-
目前,我国每年大约产生3.0×107 t城市污泥[1],且随着中国污水处理厂的升级和扩建,城市污泥产量每年以13%的速率递增[2]。大量城市污泥的处理与处置是我国目前亟待解决的环境问题。食品处理厂剩余污泥中有机物含量高,营养丰富,大多为蛋白质、多糖、脂肪等[3],不含有毒有害物质。目前,我国食品污泥处理的方法主要有厌氧消化、好氧发酵、焚烧、卫生填埋、土地利用等。同时,我国农作物秸秆近20种,年产量约7.0×108 t,约占世界秸秆总量的25%。随着社会经济迅速发展和人口的增加,农作物秸秆总量将以每年5%~10%的速度递增[4]。然而,目前农村地区的秸秆利用率还很低,存在秸秆焚烧、随意丢弃等现象[5]。好氧堆肥方法成本低、无害化程度高、处理量大、处理后的产品可作为有机肥,在农业生产上具有广阔的应用前景。利用食品厂污水处理剩余污泥与农作物秸秆进行混合好氧堆肥,既解决了剩余污泥与农作物秸秆问题,又可得到生物有机肥[6],适用于农业大田生产、果树种植及园林绿化,对减轻长期施用化肥造成的农田环境污染、增加土壤肥力[7-8]、提高农产品品质及增加农业收入,具有良好的经济、环境和社会效益。
在堆肥初期,由于堆体中土著微生物数量较少,微生物活性较低,存在着发酵周期长、堆肥效率慢等缺点。复合微生物菌剂因微生物间的协同作用,可有效调节堆肥原料中的菌群结构,加快堆肥速率,缩短堆肥周期,促进堆体腐熟[9]。目前,我国已在堆肥微生物菌剂的研究方面取得了一定进展。ZHAO等[10]从堆肥中筛出4株嗜热放线菌,制成一种微生物菌剂,能够提高堆体腐熟程度,缩短了堆肥周期。XI等[11]在堆肥过程中投加了一种复合微生物菌剂,增加堆肥过程中优势菌的多样性,提高堆肥效率。ZHOU等[12]在堆肥过程中接种了一种由放线菌、哈茨木霉、米曲霉等组成的复合微生物菌剂,缩短了堆肥周期,提高了木质纤维的降解效率。
与液态微生物菌剂相比,固态菌剂中的微生物更易存活,保存时间长,保存成本低,运输方便,更适用于大规模的生产与应用。针对食品厂剩余污泥与秸秆的组成,本研究筛选出5株优势芽孢杆菌,研制出一种固态微生物菌剂。本研究首先以活菌数和芽孢率为评价依据,优化固态微生物菌剂制备过程中的关键影响因素,在此基础上,通过正交实验获得最佳固态微生物菌剂的制备方法,通过比较不同保存时间固态微生物菌剂的实际堆肥效果,研究固态微生物菌剂的稳定性,为其工业化生产提供参考。
固态微生物菌剂的制备及其在好氧堆肥中的应用
Preparation of solid microbial inoculants and its application in aerobic composting
-
摘要: 与液态微生物菌剂相比,固态菌剂的保藏时间长,菌种不易退化失活,且便于存储及运输,对降低菌剂运输及使用成本具有重要意义。在优化固态微生物菌剂制备关键影响因素的基础上,通过3因素3水平正交实验获得了最佳制备方法,即以腐熟物料作为载体,投加4%的海藻糖,含水率为15%。将所得固态微生物菌剂保存一定时间后,以食品厂污水处理剩余污泥和玉米秸秆的混合物为堆肥原料进行好氧堆肥,发现不同保存时间的固态微生物菌剂的堆肥效果相近,均可使堆体在18 h左右进入55 ℃以上的高温期,高温持续时间长,所得堆肥产品的理化性质也相差不大,且均符合我国生物有机肥标准(NY 884-2012)中的相关要求,所得固态菌剂的制备方法具有重要的实际价值。Abstract: Compared to liquid microbial inoculants, the solid microbial inoculants have longer preservation time and more active strains, which was of great significance for reducing the costs of transportation and usage. The three-factor and three-level orthogonal experiments were conducted to optimize the key impact factors for the preparation of solid microbial inoculants, and the corresponding optimal preparation method was determined as follows: the decomposed material was used as a carrier, and 4% trehalose was added with water content of 15%. After preserved for a period, the solid microbial agents were then added to a mixture of corn straw and waste activated sludge (WAS) from food factory for aerobic composting. Similar composting results were obtained by using these solid microbial inoculants with different storage time. All the piles reached high temperature period of 55 ℃ within around 18 h, and the thermophilic phases (>55 ℃) were extended for a long time. In addition, the physicochemical properties of the obtained composting products were similar, which could meet the requirements of Chinese bio-organic fertilizer standards (NY 884-2012). Therefore, the obtained preparation method for solid microbial inoculants has significant values in practical applications.
-
Key words:
- sludge /
- aerobic composting /
- solid microbial inoculants /
- preservation
-
表 1 正交实验设计
Table 1. Design of the orthogonal experiment
水平 因素 (A)载体 (B)海藻糖浓度/% (C)含水率/% 1 炭化秸秆 0 15 2 秸秆 4 20 3 腐熟物料 8 25 表 2 正交实验结果
Table 2. Results of the orthogonal experiment
序号 因素 活菌数/
(109CFU·g−1)芽孢率/% 载体(A) 海藻糖因
素浓度(B)含水率(C) 1 1 1 1 2.42±0.06 100 2 1 2 2 3.75±0.21 93.4±1.48 3 1 3 3 2.64±0.09 43.2±0.21 4 2 1 3 3.00±0.28 91.6±1.27 5 2 2 1 3.50±0.14 64.3±0.14 6 2 3 2 4.05±0.35 95.0±0.42 7 3 1 2 2.40±0.06 63.5±1.13 8 3 2 3 4.40±0.14 100 9 3 3 1 3.85±0.26 100 表 3 正交实验数据分析
Table 3. Analysis of the orthogonal experiment
指标 因素 K1 K2 K3 R 活菌数 载体(A) 29.37 35.17 35.50 6.13 海藻糖浓度(B) 26.07 38.83 35.13 12.76 含水率(C) 36.23 35.33 28.47 7.76 芽孢率 载体(A) 78.87 83.63 87.83 8.96 海藻糖浓度(B) 85.03 85.90 79.40 6.50 含水率(C) 98.33 95.00 57.00 41.33 表 4 方差分析结果
Table 4. Variance analysis of the orthogonal experiment
指标 因素 偏差平方和 自由度 F值 F临界值 显著性 活菌数 载体(A) 71.37 2 22.66 19 有 海藻糖浓度(B) 258.88 2 82.18 19 有 含水率(C) 108.28 2 34.37 19 有 误差 3.15 2 芽孢率 载体(A) 120.76 2 0.83 19 海藻糖浓度(B) 74.74 2 0.51 19 含水率(C) 3 163.56 2 21.63 19 有 误差 146.27 2 表 5 4个堆体的堆肥产品品质
Table 5. Quality of composting products of four piles
名称 有机质含量/% 凯氏氮/(mg·g−1) C/N pH 含水率/% 蛔虫死亡率/% 粪大肠菌
群数/(MPN·g−1)种子发芽指数/% CK 66.30±3.38 25.53±0.06 15.06±0.04 7.95±0.18 58.43±1.56 84.36±0.68 200±10 59.72±1.02 ZJ 58.67±1.17 28.64±0.15 11.89±0.04 8.07±0.06 52.97±0.66 95.98±1.07 4 85.89±0.75 ZJ-30 58.19±0.23 32.47±0.04 10.40±0.01 8.12±0.04 54.84±0.31 96.82±0.79 9 91.73±1.82 ZJ-60 57.56±0.94 31.55±0.16 10.59±0.04 8.12±0.11 58.28±1.32 96.54±0.65 4 89.38±0.71 -
[1] AWASTHI M K, WANG Q, HUANG H, et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting[J]. Bioresource Technology, 2016, 216: 172-181. doi: 10.1016/j.biortech.2016.05.065 [2] WANG K, WU Y Q, LI W G, et al. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting[J]. Bioresource Technology, 2017, 251: 320-326. [3] 焦晓霞. 预处理后剩余污泥高效制氢效能研究[D]. 吉林: 吉林建筑大学, 2014. [4] 王明友, 宋卫东, 王教领, 等. 基于食用菌生产的农业废弃物基质化利用研究进展[J]. 山东农业科学, 2017, 49(1): 160-164. [5] 马秋颖. 东北地区玉米秸秆主要利用方式成本效益分析研究[D]. 北京: 中国农业科学院, 2017. [6] YU H Y, XIE B T, KHAN R, et al. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting[J]. Bioresource Technology, 2019, 271: 228-235. doi: 10.1016/j.biortech.2018.09.088 [7] MENG X Y, LIU B, XI C, et al. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks[J]. Bioresource Technology, 2018, 251: 22-30. doi: 10.1016/j.biortech.2017.09.077 [8] WANG X K, ZHENG G D, CHEN T B, et al. Effect of phosphate amendments on improving the fertilizer efficiency and reducing the mobility of heavy metals during sewage sludge composting[J]. Journal of Environmental Management, 2019, 235: 124-132. [9] SUN Q H, WU D, ZHANG Z C, et al. Effect of cold-adapted microbial agent inoculation on enzyme activities during composting start-up at low temperature[J]. Bioresource Technology, 2017, 244(1): 635-640. [10] ZHAO Y, ZHAO Y, ZHANG Z C, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64-73. doi: 10.1016/j.wasman.2017.06.022 [11] XI B D, HE X S, DANG Q L, et al. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting[J]. Bioresource Technology, 2015, 196: 399-405. doi: 10.1016/j.biortech.2015.07.069 [12] ZHOU C, LIU Z, HUANG Z L, et al. A new strategy for co-composting dairy manure with rice straw: Addition of different inocula at three stages of composting[J]. Waste Management, 2015, 40: 38-43. doi: 10.1016/j.wasman.2015.03.016 [13] HUO Z H, ZHANG N, XU Z H, et al. Optimization of survival and spore formation of Paenibacillus polymyxa SQR-21 during bioorganic fertilizer storage[J]. Bioresource Technology, 2012, 108: 190-195. doi: 10.1016/j.biortech.2011.12.137 [14] 王银环, 钱凌, 董芳华, 等. 流式细胞术和平板计数法用于地衣芽孢杆菌活菌制剂检测的比较研究[J]. 中国现代应用药学, 2018, 35(3): 352-356. [15] WANG X Q, CUI H Y, SHJ J H, et al. Relationship between bacterial diversity and environmental parameters during composting of different raw materials[J]. Bioresource Technology, 2015, 198: 395-402. doi: 10.1016/j.biortech.2015.09.041 [16] 黄翠. 堆肥嗜热纤维分解菌的筛选鉴定及其强化堆肥研究[D]. 长沙: 湖南大学, 2010. [17] 李天枢. 畜粪堆肥高效复合微生物菌剂的研制与应用[D]. 杨凌: 西北农林科技大学, 2013. [18] ZHANG L, SUN X Y. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar[J]. Bioresource Technology, 2014, 171(1): 274-284. [19] 高云航, 勾长龙, 王雨琼, 等. 低温复合菌剂对牛粪堆肥发酵影响的研究[J]. 环境科学学报, 2014, 34(12): 3166-3170. [20] 袁京, 何胜洲, 李国学, 等. 添加不同辅料对污泥堆肥腐熟度及气体排放的影响[J]. 农业工程学报, 2016, 32(s2): 241-246. [21] 徐速, 曾凡锁, 赵兴堂, 等. 不同种源水曲柳木材主要化学成分含量变异分析[J]. 西北林学院学报, 2016, 31(2): 234-238. doi: 10.3969/j.issn.1001-7461.2016.02.39 [22] 王毕英, 王洪丽, 刘彦民. 微生态制剂活菌数方法研究进展[J]. 农产品加工, 2018(12): 77-79. [23] 诸葛建, 李华钟. 微生物学[M]. 2版. 北京: 科学出版社, 2009. [24] 王继雯, 刘莹莹, 陈国参, 等. 巨大芽孢杆菌C2产芽孢培养条件的优化[J]. 中国农学通报, 2014, 30(36): 155-160. [25] 王玉丽. 腐熟用枯草芽孢杆菌菌剂的研制[D]. 石家庄: 河北科技大学, 2015. [26] 王芳, 康超, 林静, 等. 海藻糖对乳酸杆菌耐热和室温贮存保护作用的研究[J]. 中国饲料, 2017(10): 17-19. [27] 王宁. 海藻糖合酶的作用和特点[J]. 河南化工, 2010, 27(4): 95-96. doi: 10.3969/j.issn.1003-3467.2010.04.052 [28] 谢贻天. 干酪乳杆菌固态发酵及干燥工艺研究[D]. 武汉: 华中农业大学, 2013. [29] 张志红, 李华兴, 冯宏, 等. 堆肥作为微生物菌剂载体的研究[J]. 农业环境科学学报, 2010, 29(7): 1382-1387. [30] 刘冬华, 伍善东, 肖蕾, 等. 菌糠用作菌剂吸附剂的初步探索[J]. 中国食用菌, 2017, 36(2): 30-32. [31] GOU C L, WANG Y Q, ZHANG X Q, et al. Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions[J]. Bioresource Technology, 2017, 243: 339. doi: 10.1016/j.biortech.2017.06.097 [32] 吴海露. 复合微生物菌剂研制及在污泥堆肥中的应用[D]. 郑州: 河南工业大学, 2013. [33] WEI Y Q, WU D, WEI D, et al. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities[J]. Bioresource Technology, 2019, 271: 66-74. doi: 10.1016/j.biortech.2018.09.081 [34] VARMA V S, NASHINE S, SASTRI C V, et al. Influence of carbide sludge on microbial diversity and degradation of lignocellulose during in-vessel composting of agricultural waste[J]. Ecological Engineering, 2017, 101: 155-161. doi: 10.1016/j.ecoleng.2017.01.022 [35] 刘月. 功能菌剂对堆肥中木质纤维素降解及微生物多样性的影响[D]. 哈尔滨: 东北农业大学, 2014. [36] 诸葛诚祥. 菌糠高效降解菌剂的研发及其在堆肥中的应用[D]. 杭州: 浙江大学, 2017. [37] 勾长龙. 低温纤维素降解菌的筛选及其复合菌系在牛粪堆肥中的应用研究[D]. 长春: 吉林农业大学, 2014.