-
好氧颗粒污泥(aerobic granular sludge,AGS)是一种特殊的生物膜结构[1],污水生物处理系统中的微生物在适宜的环境条件下互相聚集,最终能够形成颗粒污泥[2],具有传质条件好、抗冲击负荷和抗毒性能力强、活性高以及沉淀性好等优点[3]。1997年,DANGCONG[4]首次在实验室的SBR中培养出好氧颗粒污泥,且发现此类污泥具有较好的降解水中污染物的能力。此后,好氧颗粒污泥法便成为废水处理领域的研究热点。但随着研究的深入,发现好氧颗粒污泥稳定性不好,运行中易出现解体现象,存在一定的工艺难操控性[5],这些特点限制了好氧颗粒污泥技术的推广。
好氧颗粒污泥的培养过程受很多因素影响,如进水C/N比、有机负荷、接种污泥等都对好氧颗粒污泥的快速形成及颗粒性能具有重要影响[6-7]。其中进水中 C/N 比是影响微生物生长的重要因素,碳源是培养微生物所必需的物质,它为微生物细胞构成含碳物质和微生物生长、繁殖及运动供给所需要的能量,而氮源则是合成微生物体内蛋白质的主要原料。有些学者在研究C/N比对好氧颗粒污泥稳定性的影响时,多采用在培养过程中随培养时间而改变进水负荷的方法,张睿[8]在实验中采用间隔10 d改变一次进水C/N比的方法,来观察C/N比对好氧颗粒污泥的影响,并采用交替改变进水C/N比的方法,来研究污泥的特性。李亚峰等[9]通过交替改变进水C/N比的方式培养好氧颗粒污泥。
采用随时间改变进水C/N的方式培养好氧颗粒污泥的方法,只能研究不同C/N比对不同颗粒污泥生长阶段的稳定性的影响,无法明确指出在整个污泥生长过程中C/N比对好氧颗粒污泥特性的影响。本研究采用气升式内循环反应器,在3个不同C/N比条件下,分别进行好氧颗粒污泥的培养,探讨C/N比对好氧颗粒污泥物理性能和降解性能的影响,分析好氧颗粒污泥形成过程中胞外聚合物及其组分的变化,探讨其对维持好氧颗粒污泥稳定性的作用,为促进好氧颗粒污泥的工程应用提供参考。
碳氮比对好氧颗粒污泥稳定性的影响
Influence of carbon-nitrogen ratio on the stability of aerobic granular sludge
-
摘要: 针对好氧颗粒污泥运行过程中稳定性较差的问题,在3个C/N比条件下,通过气升式内循环反应器对好氧颗粒污泥进行培养,分析了不同时期好氧颗粒污泥的沉降性能、粒径变化、进出水水质中有机物、胞外聚合物组分及含量变化,探讨了C/N比对好氧颗粒污泥稳定性的影响。结果表明,在C/N比分别为10、15和25的条件下,均能培养出好氧颗粒污泥,C/N比为15时,好氧颗粒污泥稳定性最优,此时好氧颗粒26 d内成熟,其SVI值为16.98 mL·g−1,颗粒粒径主要分布在0.2~0.6 mm,对COD、
$ {\rm{N}}{{\rm{H}}_4^ +}$ -N和TP的去除率可达93%、75%和91%,松散型EPS和紧密型EPS的含量最高分别为44.97 mg·g−1和54.20 mg·g−1。在采用不同C/N比对好氧颗粒污泥的培养过程中,C/N比对好氧颗粒污泥稳定性有较大影响,其中松散型EPS与好氧颗粒污泥的稳定性呈正相关关系。Abstract: To explore the influence of carbon-nitrogen ratio (C/N) on the stability of aerobic granular sludge, sequencing batch airlift reactors was applied to cultivate aerobic granular sludge under three different C/N conditions, the performance of aerobic granular sludge were analyzed, including settling performance, particle size distribution, organic matter concentration as well as variations of extracellular polymeric substance (EPS) in the process of cultivation. The results showed that the aerobic granules was successfully cultivated at C/N ratios of 10, 15 and 25, and the most stable ones occurred at C/N ratio of 15. They matured within 26 days, their SVI and particle size were about 16.98 mL·g−1 and 0.2~0.6 mm, respectively. The removal rates of COD,$ {\rm{N}}{{\rm{H}}_4^ +}$ -N and TP were 93%, 75% and 91%, respectively. Meanwhile, LB-EPS and TB-EPS were up to 44.97 mg·g−1 and 54.20 mg·g−1. The C/N ratio of influent had a great influence on the stability of aerobic granular sludge, and the LB-EPS had a positive correlation with the stability of aerobic granular sludge. -
-
[1] 董苗苗, 陈垚, 蒋彬, 等. 有机负荷及DO对高盐好氧颗粒污泥稳定性的影响[J]. 水处理技术, 2015, 41(6): 67-70. [2] 王建龙, 张子健, 吴伟伟. 好氧颗粒污泥的研究进展[J]. 环境科学学报, 2009, 29(3): 449-473. doi: 10.3321/j.issn:0253-2468.2009.03.001 [3] 唐朝春, 叶鑫, 刘名, 等. 不同碳氮比下好氧颗粒污泥生长特性研究[J]. 环境科学与技术, 2016, 39(2): 128-132. [4] DANGCONG P, BERNET N, DELGENES J P, et al. Aerobic granular sludge: A case report[J]. Water Research, 1999, 33(3): 890-893. doi: 10.1016/S0043-1354(98)00443-6 [5] LEE D J, CHEN Y Y, SHOW K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010, 28(6): 919-934. doi: 10.1016/j.biotechadv.2010.08.007 [6] 韩青青, 赵红梅, 穗贤杰, 等. 缺氧颗粒污泥特性研究[J]. 工业安全与环保, 2008, 34(7): 4-6. doi: 10.3969/j.issn.1001-425X.2008.07.002 [7] LOCHMATTER S, GONZALEZ-GIL G, HOLLIGER C. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge[J]. Water Research, 2013, 47(16): 6187-6197. doi: 10.1016/j.watres.2013.07.030 [8] 张睿. 进水C/N对SBR中好氧颗粒污泥稳定性的影响[J]. 西南给排水, 2013, 35(4): 31-35. [9] 李亚峰, 苏雷, 刁可心, 等. 进水负荷交替变化对好氧污泥颗粒化的促进[J]. 水处理技术, 2018, 44(1): 96-101. [10] 宋志伟, 梁洋, 任南琪. 有机负荷对SBAR中好氧颗粒污泥特性影响的研究[J]. 环境科学与技术, 2008, 31(10): 128-131. doi: 10.3969/j.issn.1003-6504.2008.10.035 [11] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [12] 刘宏波, 杨昌柱, 濮文虹, 等. 进水氨氮浓度对好氧颗粒污泥的影响研究[J]. 环境科学, 2009, 30(7): 2030-2034. doi: 10.3321/j.issn:0250-3301.2009.07.026 [13] 赵霞, 冯辉霞, 雒和明, 等. C/N比对好氧颗粒污泥性能的影响[J]. 环境工程学报, 2012, 6(11): 3928-3932. [14] 郑燕清, 周建华. 除磷工艺中厌氧释磷和好氧吸磷的影响因素[J]. 中国市政工程, 2007, 125(1): 48-50. doi: 10.3969/j.issn.1004-4655.2007.01.021 [15] 孙洪伟, 陈翠忠, 高宇学, 等. 碳氮比对活性污泥胞外聚合物的长期影响[J]. 中国环境科学, 2018, 38(3): 950-958. doi: 10.3969/j.issn.1000-6923.2018.03.019 [16] 夏志红. 碳氮比对硝化污泥胞外聚合物及污泥特性的影响研究[D]. 西安: 西安建筑科技大学, 2014.