-
目前,水中溴酸盐(
${\rm{BrO}}_3^ - $ )和高氯酸盐(${\rm{ClO}}_4^- $ )的危害及毒理学效应被普遍关注[1]。${\rm{BrO}}_3^ - $ 是一种强氧化剂,在天然水体中通常由溴离子(Br−)氧化后形成,而在饮用水消毒过程中是被臭氧氧化形成的一类副产物,在高剂量时,其具有一定的DNA和染色体水平的遗传毒性。因此,${\rm{BrO}}_3^ - $ 已被国际癌症研究机构认定为2B级潜在致癌物,长期饮用含溴酸盐的水可导致致癌率明显升高[1]。我国饮水标准规定,${\rm{BrO}}_3^ - $ 须低于10 μg·L−1,然而近年来有不少有关饮水中${\rm{BrO}}_3^ - $ 含量超标的报道。${\rm{ClO}}_4^ - $ 是一种新兴持久性有毒污染物,广泛应用于制革、火箭固体燃料、烟火、电镀等行业,可通过水的流动或渗滤迁移到地下水、地表水,甚至饮用水中,能引起成人代谢、婴儿发育不良,甚至诱发甲状腺癌等问题[1-2]。美国环保署已将高氯酸盐列入第一批环境污染物候选名单,并建议饮水中的浓度低于20 μg·L−1。由此可见,${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 已成为影响人们饮水安全的一大隐患,急须开展${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 的治理研究与实践。有研究[3-4]表明,在厌氧和酶催化的环境下,厌氧微生物可以利用有机或无机电子供体(如甲醇、乙醇、单质硫、氢气等),将
${\rm{BrO}}_3^ - $ 、${\rm{ClO}}_4^ - $ 作为电子受体还原成单质离子(Br−、Cl−)。氢基质生物膜反应器(MBfR)是一种将氢自养生物还原技术与中空纤维膜微孔曝气相结合的反应器,已被广泛应用于氧化性物质的去除[5-10]。CHEN等[11]和DEMIREL等[12]利用MBfR去除水中单独${\rm{BrO}}_3^ - $ 、${\rm{ClO}}_4^ - $ ,取得了良好的处理效果,同时他们也发现氢气压力和进水流速是影响去除效能的关键因素[13-17]。夏四清等[9]利用MBfR对多种氧化性污染物的同步去除开展了研究,并对如何实现最优去除效能进行了探索。另外,水中共存硝酸盐(${\rm{NO}}_3^{-} $ -N)产生的影响也引起了广泛的关注,启动驯化时进水中无机氮源采用${\rm{NO}}_3^{-} $ -N,生物膜内存在反硝化菌;${\rm{NO}}_3^{-} $ -N是水中常规的氧化性物质(电子受体),其在水环境中的浓度远高于${\rm{BrO}}_3^ - $ 或${\rm{ClO}}_4^ - $ ;反硝化菌或反硝化过程普遍存在于水环境中,其对${\rm{BrO}}_3^ - $ 或${\rm{ClO}}_4^ - $ 还原降解有一定的影响。因此,研究${\rm{NO}}_3^{-} $ -N共存条件下氢气压力与进水流速对${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 同步去除效能的影响具有重要意义。本研究深入考察了氢气压力与进水流速对
${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 去除率、去除通量、当量电子转移通量以及还原动力学的影响,以确定MBfR同步去除${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 的适宜氢气压力与进水流速,为MBfR稳定、高效运行提供参考和技术支持。
氢气压力和进水流速对氢基质生物膜反应器同步去除溴酸盐和高氯酸盐的影响
Effects of hydrogen pressure and influent flow rate on simultaneous removal of bromate and perchlorate in a hydrogen-based membrane biofilm reactor
-
摘要: 为了考察氢基质生物膜反应器(MBfR)中氢气压力和进水流速对溴酸盐(
${\rm{BrO}}_3^ - $ )和高氯酸盐(${\rm{ClO}}_4^ - $ )同步去除的影响,基于短期系列实验,研究了不同氢气压力和进水流速下${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 的去除效率、去除通量、当量电子转移通量及还原反应动力学。结果表明:氢气压力从0.02 MPa提高至0.08 MPa时,${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 的去除率分别升高了12.5%和17.2%,去除通量分别升高了0.001 2 g·(m2·d)−1和0.002 g·(m2·d)−1,但${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 去除率并未随氢气压力持续升高而呈线性升高趋势;当进水流速从1.0 mL·min−1提高至4.0 mL·min−1时,${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 的去除通量由0.005 g·(m2·d)−1和0.006 g·(m2·d)−1分别升高至0.014 g·(m2·d)−1和0.017 g·(m2·d)−1,但${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 的去除率分别从98.4%和98.1%降低至69.7%和71.1%,这说明加快进水流速可导致${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 的去除率明显降低;结合还原反应动力学研究,MBfR运行效能最佳的氢气压力和进水流速分别为0.04~0.06 MPa和2.0 mL·min−1。生物膜当量电子转移通量分析表明,反硝化对电子供体(氢气)的竞争性抢夺比${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 还原更加激烈;还原反应动力学级数揭示了${\rm{BrO}}_3^ - $ 和${\rm{ClO}}_4^ - $ 还原对进水流速加快的敏感性比氢气压力变化更加强烈。为了获得更高的污染物去除效能,可以适当控制进水流速和水中共存${\rm{NO}}_3^{-} $ -N的竞争性抑制。Abstract: In order to investigate the effects of hydrogen pressure and influent flow rate on simultaneous removal of bromate (${\rm{BrO}}_3^ - $ ) and perchlorate (${\rm{ClO}}_4^ - $ ) in a hydrogen-based membrane biofilm reactor (MBfR), the variations of removal efficiency, removal flux, equivalent electron transfer flux and reduction kinetics of${\rm{BrO}}_3^ - $ and${\rm{ClO}}_4^ - $ were studied based on the sequential batch short-term experiments. The results show that, when the hydrogen pressure increased from 0.02 MPa to 0.08 MPa, the removal rates of${\rm{BrO}}_3^ - $ and${\rm{ClO}}_4^ - $ increased by 12.5% and 17.2%, and the removal fluxes increase by 0.0012 g·(m2·d)−1 and 0.002 g·(m2·d)−1, respectively. However, the removal efficiencies of${\rm{BrO}}_3^ - $ and${\rm{ClO}}_4^ - $ did not increase linearly with the continuous increase of hydrogen pressure. When the influent flow rate increased from 1.0 mL·min−1 to 4.0 mL·min−1, the removal fluxes of${\rm{BrO}}_3^ - $ and${\rm{ClO}}_4^ - $ increased from 0.005 g·(m2·d)−1 and 0.006 g·(m2·d)−1 to 0.014 g·(m2·d)−1 and 0.017 g·(m2·d)−1, but the removal efficiencies of${\rm{BrO}}_3^ - $ and${\rm{ClO}}_4^ - $ decreased from 98.4% and 98.1% to 69.7% and 71.1%, respectively, and these indicated that accelerating the flow rate of the reactor significantly decreased${\rm{BrO}}_3^ - $ and${\rm{ClO}}_4^ - $ removal. Based on the study of reduction kinetics, the optimal hydrogen pressure and influent flow rate of MBfR were 0.04~0.06 MPa and 2.0 mL·min−1, respectively. Analysis of the biofilm equivalent electron transfer flux showed that denitrification could more strongly capture electron donor (H2) than${\rm{BrO}}_3^ - $ or${\rm{ClO}}_4^ - $ reduction. The results of analysis of reduction orders revealed that the sensitivity of${\rm{BrO}}_3^ - $ and${\rm{ClO}}_4^ - $ reduction to influent flow rate was stronger than that to hydrogen pressure. In order to achieve a higher removal of pollutants, the influent flow rate and competitive inhibition of nitrate in water needs to be properly controlled.-
Key words:
- hydrogen-based membrane biofilm reactor /
- bromate /
- perchlorate /
- hydrogen pressure /
- influent flow rate
-
表 1 MBfR启动驯化与
${\bf{BrO}}_3^ - $ 和${\bf{ClO}}_4^ - $ 降解系列实验工况Table 1. Conditions of acclimation stage and series test of
${\bf{BrO}}_3^ - $ and${\bf{ClO}}_4^ - $ degradation in the MBfR实验阶段 H2压力/
MPa进水流速/
(mL·min−1)进水 ${\rm{NO}}_3^{-} $ -N/
(mg·L−1)内回流速度/
(mL·min−1)进水 ${\rm{BrO}}_3^ - $ /
(mg·L−1)进水 ${\rm{ClO}}_4^ - $ /
(mg·L−1)启动驯化 0.04 0.5 5 0 0.1 0.1 启动驯化 0.04 1.0 5 8 0.1 0.1 启动驯化 0.04 2.0 5 20 1.0 1.1 降解实验 0.02 2.0 5 20 10 1.1 降解实验 0.04 2.0 5 20 10 1.1 降解实验 0.06 2.0 5 20 10 1.1 降解实验 0.08 2.0 5 20 10 1.1 降解实验 0.04 1.0 5 20 10 1.1 降解实验 0.04 2.0 5 20 10 1.1 降解实验 0.04 3.0 5 20 10 1.1 降解实验 0.04 4.0 5 20 10 1.1 表 2 不同氢气压力下电子受体的当量电子通量及其分配
Table 2. Electron-equivalent fluxes of electron acceptors and their distributions at different hydrogen pressure
H2压力/MPa 当量电子通量/(10−3 个·(m2·d)−1) 通量分配/% ${\rm{BrO}}_3^ - $ ${\rm{ClO}}_4^ - $ ${\rm{NO}}_3^{-} $ -N总和 ${\rm{BrO}}_3^ - $ ${\rm{ClO}}_4^ - $ ${\rm{NO}}_3^{-} $ -N0.02 0.40 0.75 18.4 19.55 2.0 3.8 94.1 0.04 0.45 0.90 18.4 19.75 2.3 4.6 93.2 0.06 0.46 0.91 18.4 19.77 2.3 4.6 93.1 0.08 0.46 0.91 18.4 19.77 2.3 4.6 93.1 表 3 不同进水流速下电子受体的当量电子通量及其分配
Table 3. Electron-equivalent fluxes of electron acceptors and their distributions at different influent flow rate
进水流速/(mL·min−1) 当量电子通量/(10−3 个·(m2·d)−1) 通量分配/% ${\rm{BrO}}_3^ - $ ${\rm{ClO}}_4^ - $ ${\rm{NO}}_3^{-} $ -N总和 ${\rm{BrO}}_3^ - $ ${\rm{ClO}}_4^ - $ ${\rm{NO}}_3^{-} $ -N1 0.23 0.48 9.2 9.91 2.3 4.8 92.8 2 0.45 0.90 18.4 19.75 2.3 4.6 93.2 3 0.55 1.17 27.6 29.32 1.9 4.0 94.1 4 0.66 1.34 36.7 38.70 1.7 3.5 94.8 表 4 生物膜内
${\bf{BrO}}_3^ - $ 、${\bf{ClO}}_4^ - $ 和${\bf{NO}}_3^{-} $ -N的还原动力学级数Table 4. Reaction orders of
${\bf{BrO}}_3^ - $ ,${\bf{ClO}}_4^ - $ and${\bf{NO}}_3^{-} $ -N in biofilm影响因素 ${\rm{BrO}}_3^ -$ ${\rm{ClO}}_4^ - $ ${\rm{NO}}_3^{-} $ -N氢气压力 −0.065 −0.099 −0.130 进水流速 0.323 0.385 0.755 -
[1] CHENG H. Improving China’s water resources management for better adaptation to climate change[J]. Climatic Change, 2012, 112(2): 253-282. doi: 10.1007/s10584-011-0042-8 [2] HU Y, CHENG H. Water pollution during China’ s industrial transition[J]. Environmental Development, 2013, 8(1): 57-73. [3] HIJNEN W, VOOGT R, VEENENDAAL H R, et al. Bromate reduction by denitrifying bacteria[J]. Applied & Environmental Microbiology, 1995, 61(1): 239-244. [4] MATOS C T, SVETLOZAR V, CRESPO J O G, et al. Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept[J]. Water Research, 2006, 40(2): 231-240. doi: 10.1016/j.watres.2005.10.022 [5] NERENBERG R, RITTMANN B E. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants[J]. Water Science & Technology, 2004, 49(11/12): 223-230. [6] XIA S, ZHANG Z, ZHONG F, et al. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1367-1373. [7] LUO J H, WU M, YUAN Z, et al. Biological bromate reduction driven by methane in a membrane biofilm reactor[J]. Environmental Science & Technology Letters, 2017, 4(12): 562-566. [8] 蒋敏敏, 张学洪, 李海翔. 氢基质生物膜反应器在饮用水处理中的研究进展[J]. 净水技术, 2015, 34(s1): 23-26. [9] 夏四清, 梁郡, 李海翔, 等. 利用氢基质生物膜反应器同步去除多种污染物[J]. 同济大学学报(自然科学版), 2012, 40(6): 876-881. doi: 10.3969/j.issn.0253-374x.2012.06.013 [10] ZHANG Y, ZHONG F, XIA S, et al. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor[J]. Journal of Hazardous Materials, 2009, 170(1): 203-209. doi: 10.1016/j.jhazmat.2009.04.114 [11] CHEN X, LIU Y, PENG L, et al. Perchlorate, nitrate, and sulfate reduction in hydrogen-based membrane biofilm reactor: Model-based evaluation[J]. Chemical Engineering Journal, 2017, 316: 82-90. doi: 10.1016/j.cej.2017.01.084 [12] DEMIREL S, BAYHAN I. Nitrate and bromate removal by autotrophic and heterotrophic denitrification processes: Batch experiments[J]. Journal of Environmental Health Science & Engineering, 2013, 11(1): 27. [13] RITTMANN B E, MCCARTY P L. Environmental Biotechnology: Principles and Applications[M]. New York: McGraw-Hill, 2001. [14] 高廷耀, 顾国维, 周琪. 水污染控制工程: 下[M]. 4版. 北京: 高等教育出版社, 2015. [15] ZHAO H P, ONTIVEROS-VALENCIA A, TANG Y, et al. Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate[J]. Environmental Science & Technology, 2013, 47(3): 1565-1572. [16] LI H, LIN H, XU X, et al. Simultaneous bioreduction of multiple oxidized contaminants using a membrane biofilm reactor[J]. Water Environment Research, 2017, 89(2): 178-185. doi: 10.2175/106143016X14609975746686 [17] DOWNING L S, NERENBERG R. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor[J]. Biotechnology & Bioengineering, 2010, 98(3): 543-550. [18] CHUNG J, RITTMANN B E, WRIGHT W F, et al. Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor[J]. Biodegradation, 2007, 18(2): 199-209. doi: 10.1007/s10532-006-9055-9 [19] XIA S, LI H, ZHANG Z, et al. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor[J]. Journal of Hazardous Materials, 2011, 192(2): 593-598. doi: 10.1016/j.jhazmat.2011.05.060 [20] CHUNG J, NERENBERG R, RITTMANN B E. Bioreduction of selenate using a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology, 2006, 40(5): 1664-1671. [21] CHUNG J, NERENBERG R, RITTMANN B E. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor[J]. Water Research, 2006, 40(8): 1634-1642. doi: 10.1016/j.watres.2006.01.049 [22] 李海翔, 林华, 游少鸿, 等. 氢基质生物膜反应器去除对氯硝基苯的影响因素分析[J]. 环境科学研究, 2015, 28(2): 304-309. [23] CHUNG J, LI X, RITTMANN B E. Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor[J]. Chemosphere, 2006, 65(1): 24-34. doi: 10.1016/j.chemosphere.2006.03.018