-
随着各地餐厨垃圾的产生量日益增加,餐厨垃圾的处理压力亦越来越大。由于餐厨垃圾具有含水率高、易腐败等特性,如不及时处理会给城市环境带来巨大的压力,因此,对餐厨垃圾进行有效处置越来越受到重视[1]。厌氧发酵技术是目前餐厨垃圾处理的主要方法之一,该技术利用厌氧微生物的代谢作用将餐厨垃圾进行高效降解,在处理垃圾的同时产生能源气体——沼气[2]。
通常情况下,厌氧发酵产生的沼气中含有40%~60%的CH4,25%~50%的CO2以及N2,H2S等其他微量气体。目前,沼气主要用来发电和供热[3-4]等,但大量CO2的存在降低了沼气的热值(2.1×104~2.8×104 kJ·m−3),如能去除沼气中的CO2,则CH4浓度可达到95%以上,成为生物甲烷,这可大大提高沼气的热值(3.3×104~3.8×104 kJ·m−3),同时能扩大沼气的利用方式[5-6]。生物甲烷不仅能作为天然气的替代品,还能用作汽车燃料等[7-8]。在沼气的生物提纯过程中,CO2能被嗜氢产甲烷菌直接代谢为CH4和H2O(见式(1)),这不仅提高了CH4含量,还避免了其他副产物的产生[9]。沼气生物提纯可分为原位和异位2种方式,原位通入H2不需要额外的装置,经济性较好,但可能会破坏原有的反应体系[10]。基于相分离的异位甲烷提纯具有较好的可操作性,通过厌氧微生物和嗜氢产甲烷菌的分离富集,可使提纯效率更加高效[11]。
近年来,对沼气异位生物提纯的研究越来越受到重视,包括对提纯过程中的温度[10],pH[12],气液传质[13]以及厌氧颗粒污泥特性[14]等的研究。在各种反应条件中,通气比例被认为是沼气异位生物提纯的重要参数之一,合适的通气比例可使提纯更加经济高效。如果通气比例过低,则不能为嗜氢产甲烷菌提供足够的底物;而通气比例过高,则会破坏体系稳定。MARTIN等[15]研究了通H2和CO2混合气比例为4∶1情况下的产甲烷速率,在顶空加压的情况下,增大了H2气液传质,获得了较高的产甲烷速率;但由于成本问题,加压在规模化利用中并不适用,如能获得最佳的混合气通入比例,则可实现气体的充分利用,在不需加压的情况下同样可实现较高的甲烷产量。在沼气生物提纯研究中,厌氧消化产沼气的底物有葡萄糖[16]、秸秆[17]以及乳清和牛粪[18]等,但目前以餐厨垃圾为底物进行沼气发酵,同时进行异位提纯的研究较少。
本研究对餐厨垃圾厌氧发酵和沼气生物提纯进行了耦联探讨,在此基础上,对提纯相的通气比例进行了优化分析。实验中首先将餐厨垃圾进行厌氧发酵,对产生的沼气进行异位提纯,提纯相中通入的H2和CO2比例为4∶1;然后对提纯阶段的通气比例进行研究,设置不同的H2∶CO2比,旨在获得最佳通气比;最后,将餐厨垃圾厌氧发酵与最佳通气比的沼气生物提纯进行联合实验。
餐厨垃圾厌氧产沼气及沼气异位生物提纯通气比分析
Biogas generation from food waste by anaerobic digestion and the injection gas ratio analysis in ex-situ biogas biological upgrading
-
摘要: 为提高沼气中CH4的含量,对餐厨垃圾采用高固态厌氧发酵,并利用嗜氢产甲烷菌的代谢作用,在外源通入H2的情况下对沼气进行异位生物提纯,并分析了耦联反应中的气体组分。结果表明:厌氧发酵产生的沼气中CH4浓度为52.4%,CO2浓度为22.8%;经过生物提纯,CH4提高了36.3%,而CO2下降了42.1%;在生物提纯相,H2全部消耗,但仍有13.2%的CO2剩余。进一步研究了提纯阶段的最适通气比例(H2∶CO2),分析了反应过程中的CH4产率,气体组分,H2转化率和挥发性脂肪酸(VFA)。结果表明:H2和CO2比例为5∶1是沼气提纯的最佳通气比例,该条件下CH4产率、CH4体积分数和H2转化率最高,分别为693.7 mL·(L·d)−1、69.4%和98.7%;将最佳通气比例应用到耦联实验中,CH4体积分数达到96.1%,H2和CO2分别为0.3%和1.8%。通过分析可知,当H2和CO2通气比为5∶1时,厌氧发酵产生的沼气经生物提纯后,可达到生物甲烷的品质。Abstract: In order to increase the CH4 content in the biogas, the food waste was treated by high-solid anaerobic digestion, and the biogas was ex-suit upgraded through the metabolism of hydrogenotrophic methanogens by exogenous H2 injection. The gas composition in the coupling reaction was analyzed, the results showed that the content of CH4 and CO2 was 52.4% and 22.8% in the biogas produced from anaerobic digestion, respectively. The CH4 increased by 36.3% after biological upgrading, while CO2 decreased of 42.1%. H2 was consumed completely at the biogas upgrading stage, but 13.2% of CO2 was remained. The optimal injection gas ratio (H2∶CO2) in the upgrading stage was further studied. The CH4 yield, gas composition, H2 conversion rate and volatile fatty acids during the reaction process were indicated. The results showed that the H2∶CO2 injection gas ratio of 5∶1 was the optimum rate for biogas upgrading, the CH4 yield, CH4 content and H2 conversion rate were the highest of 693.7 mL·(L·d)−1, 69.4% and 98.7%, respectively. The optimum injection gas ratio was utilized to the coupling experiment, the volume rate of CH4, H2 and CO2 was 96.1%, 0.3% and 1.8%, respectively. The experiment results showed that biogas produced from anaerobic digestion can be upgraded to the biomethane when H2 and CO2 injection gas ratio was 5∶1.
-
Key words:
- food waste /
- anaerobic digestion /
- biogas /
- biological upgrading /
- injection gas ratio
-
表 1 餐厨垃圾和厌氧污泥的性质
Table 1. Characteristics of food waste and anaerobic sludge
样品 TS(湿重)/% VS(湿重)/% VS/TS 碳水化合物
(干重)/%蛋白质
(干重)/%TC/% TN/% C/N 餐厨垃圾 24.6 18.2 74.0 44.6 22.2 54.7 3.1 17.6 接种污泥 17.6 11.3 64.2 — — — — — -
[1] 李政伟, 尹小波, 王星, 等. 餐厨垃圾高温中试两相厌氧发酵的稳定性[J]. 环境工程学报, 2016, 11(10): 6662-6668. [2] 郑晓伟, 李兵, 李益, 等. 接种比对餐厨垃圾干式厌氧发酵启动的影响[J]. 环境工程学报, 2014, 8(3): 1157-1162. [3] 江皓, 吴全贵, 周红军. 沼气净化提纯制生物甲烷技术与应用[J]. 中国沼气, 2012, 30(2): 6-11. doi: 10.3969/j.issn.1000-1166.2012.02.002 [4] WEILAND P. Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in germany[J]. Engineering in Life Sciences, 2006, 6(3): 302-309. doi: 10.1002/(ISSN)1618-2863 [5] BORJESSON P, MATTIASSON B. Biogas as a resource-efficient vehicle fuel[J]. Trends in Biotechnology, 2008, 26(1): 7-13. doi: 10.1016/j.tibtech.2007.09.007 [6] DENG L Y, HÄGG M B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 638-646. doi: 10.1016/j.ijggc.2009.12.013 [7] HOSSEINI S E, WAHID M A. Development of biogas combustion in combined heat and power generation[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 868-875. doi: 10.1016/j.rser.2014.07.204 [8] RYCKEBOSCH E, DROUILLON M, VERVAEREN H. Techniques for transformation of biogas to biomethane[J]. Biomass & Bioenergy, 2011, 35(5): 1633-1645. [9] MUNOZ R, MEIER L, DIAZ I, et al. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(4): 727-759. doi: 10.1007/s11157-015-9379-1 [10] RACHBAUER L, VOITL G, BOCHMANN G, et al. Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor[J]. Applied Energy, 2016, 180: 483-490. doi: 10.1016/j.apenergy.2016.07.109 [11] ZABRANSKA J, POKORNA D. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens[J]. Biotechnology Advances, 2018, 36(3): 707-720. doi: 10.1016/j.biotechadv.2017.12.003 [12] BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015, 49(20): 12585-12593. [13] LUO G, ANGELIDAKI I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture[J]. Biotechnology and Bioengineering, 2012, 109(11): 2729-2736. doi: 10.1002/bit.v109.11 [14] XU H, GONG S F, SUN Y Z, et al. High-rate hydrogenotrophic methanogenesis for biogas upgrading: The role of anaerobic granules[J]. Environmental Technology, 2015, 36(4): 529-537. doi: 10.1080/09593330.2014.979886 [15] MARTIN M R, FORNERO J J, STARK R, et al. A single-culture bioprocess of methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2[J]. Archaea, 2013, 7: 157529. [16] 林春绵, 俞游, 章祎玛, 等. 外源氢厌氧发酵原位合成甲烷的实验研究[J]. 浙江工业大学学报, 2015, 43(6): 595-599. doi: 10.3969/j.issn.1006-4303.2015.06.002 [17] YUN Y M, SUNG S, KANG S, et al. Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading[J]. Energy, 2017, 135: 294-302. doi: 10.1016/j.energy.2017.06.133 [18] BAUER F, PERSSON T, HULTEBERG C, et al. Biogas upgrading-technology overview, comparison and perspectives for the future[J]. Biofuels, Bioproducts and Biorefining, 2013, 7(5): 499-511. doi: 10.1002/bbb.2013.7.issue-5 [19] ZHAI N N, ZHANG T, YIN D X, et al. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure[J]. Waste Management, 2015, 38: 126-131. doi: 10.1016/j.wasman.2014.12.027 [20] 王福荣. 生物工程分析与检验[M]. 北京: 中国轻工业出版社, 2006. [21] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [22] 高树梅. 餐厨垃圾厌氧消化过程中氨氮耐受响应机制研究[D]. 无锡: 江南大学, 2015. [23] 欧阳文翔. 餐厨垃圾与脱水污泥联合厌氧消化产甲烷实验研究[D]. 大连: 大连理工大学, 2013. [24] SCHINK B. Energetics of syntrophic cooperation in methanogenic degradation[J]. Microbiology and Molecular Biology Reviews, 1997, 61(2): 262-280. [25] KIM S, CHOI K, CHUNG J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3488-3496. doi: 10.1016/j.ijhydene.2012.12.007 [26] LIU R B, HAO X D, WEI J. Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[J]. Chemical Engineering Journal, 2016, 284: 1196-1203. doi: 10.1016/j.cej.2015.09.081 [27] BASMA O, REDA A S, MAIE E G, et al. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures[J]. Water Research, 2018, 142: 86-95. doi: 10.1016/j.watres.2018.05.049 [28] AGNEESSENS L M, OTTOSEN L D M, ANDERSEN M, et al. Parameters affecting acetate concentrations during in-situ biological hydrogen methanation[J]. Bioresource Technology, 2018, 258: 33-40. doi: 10.1016/j.biortech.2018.02.102 [29] 林春绵, 叶媛媛, 邓小宁, 等. 外源氢气连续导入沼气发酵系统原位合成甲烷的实验研究[J]. 高校化学工程学报, 2017, 31(4): 892-898. doi: 10.3969/j.issn.1003-9015.2017.04.019 [30] 颜锟. 同步生物法沼气提纯与合成气利用实验研究[D]. 合肥: 合肥工业大学, 2016. [31] MULAT D G, MOSBAK F, WARD A J, et al. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane[J]. Waste Management, 2017, 68: 146-156. doi: 10.1016/j.wasman.2017.05.054 [32] LUO G, JOHANSSON S, BOE K, et al. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor[J]. Biotechnology & Bioengineering, 2012, 109(4): 1088-1094. [33] BURKHARDT M, BUSCH G. Methanation of hydrogen and carbon dioxide[J]. Applied Energy, 2013, 111: 74-79. doi: 10.1016/j.apenergy.2013.04.080