-
随着城镇居民生活污水排放量的大量增加,以及污水中氮、磷等污染物浓度的不断升高,相应的处理压力亦日渐增大。污水厂排水是污水经二级生化处理后的出水,是地表水及地下水中氮、磷等污染的主要来源,其大规模集中式地排放已使污染负荷远远超过受纳水体自净能力,对受纳水体生态环境造成严重破坏[1]。目前,我国已全面启动全国城镇污水处理厂向《城镇污水处理厂污染物排放标准》一级A的提标改造[2];同时,我国在“十二五”和“十三五”规划中也明确了城镇污水处理厂排水的总氮控制目标。针对我国中小城镇污水点多、面广、量小、分散等特征,直接采用常规污水处理系统在经济和技术上均难有成效。
污水厂排水作为典型的低C/N比污水(COD/TN<(3~5)∶1),常规水处理工艺中的微生物由于缺乏有机碳源而难以进一步脱除水中的氮和磷[3]。为此,研究者开发出短程硝化反硝化(SHARON)、厌氧氨氧化(Anammox)等生物脱氮新工艺[4-5],这类工艺能高效地去除污水中的有机污染物,减少平均污水处理面积和运行人员数量,能较好地适应污水厂排水水质的波动,在实际工程中取得了一定效果。但其对温度(T)、DO、pH、游离氨(FA)、污泥龄及有毒物质、HRT的控制条件要求严格[6-7],且不适应低氮素浓度、低C/N比污水中氮的深度脱除[8-10],因此,须对现有工艺进行改良或研发新的水处理技术,以适应污水厂排水的水质特征。
针对实际工程应用中对处理工艺低成本、高效能的要求,本研究开发了一种污水化学催化生物耦合床(CCBF)技术。该技术通过铁基质载体及碳纤维载体在反应器内部形成的层次分明的好氧/微氧区,使污水始终处于好氧/微氧交替的环境中;在反应器底部,设置合理曝气量使溶解氧能够稳定输送到各微氧区,同时促进碳源在反应区内部的均匀分配,实现了电化学与生物作用耦合的运行机制下污水厂排水的深度脱氮除磷[11]。本研究重点考察了水力停留时间(HRT)对脱氮除磷效果的影响,建立了不同停留时间下的深度脱氮动力学模型,通过对反应器处理效能的实验研究、机理探讨、动力学建立及参数求解为污水厂排水深度处理提供参考。
-
本实验原水取自北京通州某污水处理厂,该水厂的处理规模为3.5×104 m3·d−1,采用脱氮除磷A2/O工艺。主要水质指标:污水厂排水水质指标:
NH+4 -N为 48.5~50.5 mg·L−1;TN为51.2~53.8 mg·L−1;TP为6.3~7.7 mg·L−1;COD为68.5~78.5 mg·L−1;pH为7.6~7.9。 -
本研究实验装置主要由进水系统、曝气系统、柱状反应器和出水系统组成,具体如图1所示。柱状反应器为有机玻璃材质,内径12 cm,高100 cm,柱体内部均匀装填铁基质生物载体和碳纤维载体,有效容积11.3 L,填充高度为90 cm,填料后水容量为4.8 L。原水经蠕动泵从反应器上部进入反应器,自上而下经过CCBF系统后,从反应器底部经三通排出。空气在空压机的作用下经反应器底部曝气沙盘进入,曝气量利用空压机出口处转子流量计调节。DO、pH、温度由WTW(上海谷雨环保科技有限公司,SenTix21型)和HANA(北京壮仕科技有限公司,Au220型)电极进行检测。
生态笼球(图2(a))是将铁基质载体与碳纤维生物活性载体有效结合的复合载体,铁基质活性载体(图2(b))直径为1~2 cm,堆积密度为1.2×103 kg·m−3,载体比表面积为3.2×104 m2·m−3,孔隙率为46%~51%,抗压强度≥600 kg·cm−2[12]。碳纤维载体(图2(c))将具有活性的碳纤维和培养基加入聚氨酯泡沫制备而成,载体整体呈方形立体分布,具有透水性好等优点[13],碳纤维生物活性载体可以起到固定微生物的作用,铁基质载体可以通过化学催化反应提供营养和电子。
-
挂膜成功后的CCBF采用全程连续进水的方式,可使反应器内有机物浓度一直维持在相对饱和的状态,使溶解氧不断被消耗,从而更有利于微生物反硝化脱氮。在适宜溶解氧浓度下,设置水利停留时间分别为8、4、2、1 h,每个水力停留时间下DO均保持5.5~6.0 mg·L−1、pH 7.6~7.9、温度22.3~22.8 ℃。为尽量避免实验间的相互干扰,加快实验进度,实验按照有机负荷从低到高的顺序分批进行,首先运行8 h实验,最后为1 h实验。每个运行周期按先后顺序又分为换水阶段和处理阶段,换水阶段主要是对反应器内原污水进行置换处理,原水与排水在反应器内部形成适当比例的耗氧分界区,经历不同时间混合后出水。处理阶段,反应器内部均为污水厂排水,经处理完全后排出。实验采用底部曝气,上进下出的进水方式,这样可使反应器内部微生物能够充分利用水体溶解氧降解污水中的有机物。
铁基质载体与碳纤维载体在反应器内部可形成相应的好氧/微氧分区,好氧区自养型硝化菌和氨氧化菌将
NH+4 -N转化为NO−2 -N、NO−3 -N[14],见式(1)。NO−2 -N、NO−3 -N进入生物膜内部与自养反硝化菌接触,刺激铁基质载体内部产生[H][15]。阳极反应见式(2)和式(3),阴极反应见式(4)。自养反硝化菌以铁基质载体生成的[H]、[Fe2+]为电子供体,将
NO−2 -N、NO−3 -N还原为N2,实现低C/N比污水厂排水深度脱氮。相关反应见式(5)和式(6),物化-生物耦合脱氮总反应式见式(7)。铁基质载体中的Fe2+在溶解氧作用下被氧化成Fe3+,Fe3+和磷酸盐结合生成磷酸铁沉淀,相关反应见式(8)、式(9)和式(10)。
-
实验过程中需要检测的污水指标及对应的检测方法参照文献中的方法[16]。采用纳氏试剂分光光度法测定氨氮(
NH+4 -N)浓度;采用重铬酸钾法测定耗氧有机污染物的浓度(以COD计);采用钼锑抗分光光度法测定总磷(TP);采用碱性过硫酸钾消解紫外分光光度法测定总氮(TN)浓度;采用WTW电极检测pH,采用YSI便携式溶解氧仪检测温度和DO。主要分析仪器为紫外-可见分光光度计(UV 2102C,美国尤尼柯仪器有限公司)、COD快速分析仪(5B-3C(V7)型,中国联华科技有限公司)、TN快速分析仪(5B-3BN(V8)型,中国联华科技有限公司)。
-
CCBF系统微生物挂膜通过接种污泥和北京交通大学东校区家属区化粪池污水培养,污泥来自北京市高碑店污水处理厂二沉池回流污泥,污水水质特征如表1所示。
在微生物驯化培养阶段,采取逐步加大曝气与进水流速的方式对微生物进行培养。首先在无曝气、无进出水的条件下对充满生活污水和污泥混合液的反应器进行静置培养(24 h),随后增大曝气量和进水流速,直至第5天,保持HRT为20 h,DO为3~4 mg·L−1,观察反应器出水情况,实验结果如图3所示。第18天,好氧反应器出水中的氨氮已经降至10 mg·L−1,同时出水硝态氮也逐渐升高至35 mg·L−1,反应器内壁及载体表面均出现黄褐色污泥生长附着。
在实验整体启动阶段,从培养微生物的第19天开始,在20 h的HRT下连续进出水运行,保持好氧反应器中的DO在3~4 mg·L−1,出水中的硝酸盐氮含量先小幅升高再逐渐下降,从培养期第29天,其浓度开始稳定在17.6~19.1 mg·L−1,出水的氨氮含量也逐渐下降,并在培养第31天以后开始稳定在3.7~5.9 mg·L−1。培养初期,存在亚硝酸盐氮升高的情况,后稳定小于0.5 mg·L−1,此时可认为反应器整体启动成功。因此,CCBF的启动共耗时31 d,此时CCBF对
NH+4 -N、TP、TN和COD的去除率分别为93.1%、86.0%、71.7%和71.9%。 -
实验按照有机负荷从低到高的顺序分批进行。当HRT为8 h时(阶段I),出水
NH+4 -N浓度由23.79 mg·L−1降至4.66 mg·L−1,这一阶段膜内微生物受到铁基质载体原电池反应微电流刺激,生长迅速,脱氮效率提高。其主要原因是:自制铁基质生物载体具有较大的比表面积,可通过性强,载体孔隙内部的活性催化物质与Fe、C形成互相协同的处理机制,在降低反应所需活化能的同时,促进了微生物系统内部的物质传递过程[17],在适宜溶解氧浓度下,增强了硝化细菌降解NH+4 -N的效能。当HRT为4 h时(阶段II),出水
NH+4 -N浓度由4.66 mg·L−1升至19.94 mg·L−1,至第2个周期运行完毕时,NH+4 -N出水浓度为14.32 mg·L−1。其原因是:当反应器处于连续运行状态时,采取较低水力负荷向高水力负荷瞬时变速的进水方式会对反应器内部微生物系统造成一定冲击,此时反应器出水水质波动较大,反应器适应进水流速的时间延长[18];同时较大的水力负荷破坏了原有的微氧/好氧分区平衡,抑制了同步硝化反硝化反应的进行,导致出水NH4+-N浓度逐渐升高。在较大有机负荷冲击下,原电池反应速率加快,电离出的活性离子加速了微生物生长,脱落的微生物膜附着在载体表面,形成溶解氧隔离层[19],使微氧/好氧各反应区分界更明显,系统整体恢复稳定后,NH+4 -N浓度开始降低。当HRT为2 h时(阶段III),
NH+4 -N出水由19.98 mg·L−1升至32.54 mg·L−1,达到了整个反应过程的峰值。有研究[20]显示,当HRT<1.5 h时,随着进水波动幅度的加大,反应器适应水力负荷的时间会逐渐延长。由图4可以看出,随着HRT的减小,水流对填料上附着微生物的冲刷作用加速了生物膜更新,导致生物膜厚度变小,不利于产生反硝化作用所需的缺氧环境[21],导致NH+4 -N浓度不断上升。从图4中每个阶段的分界点可以看出,随着HRT的减小,出水NH+4 -N浓度逐渐升高,且HRT越大,相邻2个阶段的出水浓度差越大。当HRT为8 h时(阶段I),出水TN呈线性下降趋势,与
NH+4 -N变化过程相似,浓度由23.54 mg·L−1降至6.35 mg·L−1,第1阶段末期去除率达到89%。PENG等[22]在研究硫基自养反硝化和异养反硝化过程对去除硝酸盐氮的影响时发现,HRT会在影响微生物分布和系统性能方面发挥重要作用,当HRT高于0.15 d时,反应器能更高效地去除硝酸盐和铬酸盐(超过90%)。同其他工艺(如基于硫元素的自养反硝化)相比[23],本研究利用复合活性生物载体产生的Fe-C原电池,反应保持了更高的H+或Fe2+生成率,原位H+、Fe2+的生成提供了更多有效电子供体(式(2)和式(3)),促进了微生物反硝化脱氮过程的进行(式(5)和式(6))。由图5可以看出,当HRT>8 h时,TN去除率高于89%且总体基本保持稳定。当HRT为4 h时(阶段II),TN浓度在第1运行周期上升至22.03 mg·L−1。其原因可能是:受水力负荷冲击影响反硝化作用所需的微氧系统遭到破坏,在增加了微氧区溶解氧的同时冲散了反硝化菌团,增大了反应器内悬浮物浓度。当HRT为2 h和1 h时(III、IV阶段),TN平均去除率降至65%以下,反硝化作用明显减弱,此时
NH+4 -N曲线与TN曲线基本重合,出水TN浓度随HRT的升高而降低,各水力停留时间下最佳去除率基本呈线性正相关,并且当HRT=8 h时,反应器对NH+4 -N和TN有最佳去除效果。此时,反应器内部污水与微生物有充足的接触时间,有机物含量较高,由铁碳原电池反应产生的[H]和Fe2+使反硝化菌有足够的电子供体进行反硝化脱氮。但水力停留时间过低会导致水力负荷加大,对反应器内附着微生物产生较大冲击,抑制反硝化作用的进行,NO−3 -N含量的减少导致TN去除率降低,使脱氮效果不佳。因此,CCBF实现污水厂排水深度脱氮的最佳HRT为8 h。 -
HRT对CCBF系统总磷去除效果的影响结果如图6所示。当HRT为8 h时(I阶段),出水TP由6.85 mg·L-1降至0.8 mg·L−1以下,在第2周期末,降到0.48 mg·L−1。此阶段除磷效果明显的原因可能是:受载体物化性质的影响,复合活性载体具有高比表面积,并且具有分级的微观大孔结构,当载体处于碱性介质中时,活性载体中掺杂的催化剂对氧化还原反应表现出高的电催化活性以及优异的稳定性[24]。其中,催化剂优异的电催化性能可归因于:1)协同效应,由于水体中氮、磷元素的混合,为氧化还原反应提供了更多的催化位点;2)填料中微量铁的残留极大促进了氧化还原反应;3)填料分层多孔结构产生的高表面积特性和优异的传质速率。
当HRT为4 h时(II阶段),TP出水升至2.11 mg·L−1,涨幅较大。其原因可能是:受突变的水利负荷影响,系统除磷微生物系统受到水流搅动,破坏了原有进水流速下对磷酸盐的吸收;同时,成熟的微生物膜对填料孔隙还有一定程度的堵塞,不仅抑制了填料的吸附作用,还限制了原电池反应对微生物的刺激作用。当HRT<4 h时,系统出水TP浓度产生波动式变化,新进排水与前一阶段原水混合使TP浓度有小幅上升,III阶段和IV阶段出水TP浓度分别为2.87 mg·L−1和2.13 mg·L−1,去除率均不足75%,这说明此时CCBF系统化学除磷过程受到进水流量冲击的抑制作用,停留时间的减少同样减弱了微生物对磷酸盐的富集[25]。
随着停留时间的延长,反应器内部溶解氧浓度保持稳定,Fe-C原电池产生的Fe2+被快速氧化为Fe3+,缺氧区微生物受水力负荷冲击减小,从而与Fe3+反应生成磷酸铁沉淀(式(10)),从而促进了系统除磷[26]。因此,CCBF去除污水厂排水中磷的最佳HRT为8 h。经胡智丰[27]研究验证,本系统具有长期的化学除磷效果,不用污泥回流也能实现磷的长期高效脱除。
-
当HRT为8 h(I阶段)时,如图7所示,出水COD由46 mg·L−1降至33 mg·L−1,平均去除率分别为41%和57%。与处理污水厂排水的传统脱氮工艺相比,有机污染物难以在反应器中微氧/好氧区内被消耗。这是因为污水厂排水作为沉淀池二次出水,COD/TN<1.5,作为高氨氮、低碳源的废水,其中包含了大量难降解有机物。由图7可以看出,当HRT分别为1、2、4 h,进水耗氧有机污染物的浓度(以COD计)为68.5~78.5 mg·L−1时,各水力停留时间下出水耗氧有机污染物的浓度(以COD计)分别为55.3、47、39 mg·L−1,去除率为25%~60%,出水耗氧有机污染物的浓度(以COD计)随着HRT的增加而减小。
CHEN等[28]在研究铁对三级营养素及难降解有机物的效能时发现,当有铁存在时,反应器对耗氧有机污染物的浓度(以COD计)有更好的去除效果。其原因是:铁基质的引入会使生物反应器内pH、DO浓度和生物质含量等环境条件朝着有利于污染物消除的方向发展,这意味着复合活性载体内部含有的微量铁元素与活性炭耦合机制将引导污染物经历更多样化的降解或转化途径,而HRT作为影响有机污染物去除的重要因素[29],低HRT带来高有机负荷,通过适当延长HRT,有利于微生物与可降解有机物的充分接触,可对有机污染物去除更彻底。
当HRT<4 h时,调整HRT值对COD去除增幅明显;当HRT由4 h变为8 h时,COD去除率略有上升,但基本趋于平稳。这说明低HRT下进水流量变大对反应器内微生物会造成一定冲击,使填料表面生物膜脱落,影响系统对有机物质的去除效果。因此,CCBF对污水厂排水中有机物降解的最佳HRT为8 h,结合CCBF对污水厂排水中氮、磷的降解可知,CCBF系统处理污水厂排水的最佳HRT为8 h,此时该系统对排水中氨氮、总氮、总磷和COD的去除率分别达到89.5%、85.7%、92.5%和57.9%。
-
本实验设定系统为完全推流式反应器,只存在横向的质量浓度混合,无纵向质量浓度梯度[30]。利用不同HRT下反应器中随时间变化的
NH+4 -N、TN浓度数据(运行1周期),等效替换为反应器在同比高度的延程数据(如HRT=1 h时,认为在0.5 h时出水浓度即为反应器中部延程出水),通过进水流量及反应器截面积将HRT换算成水力负荷,对系统NH+4 -N及TN降解效能进行动力学分析。经计算,HRT=8、4、2、1 h对应的水力负荷L分别为0.000 884 6、0.001 769、0.003 538、0.007 077 m3·(m2·min)−1,不同L下
NH+4 -N、TN的沿程变化如图8所示。根据Eckenfelder公式[31-32],推流式柱状反应器符合一级反应动力学,其污染物降解动力学模型见式(11)。
式中:S0为进水浓度,mg·L−1;Se为出水浓度,mg·L−1;h为反应器内填料深度,m;L为水力负荷,m3 ·(m2·min)−1;K为反应速率常数,min−1;n为与载体形状、尺寸、比表面积有关的常数。K和n的值可表征载体内微电流对微生物生长的促进作用,决定了反应器内生物量和生物活性。由式(11)可得式(12)。
式(12)为线性方程,Se/S0可由不同水力负荷下NH4+-N、TN沿程浓度变化数据求得;利用ln(Se/S0)对反应器高度h作图并拟合可求得K/Ln,结果如图9所示,拟合数据见表2。由拟合数据可知结果符合数学统计要求。
令
α=−KLn ,则|α|=−KLn ,两边取对数得式(13)。由式(13)对表2中数据进行线性回归,可得n1=0.314 76,n2=0.282 21。
根据n值求出不同水力负荷下的Ln及h/Ln的值,以ln(Se/S0)对h/Ln作图,通过拟合数据(表3)求得K值,拟合曲线如图10所示。
由表3求得不同水力负荷下反应速率常数K1、K2的平均值。K1的平均值为0.128 02,K2的平均值为0.218 59,将常数n1、n2与K1、K2带入式(11),可得式(15)和式(16)。
本研究得出的KTN=0.218 59,高于同一反应器在相同条件下的
KNH+4-N 。这表明CCBF系统在高曝气的条件下实现了微氧/好氧区的分界,系统内部存在同步硝化反硝化现象。nTN=0.282 21,略低于nNH+4-N =0.314 76。这表明该反应器中载体的理化性质适于硝化和反硝化微生物的附着和生长,脱氮系统抗氮素冲击负荷能力较强,且系统的运行(脱氮过程)不依赖于反应器对COD的降解。较大的反应速率常数K表明系统内生物量充足,且微生物代谢旺盛,从而保证了系统对污水高效、快速的降解效能。YAN等[33]发现,反应器深度、进水底物浓度、气水比和反应温度均会影响模型中参数的取值范围,反应器形式及水力负荷的不同同样会造成反应器出水底物浓度的差异。与同体积、水力负荷为0.000 8~0.007 m3·(m2·min)−1的反应器n值比较可知,本系统
nNH+4-N =0.314 76略高于其他同类型反应器。这说明本系统内部铁基质载体形状、尺寸、孔隙率等适于硝化和反硝化微生物附着和生长,同时较大的比表面积能增大污水与生物膜的接触面积,使污染物能更加充分地与生物膜接触,增强细菌分解功能,使其在进水污染物浓度波动时,保证出水的稳定性。 -
1) CCBF强化深度脱氮系统最佳运行参数为DO=5.5~6.0 mg·L−1、HRT=8 h、C/N=1.5∶1时,NH4+-N去除率为89.5%、TN去除率为85.7%、COD去除率为57.9%,具有良好的脱氮效率。
2) CCBF系统中的铁基质活性载体在物化-生物耦合作用下,Fe3+和磷酸盐结合,生成磷酸铁沉淀,TP去除率达到92.5%,极大地增强了CCBF的除磷功能。
3)基于Eckenfelder方程,建立了CCBF系统深度脱氮降解模型,
NH+4 -N降解模型表达式为Se(NH+4 -N)=S0(NH+4 -N)exp(−0.128 02h/L0.314 76),TN降解模型表达式Se(TN) =S0(TN)exp(−0.218 59h/L0.282 21);与水力负荷为0.000 8~0.007 m3·(m2·min)−1的常规生物处理相比,CCBF系统内部生物量充足、活性高,并实现了高曝气条件下的同步硝化反硝化,保证了系统对污水高效、快速的降解效能。
基于物化生化耦合的污水深度脱氮除磷新工艺
Mechanism of strengthened deep nitrogen and phosphorus removal from sewage based on physicochemical and biochemical coupling process
-
摘要: 为了解决常规污水处理技术无法进行完整的硝化反硝化过程,污水厂出水中氨氮、总氮、总磷偏高以及运行成本较高的问题,以某污水厂排水为研究对象,通过物化与生化耦合,构建化学催化生物耦合床(CCBF)脱氮系统,研究CCBF系统对污水厂排水中氨氮、总氮、总磷和COD的去除效能。结果表明:当DO为5.5~6.0 mg·L−1、RT为8 h、C/N为1.5∶1时,CCBF可将
NH+4 -N从48.5 mg·L−1降至4.58 mg·L−1、TN从51.2 mg·L−1降至6.5 mg·L−1、TP从6.6 mg·L−1降至0.48 mg·L−1、COD从78.5 mg·L−1降至33 mg·L−1,去除率分别达到89.5%、85.7%、92.5%和57.9%;污水经处理后,氨氮、总氮、总磷、COD均达到城镇污水处理厂污染物排放标准(GB 18918-2002)一级A排放标准。利用Eckenfelder方程对系统脱氮过程进行模拟,求得nNH+4-N =0.314 76,nTN=0.282 21,KNH+4-N =0.128 02,KTN=0.218 59,与水力负荷为0.000 8~0.007 m3·(m2·min)−1的常规生物处理相比,系统内部生物量充足、活性高,物化与生物耦合强化效果明显。Abstract: Currently, the conventional wastewater treatment plants have faced many problems such as incomplete nitrification and denitrification with conventional wastewater treatment technologies, high ammonia nitrogen, total nitrogen and total phosphorus concentrations in the effluent, and high operational cost. In this study, based on the physicochemical and biochemical coupling process, a chemical catalytic bio-coupled filter (CCBF) was constructed to treat the drainage from the wastewater treatment plant. The removal efficiencies of ammonia nitrogen, total nitrogen, total phosphorus and COD in this drainage by CCBF were studied. The results showed at DO of 5.5~6.0 mg·L−1, HRT of 8 h, C/N ratio of 1.5∶1, CCBF could reduceNH+4 -N from 48.5 mg·L−1 to 4.58 mg·L-1, TN from 51.2 mg·L−1 to 6.5 mg·L−1, TP from 6.6 mg·L−1 to 0.48 mg·L−1, and COD from 78.5 mg·L−1 to 33 mg·L-1, respectively, and their removal efficiencies corresponded to 89.5%, 85.7%, 92.5% and 57.9%, respectively. The above four indictors of CCBF effluent could meet the first-class A emission level of national pollutant discharge standard of urban sewage treatment plant (GB18918-2002). The nitrogen removal process in the CCBF system was simulated by Eckenfelder equation. Reaction orders ofnNH+4-N =0.314 76 and nTN=0.282 21, reactor rate constants ofKNH+4-N = 0.128 02 and KTN=0.218 59, were determined with correlation coefficients (R2) of 0.983 3 for the simulation onNH+4 -N removal. In comparison with the conventional biological treatment technology at hydraulic loading of 0.000 8~0.007 m3·(m2·min)−1, the CCBF process contained high content and active biomass, and obvious physicochemical and biochemical coupling effects occurred accordingly. -
突发环境事件是由污染物排放或者生产安全事故、自然灾害等次生的,短时间内可能导致环境质量下降或者造成生态环境破坏的事件[1]。云南省矿产资源极为丰富,尤以有色金属及磷矿著称,被誉为“有色金属王国”,尾矿库泄漏事故次生环境风险突出;地形以高原、山地为主,地势起伏,交通险阻,江河纵横,湖库棋布,道路运输事故引发的突发环境事件高发;位于亚欧板块和印度洋板块交界地带,地质运动活跃导致地震多发和地质灾害频发,易造成企业环保设施受损,导致环境事件发生;地处上游地区,河流和湖泊众多,多数河流具有落差大、水流湍急、流量变化大的特点,且跨国境、跨省界河流多,防范流域突发水污染事件压力大。总体来说,云南省突发环境事件风险特征明显且面临易发多发的高风险态势。
“十四五”期间,云南省突发环境事件的高风险态势加剧,生态环境应急形势更加严峻。在重金属、跨界污染风险突出的形势下,随着原油、成品油输送网络的形成和石化产业链的延伸,应对石化相关产业存储、运输和生产环节的环境风险挑战逐渐增多。加快推进的交通运输建设,加之公路货运仍占主体地位,危险化学品运输次生突发环境事件概率增加;水运业务快速增长,港口、码头环境风险增大。7级地震平静时长突破历史记录,“十四五”时期地震形势更加严峻复杂。基础设施重大工程建设将加剧地质灾害次生突发环境事件的概率。
在把握云南省突发环境事件风险特征的基础上,根据云南省“十四五”经济社会发展规划,深入分析产业结构、运输结构、能源结构布局和重点行业发展变化趋势,提前研判“十四五”云南省生态环境应急形势的新特点新趋势,研究生态环境应急规划的思路和重点,针对性做好风险防控和应急准备,提高应急处置及其保障能力,推进生态环境应急体系和能力现代化,对于妥善应对突发环境事件,维护生态环境安全底线,具有十分重要的现实意义。文章立足于云南省环境应急的现状和问题,结合生态环境应急形势分析,提出了云南省“十四五”生态环境应急规划的思路和建议。
1. “十四五”生态环境应急形势分析
1.1 突发环境事件引发因素短期内难以改变
“十三五”时期,云南省管控违法排污造成突发环境事件的成效显著,因违法排污引起的突发环境事件明显减少,但仍需严厉打击危险废物非法转移和倾倒等违法犯罪活动造成的突发环境事件。生产安全事故、道路运输事故和自然灾害次生的突发环境事件多发频发情况短期内难以改变。
1.1.1 生产安全事故因素
支撑云南省高质量发展的基础仍不牢固,在产业发展方面的短板仍然明显,主要表现在发展方式粗放,制造业产业层次普遍偏低[2]。目前,涉及重大环境风险工艺及物质的石化、化纤、医药、化工、轻工、冶炼、港口/码头、石油天然气及其长输管道等行业在全省均有分布。全省共有尾矿库588座,位居全国第四。2021年,云南省生产事故总量仍然偏大,除道路运输事故外,全省发生各类生产安全事故443起,可能次生突发环境事件的金属非金属矿山事故32起,化工和危险化学品事故5起,工贸行业事故75起[3]。
“十三五”期间,中缅油气管道建成运营,云南省建成投运油气管道总里程达到4 914 km,原油、成品油、天然气三大管网已初成体系,中石油云南石化1 300万吨/年炼油项目建成投产。“十四五”期间,将建设覆盖全省各州、市的天然气支线管道,建成一批原油和成品油储备项目,形成以昆明市为中心的放射状成品油管道输送网络,成品油管道达2 500 km以上,输送能力达3 128万吨/年;将推进石化产业向下游产业链延伸,大力发展功能性化学品、化工新材料等精细化工[2]。
1.1.2 道路运输事故因素
云南省山地面积约占全省总面积的94%左右,地形地貌复杂,道路坡陡弯急,路网安全运行基础薄弱,安全防护设施历史欠账较多,极易发生交通事故并次生突发环境事件。2021年,全省发生道路运输事故1 035起,其中较大事故16起,水上交通事故1起,铁路运输事故9起[3]。
到2025 年,云南省综合交通实体线网总里程将达到36万km,其中高速公路通车里程新增6 000 km、达到1.5万 km,新改建国省道3 000 km,新改建农村公路6万km,铁路营运里程新增1 800 km、达到6 000 km。在建及运营运输机场总数量达到20个。新增及改善航道里程1 000 km、达到5 300 km,新增内河港口泊位60个。预计2021~2035年,公路货运仍占主体地位,货物运输仍然集中在滇中地区,水富港至长江中下游水上运输业务快速增长[4-5]。“十四五”规划的37条国家和地方高速公路项目线路涉及54个集中式饮用水水源保护区,规划的13条铁路项目线路涉及34个集中式饮用水水源地保护区[4-5]。
1.1.3 自然灾害因素
云南省自然灾害种类多、分布地域广、发生频率高,属地质灾害多发频发区和地震多发省份,地质、地震和洪涝等自然灾害诱发突发环境事件风险隐患大,各类灾害风险交织叠加,不确定因素多。2021年与近5年灾害发生频次均值相比,地质灾害增加126.56%、洪涝灾害增加44.23%。2021年因地震灾害共造成10个州(市)的23个县(市、区)不同程度受灾[6]。
云南省地质构造复杂,地层岩性复杂,近地表岩土体破碎,不稳定岩土体广泛分布,稳定性差。复杂脆弱的地质环境背景条件,遭遇高强度降雨(雪)或长时间连续降雨等极端天气以及强烈地震,导致滑坡、泥石流和崩塌等地质灾害多发频发。“十四五”交通、水利和能源等大规模基础设施建设工程将加剧地质灾害的发生。地处印度洋板块与亚欧板块碰撞带附近,地壳运动比较强烈,沿构造线或大的断裂带,常有强烈地震发生,具有频度高、强度大、震源浅、分布广的特征。全省91.2%的国土面积处于7度以上地震高烈度区,1 500万人居住并在活动断层控制的盆地区域内从事生产活动。7级地震平静时长突破历史记录,“十四五”时期震情形势更加严峻复杂,大量长距离、大跨度油气管线等基础设施邻近或直接处于大震危险源地带[7-8]。
1.2 环境风险受体敏感
1.2.1 饮用水水源地
目前,云南省县级及以上城市集中式饮用水水源地共236个,除7个为地下水型饮用水源地外,其他均为湖库型和河流型饮用水水源地;“千吨万人”饮用水水源共330个,湖库型和河流型260个,占比78.8%;乡镇级集中式饮用水源共966个,湖库型和河流型685个,占比70.9%。总体来说,全省湖库型和河流型饮用水水源占比大,环境风险受体敏感性突出。存在交通穿越的县级以上集中式饮用水水源地共69个,因流动源造成突发环境事件的风险较大。“十四五”期间,将新建和续建大、中、小型水库13个[2]。
1.2.2 跨国境和省界河流
云南省是“一带一路”建设、长江经济带两大国家发展战略的重要交汇点,涉及水系包括长江(金沙江)水系、珠江(南盘江)水系、元江(红河)水系、澜沧江(湄公河)水系、怒江(萨尔温江)水系和大盈江(伊洛瓦底江)水系。全省跨国境、跨省界河流众多,与缅甸、越南存在跨国境断面,与西藏、四川、贵州和广西省(自治区)存在跨省界断面。16个州(市)中,8个州市涉及跨国境河流,9个州(市)涉及跨省界河流。跨国境断面共22个,涉及红河水系、澜沧江水系、怒江水系和大盈江水系的河流干流及其一、二级支流共20条。跨省界断面共36个,涉及长江水系、珠江水系、怒江水系和大盈江水系的河流干流及其一、二级支流共26条。
1.3 环境风险源风险突出
云南省产业结构性、布局性环境风险依旧突出。产业结构以资源型产业为主,大部分产业处于全球产业价值链中低端,企业“乱、散、小”问题突出,发展质量亟待提高。各类化工园区、企业依水而建,沿江、沿河10 km范围内风险企业较多。全省“一废一库一品”企业较多。云南省是长江经济带省(市)中尾矿库数量最多的省份,纳入监管尾矿库588座,涉及16个州(市)。截至2021年12月底,全省危险废物经营许可证持证企业共100家。目前,共有重大突发环境事件风险企业90余家,较大突发环境事件风险企业近400家。“十四五”全省按照“大抓产业、主攻工业”思路,将着力扩大工业投资,实现规模以上工业企业数量翻番,大力发展新材料、生物医药、先进装备制造、绿色食品加工、电子信息、化工、卷烟及配套产业[9]。
2. 生态环境应急现状和问题
突发环境事件的妥善应对,需要结合本省环境风险源和风险受体特点,针对风险源可能造成的环境影响范围和程度,提前做好风险管控和应急准备。云南省生态环境应急工作起步较晚,应对突发环境事件的准备基础十分薄弱,存在明显的短板和不足,体制机制还未完全理顺,风险底数尚不清楚,应急保障极不充分,应急能力亟须提升。
2.1 环境应急管理体系需加快完善
当前云南省环境应急管理的体制机制与“十四五”环境安全形势发展的要求不相适应,环境应急管理体制不够完善,联动机制不够健全。云南省生态环境厅突发环境事件应急响应预案以及各州(市)突发环境事件应急预案和响应预案更新滞后,不能满足环境应急预案修订时限和环境应急工作高质量发展要求。缺乏生态环境应急管理制度、管理办法和工作规范,环境应急制度化和规范化工作格局尚未形成。与四川、贵州、广西和西藏省(自治区)签订了跨省(区)流域上下游突发水污染事件联防联控机制合作协议,但省内相邻流域、区域的应急协调联动机制普遍未建立,省政府组成机构间生态环境应急协作联动机制尚未建立。
2.2 突发环境事件风险底数不清
云南省至今未开展过突发环境事件风险专项调查和评估工作,全省突发环境事件风险底数不清,包括环境风险源基本情况、环境风险受体信息、环境风险防控与应急处置能力。因此,不能通过分析建立环境风险源和敏感受体之间的影响关联,不能识别环境风险源及其风险物质特点,不能明确风险源可能造成的环境影响途径、范围和程度。进一步导致政府和部门突发环境事件应急预案编制的支撑基础不牢,开展风险防控和应急准备工作的针对性不足,无法构建与风险水平相适应的环境应急技术和保障能力。
2.3 突发环境事件风险防控针对性不足
由于云南省突发环境事件风险底数不清,尚未建立全省突发环境事件风险源和风险受体分类分级风险管控和隐患排查治理监管机制,未能从源头着手防范化解重特大突发环境事件风险。企业编制的应急预案普遍流于形式、质量不高,针对性、实用性和操作性差,不重视、不执行、不管用的问题突出,事件场景设置不合理,且应急资源种类和数量不足,未与政府预案形成体系。集中式饮用水水源地环境应急预案覆盖不全面,并存在针对性和科学性不足的问题。
2.4 环境应急专业能力亟须提升
云南省于2021年成立了省生态环境应急调查投诉中心,曲靖市和昭通市建立了专职环境应急机构,其余14个州、市均未组建专职的环境应急机构和队伍,开展生态环境应急工作的人员多数为兼职人员,人员流动频繁,难以满足当前敏感严峻的环境应急形势需要。无论专职还是兼职环境应急人员,均缺乏系统性和规范化培训。未针对云南省突发环境事件风险特征和形势开展相关技术开发和应用研究,难以科学支撑复杂、难度较大突发环境事件的应对和处置,全省环境应急队伍专业能力亟须提升。
2.5 环境应急保障不充足
云南省未设立各级环境应急专项资金保障突发环境事件的处置。环境应急装备更新较慢,不能达到应急现场防护和快速监测的要求。应急物资信息库管理有待加强,全省未建设环境应急物资储备库和建立应急物资管理、调运机制。多数企业没有根据自身的环境风险特征储备足量的应急物资。环境应急综合管理和指挥平台开发缓慢,信息化工作有待进一步加强,数据共享机制有待建立,不能有效支撑环境应急管理体系和能力现代化要求。总体来说,一旦遭遇重特大突发环境事件,将面临不能充分保障突发环境事件处置的问题。
3. “十四五”生态环境应急工作思路与建议
李昌林等[10]从国家层面提出突发环境事件应急体系及完善建议,着重强调法律法规的衔接性、应急预案编制技术规范、多元主体参与机制、应急技术研发、应急人才培养和应急物资储备规划。朱文英等[11]也从国家层面提出环境应急管理制度体系发展建议,侧重完善事前防范和管理标准体系、提高事中处置规范化水平、增强事后赔偿和修复规范化水平。云南省生态环境应急工作在发展阶段和发展水平上均同国家环境应急整体发展状况存在较大差距,需立足云南省生态环境应急现状及存在的主要问题,基于突发环境事件风险特征和“十四五”生态环境应急面临的形势,按照“强体系、摸底数、防风险、提能力、促保障”的总体工作思路,基于可推动实现的目标,全面贯彻分类分级的理念和主线,“十四五”期间以突发水环境事件为重心,突出重点行业、重点企业、重点环节、重点风险物质,针对性做好风险防控和应急准备,着力防范和应对重特大突发环境事件发生,推进生态环境应急体系与能力现代化。
3.1 完善应急管理体系,健全联动协作机制
加快修订云南省生态环境厅突发环境事件应急响应预案,理顺厅内应急响应程序和机制,明确厅内各部门分级应对突发环境事件的职能职责。形成以风险评估为基础编制政府及其部门突发环境事件应急预案的导向,推进州(市)政府及生态环境部门按期修订突发环境事件应急预案及应急响应预案。根据环境应急重点工作需要,制定出台一系列管理制度、管理办法和工作规范,提高生态环境应急工作制度化和规范化水平。加强区域、流域和部门间协调协作,推进建立高效顺畅的相邻区域、流域应急协调联动机制,推动建立与应急管理、消防救援、水利、能源、交通运输、自然资源和地震等部门的联动协作机制,尤其要建立与应急管理、消防救援、交通运输和水利部门间的信息共享机制。
3.2 全面开展风险评估,动态掌握风险状况
对16个州(市)开展区域突发环境事件风险评估,全面掌握全省突发环境事件风险底数,为提升政府及其部门应急预案的针对性提供支撑,为实现分类分级、重点精准风险管控奠定基础,针对性做好应急准备,构建与风险水平相适应的环境应急技术和保障能力。同时,将风险评估成果信息化,集成在环境应急管理和指挥系统平台,及时根据环境风险源和风险受体变化情况实时更新,实现突发环境事件风险动态管理目标,提高生态环境应急管理精准化和信息化水平。积极推动流域突发环境风险评估试点工作。
3.3 强化多级风险防控,实现重点精准管控
提升突发环境事件风险管控水平,健全环境风险防范化解机制,突出重点行业和企业,坚持从源头上防范化解重特大突发环境事件风险。在掌握风险底数和实现动态更新的基础上,从企业和流域层面系统构建多层级的突发环境事件风险防控体系,推进风险管控能力现代化。建立企业突发环境事件风险分级管控和隐患排查治理双重防控机制。提升应急预案规范化和精准化管理水平,建立企业应急预案核查管理技术要点和方法体系,开展企业突发环境事件应急预案抽查复核。推动县级及以上集中式饮用水水源地环境应急预案全覆盖。全面推广应用“以空间换时间”的“南阳实践”,以“南阳实践”为抓手防控流域突发水污染事件,实现重点河流“一河一策一图”全覆盖。
3.4 加强专业技术支撑,提高事件应对能力
在目前我国应急管理体系为政府主导的治理模式下,着力推动基层生态环境应急机构和队伍建设,推动建立州(市)、县(区)环境应急专职机构。制定环境应急人员系统性、长期性培训计划,提高应对突发环境事件的专业素质和能力,重点强化基层应急人员信息报告和先期处置能力。重视应急技术深化应用,加强与环境应急技术研究单位的交流合作,结合全省产业结构、运输结构、能源结构布局和重点行业发展水平,根据风险评估成果针对性建立环境应急处置技术库并进一步研究提高应用水平,以支撑现场应急处置。完善环境应急监测和应急处置专家库。推动依托企业和社会组织,组建突发环境事故专业救援队伍。
3.5 建立应急保障体系,提升应急保障能力
推动在省和州(市)层面设立生态环境应急专项资金,确保环境应急资金保障。加强环境应急监测能力建设,探索建立企业、市场、政府多方参与的应急监测保障机制。在继续做好环境应急物资信息库建设和管理的基础上,根据区域行业特点、风险源分布和风险物质类型,研究细化应急物资种类、数量及其储备布局、模式和更新周期,建立实物储备、合同储备和生产储备相结合的应急物资储备模式,推动建设常用应急物资储备库。加快建设环境应急综合管理和指挥平台,初步实现环境应急管理和指挥“一张图”。加强环境应急信息化建设,首要以信息化提高环境风险防控精准化及动态管理水平、促进环境应急物资管理、储备和调运等保障能力。
-
表 1 生活污水及处理出水水质特征
Table 1. Water quantity of domestic sewage and CCBF effluent
原水及出水 NH+4 -N/(mg·L−1)NO−2 -N/(mg·L−1)NO−3 -N/(mg·L−1)TN/(mg·L−1) TP/(mg·L−1) COD/(mg·L−1) pH 原水 47~86 <0.1 <1.8 55~102 3.5~8.6 106~267 6.90~7.85 出水 3.7~5.9 <0.5 17.6~19.1 21.5~28.8 0.3~1.2 39~75 6.76~7.95 表 2 K/Ln的拟合数据
Table 2. K/Ln fitting data
拟合对象 沿程编号 α R2 水力负荷/ (m3·(m2·min)−1) NH+4 -NL1 −1.461 0.855 55 0.000 884 6 L2 −1.315 61 0.749 57 0.001 769 L3 −1.055 28 0.971 1 0.003 538 L4 −0.759 86 0.912 67 0.007 077 TN L1 −1.259 01 0.776 08 0.000 884 6 L2 −1.609 68 0.798 91 0.001 769 L3 −1.998 59 0.792 13 0.003 538 L4 −2.248 45 0.882 84 0.007 077 表 3 h/Ln的拟合数据
Table 3. h/Ln fitting data table
拟合对象 沿程编号 K R2 水力负荷/(m3·(m2·min)−1) NH+4 -NL1 0.104 87 0.977 45 0.000 884 6 L2 0.112 26 0.958 93 0.001 769 L3 0.176 42 0.935 26 0.003 538 L4 0.118 54 0.983 33 0.007 077 TN L1 0.275 29 0.966 19 0.000 884 6 L2 0.248 78 0.916 02 0.001 769 L3 0.198 78 0.900 96 0.003 538 L4 0.151 54 0.807 59 0.007 077 -
[1] 万正芬. 城镇污水处理厂出水中氮磷高效吸附填料的筛选[D]. 青岛: 中国海洋大学, 2015. [2] 周慧, 徐得潜, 马常仁, 等. A/O-膜生物反应器工艺应用于城市污水处理厂出水提标改造的研究[J]. 环境污染与防治, 2011, 33(12): 13-17. doi: 10.3969/j.issn.1001-3865.2011.12.003 [3] 邓时海, 李德生, 卢阳阳, 等. 集成模块系统同步硝化反硝化处理低碳氮比污水的实验[J]. 中国环境科学, 2014, 34(9): 2259-2265. [4] VAN NIEL E W J, ARTS P A M, WESSELINKB J, et al. Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures[J]. FEMS Microbiology Letters, 2010, 102(2): 109-118. [5] SAYESS R R, SAIKALY P E, EL-ADEL M, et al. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor[J]. Water Research, 2013, 47(2): 881-894. doi: 10.1016/j.watres.2012.11.023 [6] RUIZ G, JEISON D, CHAMY R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6): 1371-1377. doi: 10.1016/S0043-1354(02)00475-X [7] 沙之杰, 杨勇. 短程硝化反硝化生物脱氮技术综述[J]. 西昌学院学报(自然科学版), 2008, 22(3): 61-64. doi: 10.3969/j.issn.1673-1891.2008.03.018 [8] 杨延栋, 黄京, 韩晓宇, 等. 一体式厌氧氨氧化工艺处理高氨氮污泥消化液的启动[J]. 中国环境科学, 2015, 35(4): 1082-1087. [9] 张正哲, 姬玉欣, 陈辉, 等. 厌氧氨氧化工艺的应用现状和问题[J]. 生物工程学报, 2014, 30(12): 1804-1816. [10] 户海燕, 瞿思宜, 张正哲, 等. 分子生物技术在厌氧氨氧化工艺研究中的应用[J]. 环境科学与技术, 2016, 39(1): 2620-2643. [11] 张琪, 李德生, 邓时海, 等. 基于铁碳内电解的物化-生物耦合深度脱氮[J]. 水处理技术, 2016, 42(10): 92-96. [12] 邓时海. 生物法与物化法耦合深度处理低碳氮比污水[C] //中国环境科学学会. 2016中国环境科学学会学术年会论文集: 第2卷, 2016: 2571-2580. [13] 郑炜晔. 基于铁质载体与生物耦合深度处理低C/N比生活污水的研究[D]. 北京: 北京交通大学, 2018. [14] SINTHUSITH N, TERADA A, HAHN M, et al. Identification and quantification of bacteria and archaea responsible for ammonia oxidation in different activated sludge of full-scale wastewater treatment plants[J]. Journal of Environmental Science and Health, 2015, 50(2): 169-175. [15] HOSONO T, TOKUNAGA T, KAGABU M, et al. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution[J]. Water Research, 2013, 47(8): 2661-2675. doi: 10.1016/j.watres.2013.02.020 [16] 李德生, 胡倩怡, 崔玉玮, 等. 化学催化法脱除模拟地下水中硝酸盐氮[J]. 化工学报, 2015, 66(6): 2288-2294. [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [18] 高梦佳, 王淑莹, 王衫允, 等. 脉冲式流量波动对厌氧氨氧化UASB反应器的影响[J]. 中国环境科学, 2016, 36(8): 2347-2354. doi: 10.3969/j.issn.1000-6923.2016.08.014 [19] HONG S, ZHANG J, FENG C, et al. Enhancement of nitrate removal in synthetic groundwater using wheat rice stone[J]. Water Science & Technology, 2012, 66(9): 1900. [20] LIU K, WANG H Y, MA M J, et al. Effect of temperature on denitrification of deep denitrification MBBR in municipal wastewater treatment plant[J]. Environmental Science Research, 2016, 29(6): 987-993. [21] AKUNNA J C, BIZEAU C, MOLETTA R. Denitrification in anaerobic digesters: Possibilities and influence of wastewater COD/N-NOx ratio[J]. Environmental Technology Letters, 1992, 13(9): 825-836. doi: 10.1080/09593339209385217 [22] PENG L, LIU Y, GAO S H, et al. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes[J]. Water Research, 2016, 89: 1-8. doi: 10.1016/j.watres.2015.11.031 [23] QIAO X, PENG H, YOU C, et al. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction[J]. Journal of Power Sources, 2015, 288: 253-260. doi: 10.1016/j.jpowsour.2015.04.118 [24] 李楠. SBR系统在低温条件下的废水生物除磷性能及除磷途径分析[D]. 哈尔滨: 哈尔滨工业大学, 2010. [25] LI L, GAO W. Inhibition of nitrous acid on aerobic phosphorus uptake by polyphosphate bacteria[J]. Environmental Pollution Control, 2013, 35(9): 67-70. [26] FAN J, WAN X, ZHANG W. Adsorption competition of potassium ions required for biological phosphorus removal by iron phosphate precipitation[J]. Environmental Science and Technology, 2014, 4: 57-61. [27] 胡智丰. 基于特定吸附填料去除污染水体中氮和磷[C]//中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集: 第2卷, 2017: 2570-2577. [28] CHEN H, LIU Y, XU X, et al. How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater[J]. Water Research, 2019, 148(1): 344-358. [29] 陈杰云. 多级A/O+好氧生物膜组合工艺特性及处理污水效能研究[D]. 重庆: 重庆大学, 2013. [30] 高大文, 袁青, 黄晓丽, 等. 基质质量浓度对不同载体UAFB-Anammox反应器脱氮性能的影响[J]. 北京工业大学学报, 2015, 41(10): 1493-1500. doi: 10.11936/bjutxb2015040026 [31] 邓时海. 生物法与物化法耦合深度处理低碳氮比污水[C] // 中国环境科学学会. 2016中国环境科学学会学术年会论文集: 第2卷, 2016: 2571-2580. [32] WANG C R, LI J, WANG B Z, et al. Empirical model for treatment of domestic sewage by two different aerated biological filters[J]. Journal of Environmental Engineering, 2005, 6(12): 59-63. [33] YAN G, XU X, YAO L, et al. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor[J]. Bioresource Technology, 2011, 102(7): 4628-4632. doi: 10.1016/j.biortech.2011.01.009 -