-
废水生物脱氮、防治水体富营养化一直都是水处理方向面临的主要问题之一[1]。传统的生物脱氮方法主要为全程硝化反硝化脱氮。短程硝化作为一种新型生物脱氮工艺,是将硝化反应控制在氨氧化阶段,将亚硝酸盐氧化菌(nitrite oxidizing bacteria,NOB)分离出反应器并将氨氧化菌(ammania oxidizing bacteria,AOB)保留在反应器中,实现氨氮氧化产物为亚硝酸盐的过程[2]。相比传统的全程硝化,短程硝化可以节省25%曝气量和30%的反应时间[3],节约碳源40%[4],具有较低的污泥产量[5]。目前提出的控制短程硝化的影响因素包括游离氨(free ammonia,FA)、游离亚硝酸(free nitrite acid,FNA)、溶解氧(dissolved oxygen,DO)、温度、pH等[6-9]。此外,曝气时间也是实现和维持稳定短程硝化的主要控制因素,曝气时间短导致反应不完全,出水不达标[10];曝气时间过长,短程硝化会转化为全程硝化[11]。因此,维持稳定长久的短程硝化需要综合考虑各种控制因素,以实现对反应过程的综合控制。
除上述影响因素外,盐度也会对生物脱氮处理过程产生影响。有研究表明,低浓度的盐可以促进微生物的生长,盐度过高则会影响细胞的渗透压,导致微生物的活性受到抑制[12]。盐度对微生物虽有毒害作用,但可通过逐步提高盐度或投加耐盐污泥,使微生物适应盐环境,减轻盐度对微生物的抑制作用[13]。HAMODA等[14]研究发现,采用活性污泥法处理高盐废水时,系统生物活性和有机物去除率均有提高;ASIAN等[15]研究表明,一定的盐度对微生物活性有促进作用;徐洁等[16]采用序批式曝气生物滤池工艺处理含海水的污水,发现AOB的耐盐能力高于NOB。因此,可通过添加盐度驯化的方式,抑制NOB的活性,实现短程硝化。短程硝化技术应用前景广泛,但通过活性污泥法进行短程硝化,稳定性较难控制,且硝化细菌本身作为自养菌生长缓慢,非常容易从反应器中流失[17],这都增加了短程硝化工艺运行的困难。
包埋固定化技术通过包埋材料(人工或天然高分子材料)将游离细胞或者酶定位于限定区域,使其保持活性并可反复利用,是一种有效的防止菌体流失、提高反应器内生物量的生物截留手段[18-20]。与活性污泥法相比,包埋固定化技术具有处理效率高、反应易于控制、菌种高纯高效、生物浓度高、固液分离效果好等优点[21]。因此,本研究采用水性聚氨酯(waterborne polyurethane,WPU)为包埋材料制作硝化包埋颗粒,研究盐度及曝气时间对包埋颗粒短程硝化效果的影响,并以盐度为控制因素探究其对连续流短程硝化反应器启动及运行的影响,以期为包埋固定化技术与短程硝化工艺的耦合脱氮提供参考,并为含盐废水的处理提供参考。
盐度和曝气时间对包埋颗粒短程硝化启动的影响及其动力学分析
Effect of salinity and aeration time on the start-up of partial nitrification of immobilized particles and its kinetics analysis
-
摘要: 针对短程硝化反应器启动时间长、效果不稳定等问题,使用水性聚氨酯(WPU)制作硝化污泥包埋颗粒,利用SBR设置盐度梯度以及不同曝气时间进行批次实验,启动短程硝化;通过控制最佳反应条件启动UASB短程硝化反应器,同时进行动力学分析。结果表明:在批次实验过程中,随着盐度的增加,氨氮去除率(ηA)及
${\rm{NO}}_2^{-} $ -N积累率(RNAR)先上升后下降。当NaCl浓度为10 g·L−1时,短程硝化效果最佳,ηA为55%,RNAR为90%;不同曝气时间对短程硝化的稳定性有较大的影响,曝气时间为8 h时短程硝化效果最稳定,ηA和RNAR分别达到56%和96%。控制NaCl浓度为10 g·L−1,HRT为8 h,成功实现了UASB短程硝化反应器的启动;包埋颗粒对氨氮的动力学特性符合Haldane基质抑制动力学模型,具有优良的动力学特性。研究可为包埋颗粒与短程硝化工艺的耦合脱氮提供参考,并为含盐废水的处理提供技术支持。Abstract: In view of the long start-up time and unstable effect of partial nitrification reactor, waterborne polyurethane (WPU) was used to prepare the immobilized particles of nitrification sludge. The partial nitrification was started up through batch tests in the SBR reactor at different salinity gradients and different aeration times. The UASB partial nitrification reactor was started up by controlling the optimum conditions, and the kinetic analysis was performed simultaneously. The results showed that the ammonia nitrogen removal rate (ηA) and${\rm{NO}}_2^{-} $ -N accumulation rate (RNAR) increased firstly and then gradually decreased as the salinity increased in batch tests. The partial nitrification effect reached the best when the NaCl concentration was 10 g·L−1, and ηA and RNAR were 55% and 90%, respectively. Different aeration time had a great influence on the stability of partial nitrification. The partial nitrification effect was the most stable when the aeration time was 8 h, and ηA and RNAR reached 56% and 96%, respectively. The UASB reactor was successfully started up by controlling the NaCl concentration at 10 g·L−1 and HRT at 8 h. The kinetics of the immobilized granules on ammonia nitrogen was in accordance with the Haldane matrix inhibition kinetics model, which indicated that the immobilized granules had excellent kinetic characteristics. The study can provide a reference for the coupling denitrification of immobilized granules and partial nitrification processes, and provide technical support for saline wastewater treatment.-
Key words:
- immobilized granules /
- partial nitrification /
- salinity /
- start-up /
- aeration time /
- kinetic analysis
-
表 1 基质浓度对短程硝化反应的影响
Table 1. Effect of substrate concentrationon partial nitrification
水样序号 ${\rm{NH}}_4^{+} $ -N浓度 /(mmol·L−1)${\rm{NH}}_4^{+} $ -N去除/(kg·(kg·d)−1)1 1 0.613 2 2 1.254 3 5.5 1.527 4 7.14 1.592 5 10.07 1.675 6 20.04 1.758 7 40.71 1.731 8 50.42 1.714 9 59.64 1.709 10 82 1.672 -
[1] 李凌云, 彭永臻, 吴蕾, 等. 短程硝化颗粒污泥的培养与特性分析[J]. 土木建筑与环境工程, 2010, 32(3): 119-123. doi: 10.11835/j.issn.1674-4764.2010.03.021 [2] 赵梦月, 彭永臻, 王博, 等. SBR工艺实现长期稳定的部分短程硝化[J]. 化工学报, 2016, 67(6): 2525-2532. [3] ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80: 149-158. doi: 10.1016/j.watres.2015.04.028 [4] GE S J, WANG S Y, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere, 2015, 140: 85-98. doi: 10.1016/j.chemosphere.2015.02.004 [5] 侯爱月, 李军, 卞伟, 等. 不同短程硝化系统中微生物群落结构的对比分析[J]. 中国环境科学, 2016, 36(2): 428-436. doi: 10.3969/j.issn.1000-6923.2016.02.019 [6] GARRIDO J M, VANBENTHUM W A, VANLOOSDRECHT M C, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Biotechnology and Bioengineering, 1997, 53(2): 168-178. doi: 10.1002/(ISSN)1097-0290 [7] CIUDAD G, GONZALEZ R, BORNHARDT C, et al. Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation[J]. Water Research, 2007, 41(20): 4621-4629. doi: 10.1016/j.watres.2007.06.036 [8] 张小玲, 彭党聪, 王志盈. 传统与短程反硝化的影响因素及特性研究[J]. 中国给水排水, 2002, 18(9): 1-3. doi: 10.3321/j.issn:1000-4602.2002.09.001 [9] GUO J H, PENG Y Z, HUANG H J, et al. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 471-479. [10] 彭永臻, 杨岸明, 李凌云, 等. 短程硝化最优曝气时间控制与硝化种群调控[J]. 哈尔滨工业大学学报, 2013, 45(2): 101-105. doi: 10.11918/j.issn.0367-6234.2013.02.018 [11] 吴煌州, 邱凌峰, 陈益明, 等. 不同曝气量对短程硝化特性的影响[J]. 福州大学学报(自然科学版), 2014, 42(1): 161-166. doi: 10.7631/issn.1000-2243.2014.01.0161 [12] LI X, YUAN Y, YUAN Y, et al. Effects of salinity on the denitrification efficiency and community structure of a combined partial nitritation- anaerobic ammonium oxidation process[J]. Bioresource Technology, 2018, 249: 550-556. doi: 10.1016/j.biortech.2017.10.037 [13] 张晓玲. 盐度对SBR和SBBR工艺短程硝化反硝化的影响[D]. 青岛: 中国海洋大学, 2015. [14] HAMODA M F, AL-ATTAR M S. Effects of high sodium chloride concentrations on activated sludge treatment[J]. Water Science and Technology, 1995, 31(9): 61-72. doi: 10.2166/wst.1995.0345 [15] ASLAN S, SIMSEK E. Influence of salinity on partial nitrification in a submerged biofilter[J]. Bioresource Technology, 2012, 80: 24-29. [16] 徐洁, 熊小京, 郑天凌, 等. 序批式曝气生物滤池处理含海水污水中的硝化性能[J]. 环境工程学报, 2015, 9(3): 1062-1066. doi: 10.12030/j.cjee.20150312 [17] 陈光辉, 李军, 邓海亮, 等. 热冲击法实现包埋活性污泥稳定亚硝化[J]. 四川大学学报(工程科学版), 2015, 47(5): 196-202. [18] 陈光辉, 李军, 邓海亮, 等. 包埋菌启动厌氧氨氧化反应器及其动力学性能[J]. 化工学报, 2015, 66(4): 1459-1466. [19] CHEN Y, LIU Q G, ZHOU T, et al. Ethanol production by repeated batch and continuous fermentations by saccharomyces cerevisiae immobilized in a fibrous bed bioreactor[J]. Journal of Microbiology and Biotechnology, 2013, 23(4): 511-517. doi: 10.4014/jmb [20] DONG Y M, ZHANG Z J, JIN Y W, et al. Nitrification characteristics of nitrobacteria immobilized in waterborne polyurethane in wastewater of corn-based ethanol fuel production[J]. Journal of Environmental Sciences, 2012, 24(6): 999-1005. doi: 10.1016/S1001-0742(11)60893-0 [21] 李尧, 张振家, 方海军. 包埋固定化微生物工艺技术处理高氨氮化工废水[J]. 净水技术, 2012, 31(3): 32-35. doi: 10.3969/j.issn.1009-0177.2012.03.008 [22] STROUS M, GERVEN E V, ZHENG P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations[J]. Water Research, 1997, 31(8): 1955-1962. doi: 10.1016/S0043-1354(97)00055-9 [23] 张倩, 王淑莹, 苗圆圆, 等. 间歇低氧曝气下CANON工艺处理生活污水的启动[J]. 化工学报, 2017, 68(1): 289-296. [24] 叶柳, 彭永臻, 崔有为, 等. 革新MUCT工艺处理含盐污水[J]. 北京工业大学学报, 2006, 32(12): 1087-1092. doi: 10.11936/bjutxb2006121087 [25] 王淑莹, 唐冰, 叶柳, 等. NaCl盐度对活性污泥系统脱氮性能的影响[J]. 北京工业大学学报, 2008, 34(6): 631-635. doi: 10.11936/bjutxb2008060631 [26] 叶柳. 含盐生活污水脱氮除磷的特性及优化控制[D]. 北京: 北京工业大学, 2010. [27] 雷中方. 高浓度钠盐对废水生物处理系统的失稳影响综述[J]. 工业水处理, 2000, 20(4): 6-9. doi: 10.3969/j.issn.1005-829X.2000.04.002 [28] CUI Y W, PENG Y Z, GAN X Q, et al. Achieving and maintaining biological nitrogen removal via nitrite under normal conditions[J]. Journal of Environmental Sciences, 2005, 17(5): 794-797. [29] SANCHEZ O, MARTI M C, ASPE E, et al. Nitrification rates in a saline medium at different dissolved oxygen concentrations[J]. Biotechnology Letters, 2001, 23(19): 1597-1602. doi: 10.1023/A:1011977629398 [30] 张昭, 李冬, 仲航, 等. 常温下低氨氮污水的短程硝化启动研究[J]. 中国给水排水, 2012, 28(9): 35-39. doi: 10.3969/j.issn.1000-4602.2012.09.009 [31] YE L, PENG C Y, TANG B, et al. Determination effect of influent salinity and inhibition time on partial nitrification in a sequencing batch reactor treating saline sewage[J]. Desalination, 2009, 246(1/2/3): 556-566. [32] 崔有为, 彭永臻, 李晶. 盐度抑制下的MUCT处理效能及其微生物种群变化[J]. 环境科学, 2009, 30(2): 488-492. doi: 10.3321/j.issn:0250-3301.2009.02.030 [33] 李芸, 熊向阳, 李军, 等. 膜生物反应器处理晚期垃圾渗滤液亚硝化性能及其抑制动力学分析[J]. 中国环境科学, 2016, 36(2): 419-427. doi: 10.3969/j.issn.1000-6923.2016.02.018 [34] 胡晓娜, 戴晓虎, 曹达文, 等. 限氧条件下亚硝化的稳定运行及动力学[J]. 化工进展, 2015, 34(12): 4198-4202. [35] 许晓毅, 尤晓露, 吕晨培, 等. 包埋固定化活性污泥脱氮特性与微生物群落分析[J]. 环境科学, 2017, 38(5): 2052-2058. [36] 唐崇俭, 熊蕾, 王云燕, 等. 高效厌氧氨氧化颗粒污泥的动力学特性[J]. 环境科学, 2013, 34(9): 3544-3551.