,考虑射流偏移,建立了脉冲喷吹清洁的三维CFD数值模型,并进行实验验证;对喷嘴与文丘里管优化设计,修改数值模型,研究了低能耗下的脉冲喷吹清灰效果;在将改进的喷嘴与文丘里管进行工程应用的过程中,研究了其对大气粉尘排放的影响。结果表明,建立的三维CFD模型展现出了高瞬态行为和可压缩效应,即在射流中表现出涡流环与冲击单元现象。与孔喷嘴相比,改进后的喷嘴设计对射流偏移进行了调整,并且使滤袋内脉冲压力增加了5.1%~13.3%,提升了清灰效果。对比喉部直径为85 mm的文丘里管,无文丘里管的设计使得射流不易进入滤袋中,导致滤袋内脉冲压力降低了41.4%~46.3%,引起清灰效果的下降;减小文丘里管喉部直径,可以减少回流,提升滤袋内脉冲压力,改善清灰效果。对比原始装置,安装了改进喷嘴与文丘里管的袋式除尘器能明显降低大气粉尘排放,以上研究结果可为脉冲喷吹清灰除尘器的优化设计提供参考。Abstract: In this study, the bag filter device was taken as the research object, a three-dimensional CFD numerical model of pulse-jet cleaning was established and proved by experiments under the consideration of jet misalignment. In the validated CFD model, the pulse-jet cleaning under low energy consumption has been studied by optimizing the design of the nozzle and Venturi tube and modifying the numerical model. The improved nozzle and Venturi tube were used in actual engineering to study their effects on dust emissions. The results illustrated that the validated CFD model revealed a highly transient behavior and the compressible effects, that was the formation of vortex rings and the shock cell phenomenon within the jet. Compared with the hole nozzle, the improved design of nozzle had an appropriate adjustment to the jet misalignment, which led to the increase of the pulse-pressure in the filter bag by 5.1%~13.3% and the cleaning efficiency improvement. Compared with a Venturi tube with the throat diameter of 85 mm, the design with no Venturi tube could result in difficult entering the filter bag of the jet, which led to the decrease of the pulse-pressure in the filter bag by 41.4%~46.3% and a decrease in the cleaning efficiency. Also, the reduction of the throat diameter of Venturi tube could reduce backflow, elevate the pulse- pressure in the filter bag and improve the cleaning efficiency. Compared with the original device, a bag filter with improved nozzle and Venturi tube can significantly reduce dust emissions. This study can provide reference for the optimal design of pulse-jet cleaning bag filter..
-
表 1 不同喷嘴的峰值压力
Table 1. Peak pressure of different nozzles
位置 孔喷嘴/Pa 改进喷嘴/Pa 增长率/% 顶部 3 117 3 277 5.1 中部 2 127 2 331 9.6 底部 2 399 2 718 13.3 表 2 不同文丘里设计的滤袋峰值压力
Table 2. Peak pressure for different Venturi designs
文丘里管 顶部 中部 底部 压力/kPa 增长率/% 压力/kPa 增长率/% 压力/kPa 增长率/% 喉径85 mm 2 896 — 1 990 — 2 275 — 喉径65 mm 3 117 7.6 2 127 6.9 2 399 5.5 无文丘里 1 556 −46.3 1 142 −42.6 1 334 −41.4 注:—表示喉径85 mm的文丘里管与自身比较,无增长率变化。 表 3 平均粉尘排放浓度和平均峰值粉尘浓度
Table 3. Mean dust emission and mean peak dust concentration
mg·m−3 喷嘴与文丘里管类型 平均粉尘
排放浓度平均峰值
粉尘浓度孔喷嘴、无文丘里管 0.66 13.43 改进的喷嘴、喉径65 mm文丘里管 0.51 9.15 -
[1] 周心澄, 黄治军, 潘丹萍, 等. 燃煤电站超低排放烟气颗粒物排放测试及特性分析[J]. 东南大学学报(自然科学版), 2018, 48(2): 240-247. doi: 10.3969/j.issn.1001-0505.2018.02.008 [2] 李建龙, 王安琪, 范博, 等. 除尘器脉喷清灰影响阶段的粉尘分级排放特征[J]. 安全与环境学报, 2018, 18(1): 315-319. [3] 宋孝红, 陈旺生, 李迁威, 等. 烧结机尾电改袋除尘器脉冲喷吹数值模拟[J]. 环境工程学报, 2017, 11(7): 4217-4222. doi: 10.12030/j.cjee.201606012 [4] QIAN Y L, BI Y X, ZHANG Q, et al. The optimized relationship between jet distance and nozzle diameter of a pulse-jet cartridge filter[J]. Powder Technology, 2014, 266: 191-195. doi: 10.1016/j.powtec.2014.06.004 [5] 万凯迪, 王智化, 胡利华, 等. 袋式除尘器脉冲喷吹清灰过程的数值模拟[J]. 中国电机工程学报, 2014, 34(23): 3970-3976. [6] HAJEK J. Computational fluid dynamic simulations in thermal waste treatment technology: Design, optimisation and troubleshooting[J]. Energy, 2008, 33(6): 930-941. doi: 10.1016/j.energy.2007.11.010 [7] 崔岩松. 风电机组半经验尾流模型改进方法研究[D]. 北京: 华北电力大学, 2017. [8] 代彬, 陈章淼, 周维. 基于Realizable k-epsilon模型的水闸下游水流数值模拟[J]. 水利与建筑工程学报, 2018, 16(4): 176-180. doi: 10.3969/j.issn.1672-1144.2018.04.034 [9] SARKAR S, LAKSHMANAN B. Application of a reynolds stress turbulence model to the compressible shear layer[J]. AIAA Journal, 1991, 29(5): 743-749. doi: 10.2514/3.10649 [10] LU H C, TSAI C J. Numerical and experimental study of cleaning process of a pulse-jet fabric filtration system[J]. Environmental Science and Technology, 1996, 30(11): 3243-3249. doi: 10.1021/es960020u [11] LU H C, TSAI C J. Influence of design and operation parameters on bag-cleaning performance of pulse-jet baghouse[J]. Journal of Environmental Engineering, 1999, 125(6): 583-591. doi: 10.1061/(ASCE)0733-9372(1999)125:6(583) [12] SHIM J, JOE Y H, PARK H S. Influence of air injection nozzles on filter cleaning performance of pulse-jet bag filter[J]. Powder Technology, 2017, 322: 250-257. doi: 10.1016/j.powtec.2017.09.016 [13] 杨绍琼, 崔宏昭, 姜楠. 纵向沟槽壁面湍流边界层内类开尔文-亥姆霍兹涡结构的流动显示[J]. 力学学报, 2015, 47(3): 529-533. doi: 10.6052/0459-1879-14-345 [14] MURUGAN T, DE S, DORA C L, et al. Numerical simulation and PIV study of compressible vortex ring evolution[J]. Shock Waves, 2012, 22(1): 69-83. doi: 10.1007/s00193-011-0344-9 [15] CHIN C, LI C, HARKIN C, et al. Investigation of the flow structures in supersonic free and impinging jet flows[J]. Journal of Fluids Engineering, 2013, 135(3): 1-12. [16] 朱伶枫, 张延玲, 朱荣, 等. 超音速射流流场湍流模型适应性研究[J]. 太原理工大学学报, 2015, 46(1): 49-54. [17] SIEVERT J, LOFFLER F. Fabric cleaning in pulse-jet filters[J]. Chemical Engineering and Processing Process Intensification, 1989, 26(2): 179-183. doi: 10.1016/0255-2701(89)90010-X [18] SIEVERT J, LOFFLER F. Dust cake release from non-woven fabrics[J]. Filtration and Separation, 1987, 24(6): 424-427. [19] LO L M, HU S C, CHEN D R, et al. Numerical study of pleated fabric cartridges during pulse-jet cleaning[J]. Powder Technology, 2010, 198(1): 75-81. doi: 10.1016/j.powtec.2009.10.017 [20] 李纪伟, 沈恒根, 杨勇, 等. 脉冲袋式除尘器滤袋侧壁压力峰值的试验研究[J]. 安全与环境学报, 2016, 16(6): 262-265. [21] KIM J U, HWANG J, CHOI H J, et al. Effective filtration area of a pleated filter bag in a pulse-jet bag house[J]. Powder Technology, 2017, 311: 522-527. doi: 10.1016/j.powtec.2017.02.013 [22] QIAN Y L, CHEN H Y, LIU T N, et al. Experimental study of the nozzle settings on blow tube in a pulse-jet cartridge filter[J]. Separation and Purification Technology, 2017, 191: 244-249. [23] CAI J Y, HAO W G, ZHANG C, et al. On the forming mechanism of the cleaning airflow of pulse-jet fabric filters[J]. Journal of the Air and Waste Management Association, 2017, 67(1): 1273-1287.