-
城市污水处理厂污泥成分复杂,含有大量病原菌、重金属、有机污染物等有毒有害物质[1],其安全处理对生态环境和人类健康至关重要。厌氧消化被认为是一种经济且环境友好的污泥处理技术[2],但存在沼气产率低、消化池体积庞大等问题[3]。高含固污泥厌氧消化(含固率大于10%)可有效提高消化池有机负荷和消化效率,缩小设备体积[4],通过与热水解预处理技术组合,以加速污泥水解,提高甲烷产量[5],实现污泥的高效、低成本处理。但是当污泥的含固率提高时,其导热系数会随之降低[6],热水解能耗将显著增加,特别是当污泥含固率达到15%及以上时,污泥颗粒孔隙中可能存在空气,将明显降低污泥导热能力[7]。马俊伟等[8]研究表明,随着污泥含固率的提高,污泥的传热性能减弱,使得热水解过程中有机物溶解率下降,沼气产率明显降低。在提升污泥含固率时,污泥热水解效率降低,时间延长,将显著影响高含固污泥热水解-厌氧消化工艺的能量平衡。
餐厨油脂是伴随餐厨垃圾产生的一种有机废弃物,我国餐厨垃圾中油脂含量普遍较高,据报道,青岛等地的餐厨垃圾中油脂占了25.30%,重庆、四川等地由于火锅类所占比例较大,油脂约占餐厨垃圾的29.70%[9]。餐厨油脂是一种较好的导热介质,其导热系数远远大于空气,张玉珂[10]测定了5种食用油的导热系数,当温度为100~200 ℃时,油脂的导热系数为0.20~0.23 W·(m·K)−1,而空气的导热系数仅为0.01~0.02 W·(m·K)−1[11]。此外,油脂在高温下(>120 ℃)发生的对流传热会进一步加快热量传递[12]。含固率大于15%的污泥颗粒中存在空气,导热能力显著降低,将油脂与高含固污泥混合进行热水解,可以利用油脂良好的导热性能促进热量传递,提高热水解效率。同时,油脂也是一种理想的共消化基质,其单位质量的沼气产量和甲烷产量比碳水化合物和蛋白质高[13]。污泥与油脂共消化可平衡营养、改善碳氮比、稀释抑制性物质,提高厌氧消化系统的稳定性和甲烷产量[14]。
本研究针对高含固污泥传热性能下降的问题,向含固率大于15%的污泥中加入适量餐厨油脂进行热水解,探讨油脂促进并加速污泥热水解的可行性,同时通过厌氧消化实验得到最佳条件,为污泥的高效处理提供参考。
添加餐厨油脂对高含固污泥热水解及厌氧消化的影响
Effect of adding kitchen grease on thermal hydrolysis and anaerobic digestion of high solid wasted activated sludge
-
摘要: 针对高含固污泥热水解传热差的问题,通过向剩余污泥中添加餐厨油脂协同污泥热水解以达到加速热水解过程的目的,探究了热水解时间和油脂添加量对污泥有机物水解及中温(35±1) ℃厌氧消化性能的影响。结果表明:油脂与污泥协同热水解可有效促进污泥中不溶态有机物的水解,当热水解温度为165 ℃、水解时间为90 min时,油脂与污泥的质量比为0.4∶1时,有机物水解效果最佳;添加油脂能提高热水解速率,当油脂与污泥的质量比分别为0.2∶1、0.4∶1、0.6∶1时,污泥中不溶态有机物的水解速率分别提高了23.30%、43.63%和62.98%;油脂的添加可提高甲烷产量和产甲烷速率,但会延长延滞期,综合考虑热水解与厌氧消化的性能,建议预处理时间为90 min、油脂与污泥的质量比为0.2∶1为最佳条件。添加餐厨油脂可加速高含固污泥的热水解过程,有助于实现污泥的高效处理。Abstract: Aiming at improving performance of thermal conductivity of high solid wasted activated sludge (WAS) during thermal hydrolysis pretreatment (THP), WAS was mixed with kitchen grease in order to accelerate its hydrolysis process. The influences of pretreatment time and grease content on the hydrolysis efficiency and mesophilic ((35±1) ℃) anaerobic digestion performance of WAS were investigated. Results showed that adding kitchen grease could effectively improve the hydrolysis efficiency of insoluble organics in WAS during THP, and the optimum hydrolysis effect occurred at THP time of 90 min and grease to sludge mass ratio of 0.4∶1. Kinetic analysis indicated that the hydrolysis rate of insoluble organic matter increased by 23.30%, 43.63% and 62.98% when mass ratio of grease to sludge was 0.2∶1, 0.4∶1, 0.6∶1, respectively. The grease addition could raise the methane production yields and rates, while prolonged the lag phase. Considering the performance of anaerobic digestion and THP, the optimum pretreatment time and mass ratio of grease to sludge were determined as 90 min and 0.2∶1, respectively. Adding kitchen grease can accelerate THP of high solid sludge and contribute to efficient WAS treatment.
-
Key words:
- high solid sludge /
- kitchen grease /
- thermal hydrolysis /
- anaerobic digestion
-
表 1 实验设计
Table 1. Experiment design
样品 油脂与污泥
质量比油脂质量/g 污泥质量/g 热水解时间/min 1组 2组 3组 4组 5组 6组 1 0∶1 0 100 0 30 60 90 120 150 2 0.2∶1 17 83 0 30 60 90 120 150 3 0.4∶1 29 71 0 30 60 90 120 150 4 0.6∶1 38 62 0 30 60 90 120 150 -
[1] ZHEN G, LU X, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2017, 69: 559-577. [2] WU L J, KOBAYASHI T, KURAMOCHI H, et al. High loading anaerobic co-digestion of food waste and grease trap waste: Determination of the limit and lipid/long chain fatty acid conversion[J]. Chemical Engineering Journal, 2018, 338: 422-431. doi: 10.1016/j.cej.2018.01.041 [3] 孙晓. 高含固率污泥厌氧消化系统的启动方案与实验[J]. 净水技术, 2012, 31(3): 78-82. doi: 10.3969/j.issn.1009-0177.2012.03.019 [4] 张彩杰, 黄晓艳, 金春姬, 等. 碳氮比对高含固率污泥厌氧消化的影响[J]. 环境科学与技术, 2015, 38(10): 48-52. [5] 卓杨. 高含固污泥水热预处理及厌氧消化组分转化研究[D]. 西安: 西安建筑科技大学, 2015. [6] 王永川, 郑皎, 方静雨, 等. 污泥干化过程中导热系数的实验研究[J]. 太阳能学报, 2015, 36(3): 703-707. doi: 10.3969/j.issn.0254-0096.2015.03.030 [7] 程英超, 李欢, 张玉瑶. 含固率对污泥热常数的影响[J]. 四川环境, 2015, 34(6): 1-4. doi: 10.3969/j.issn.1001-3644.2015.06.001 [8] 马俊伟, 曹芮, 周刚, 等. 浓度对高固体污泥热水解特性及流动性的影响[J]. 环境科学, 2010, 31(7): 1583-1589. [9] 宋玉山, 靳俊平, 郝丽华. 餐厨垃圾厌氧消化预处理工艺设备研讨[J]. 环境卫生工程, 2015, 23(4): 48-50. doi: 10.3969/j.issn.1005-8206.2015.04.015 [10] 张玉珂. 油脂导热系数的测定及其传热性能的研究[D]. 郑州: 河南工业大学, 2015. [11] HILSENRATH J, BECKETT C W, BENEDICT W S, et al. Tables of thermal properties of gases[J]. Journal of the Electrochemical Society, 1956, 103(5): 124. [12] 张海明. 油脂导热系数的测定及其传热性能的研究[D]. 郑州: 河南工业大学, 2014. [13] ALVES M M, PEREIRA M A, SOUSA D Z, et al. Waste lipids to energy: How to optimize methane production from long-chain fatty acids (LCFA)[J]. Microbial Biotechnology, 2010, 2(5): 538-550. [14] DAI X, DUAN N, DONG B, et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance[J]. Waste Management, 2013, 33(2): 308-316. doi: 10.1016/j.wasman.2012.10.018 [15] 程瑶, 韩芸, 卓杨, 等. 温度对热水解预处理高含固污泥特性的影响[J]. 环境工程学报, 2016, 10(1): 330-334. doi: 10.12030/j.cjee.20160154 [16] 王治军, 王伟. 热水解预处理改善污泥的厌氧消化性能[J]. 环境科学, 2005, 26(1): 68-71. doi: 10.3321/j.issn:0250-3301.2005.01.015 [17] 杜元元, 汪恂, 王姗. 热水解温度和时间对污泥中物质的释放的影响[J]. 水处理技术, 2017, 43(8): 73-76. [18] SPONZA T D. Extracellular polymer substances and properties of floes in steady and unsteady-state activated sludge systems[J]. Process Biochemistry, 2002, 37(9): 983-998. doi: 10.1016/S0032-9592(01)00306-5 [19] SAWASAKI T, HASEGAWA Y, TSUCHIMOCHI M, et al. A bilayer cell-free protein synthesis system for high-throughput screening of gene products[J]. FEBS Letters, 2002, 514(1): 102-105. doi: 10.1016/S0014-5793(02)02329-3 [20] MONLAU F, SAMBUSITI C, BARAKAT A, et al. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review[J]. Biotechnology Advances, 2014, 32(5): 934-951. doi: 10.1016/j.biotechadv.2014.04.007 [21] 陈汉龙, 严媛媛, 何群彪, 等. 温和热处理对低有机质污泥厌氧消化性能的影响[J]. 环境科学, 2013, 34(2): 629-634. [22] LUO K, YANG Q, LI X M, et al. Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase[J]. Biochemical Engineering Journal, 2012, 62(1): 17-21. [23] DUAN N, DONG B, WU B, et al. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study[J]. Bioresource Technology, 2012, 104: 150-156. doi: 10.1016/j.biortech.2011.10.090 [24] LI Y Y, JIN Y Y, LI J H, et al. Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste[J]. Applied Energy, 2016, 172: 47-58. doi: 10.1016/j.apenergy.2016.03.080 [25] KABOURIS J C, TEZEL U, PAVLOSTATHIS S G, et al. Methane recovery from the anaerobic codigestion of municipal sludge and FOG[J]. Bioresource Technology, 2009, 99(15): 3701-3705. [26] HAN S C, LIM J Y, KIM J Y. Effect of long chain fatty acids removal as a pretreatment on the anaerobic digestion of food waste[J]. Journal of Material Cycles & Waste Management, 2013, 15(1): 82-89. [27] HANAKI K, MATSUO T, NAGASE M. Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process[J]. Biotechnology & Bioengineering, 1981, 23(7): 1591-1610. [28] HAGOS K, ZONG J, LI D, et al. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives[J]. Renewable & Sustainable Energy Reviews, 2016, 76: 1485-1496. [29] RINZEMA A, BOONE M, VANKNIPPENBERG K, et al. Bactericidal effect of long chain fatty acids in anaerobic digestion[J]. Water Environment Research, 1994, 66(1): 40-49. doi: 10.2175/WER.66.1.7 [30] RODR GUEZ-M NDEZ R, LE B Y, BLINE F, et al. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: Case of milk-fed veal slaughterhouse waste[J]. Waste Management, 2017, 67: 51-58. doi: 10.1016/j.wasman.2017.05.028 [31] LIU C, LI H, ZHANG Y, et al. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste[J]. Bioresource Technology, 2016, 219: 252-260. doi: 10.1016/j.biortech.2016.07.130 [32] 韩芸, 代璐, 卓杨, 等. 热水解高含固污泥的有机物分布及厌氧消化特性[J]. 环境化学, 2016, 35(5): 964-971. doi: 10.7524/j.issn.0254-6108.2016.05.2015122202