-
抗生素是一类能够抵抗微生物活性的天然、半合成或人工合成的化合物,具有干扰细胞发育的功能,被广泛用于人和动物感染性疾病的治疗与预防[1-2]。抗生素生产过程中会产生大量的废水,主要来源于抗生素生产工艺的结晶液、废母液、洗涤废水和冷却水[3],制药废水排放是抗生素进入水环境的主要途径之一[4]。由于废水中常含有大量有机物、硫酸盐和残留抗生素,且废水中部分抗生素异构体和降解中间产物具有较强的抑菌效应[5],导致废水具有很强的生物毒性,且可生物降解性差、处理难度大[6]。将高级氧化技术与生物处理技术组合用于处理难降解工业废水,不但可有效去除废水中难降解污染物,还可以降低工艺运行成本,因而在难降解制药废水处理中有广阔应用前景[7]。
臭氧催化氧化技术是在传统臭氧氧化基础上发展而来的一种新型的高级氧化技术,可将废水中难降解有机物转变为易生物降解的小分子物质,从而有效改善废水的可生化性 [8-9]。臭氧催化氧化预处理后的废水仍含有一定浓度的可生化降解有机物,须进行进一步生化处理。曝气生物滤池(BAF)作为一种广泛应用的污水深度处理技术,与传统活性污泥法相比具有自动化程度高、占地面积小、产泥量低、出水水质好[10]等优点,常被用于废水的深度处理。将臭氧催化氧化技术与BAF组合用于处理抗生素制药废水,不仅能发挥物化和生化处理工艺各自的优势,还能提高废水的处理效率,降低废水的处理成本[11-12]。
本研究采用臭氧催化氧化-BAF组合工艺深度处理抗生素制药尾水,考察了臭氧预处理单元和BAF生化处理单元对废水污染物的去除效果,分析了影响组合工艺运行的主要因素,优化了组合工艺的运行条件,以期为抗生素废水的处理提供技术参考。
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水
Advanced treatment of antibiotic pharmaceutical wastewater by catalytic ozonation combined with BAF process
-
摘要: 针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L−1、臭氧进气量为600 mL·min−1、催化剂用量为1 g·L−1、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L−1降至125 mg·L−1,BOD5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L−1、平均NH4+-N为12 mg·L−1、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH4+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH4+-N分别为46 mg·L−1和4.1 mg·L−1,出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH4+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。Abstract: In view of the complex, toxic and difficult biodegradation of antibiotic pharmaceutical wastewater, the Ce-loaded natural zeolite was used as a catalyst (Ce/NZ), and the ozone-catalyzed biological aerated filter (BAF) combination process was applied to advanced treatment of the secondary biochemical treatment effluent of antibiotic pharmaceutical wastewater. The results showed that the Ce/NZ catalyst could significantly improve the treatment efficiency of the ozone pretreatment unit. With the ozone inlet concentration of 50 mg·L−1, the ozone intake of 600 mL·min−1, the catalyst dosage of 1 g·L−1 and the ozone reaction time of 120 min, the COD removal rate of antibiotic pharmaceutical wastewater reached 43%, the average COD value was reduced from 220 mg·L−1 to 125 mg·L−1, and the BOD5/COD increased from 0.12 to 0.28, during which the biodegradability of wastewater was significantly improved. The effluent of the ozone pretreatment unit was biochemically treated by BAF. At average influent COD value of 125 mg·L−1, the average influent
${\rm{NH}}_4^{+} $ -N concentration of 12 mg·L−1, the hydraulic retention time of 4 h, and the gas to water ratio of 4∶1, the average removal rates of COD and${\rm{NH}}_4^{+} $ -N were 62% and 64%, respectively. After the combined process treatment, the average concentrations of COD and${\rm{NH}}_4^{+} $ -N in the effluent were 46 mg·L−1 and 4.1 mg·L−1, respectively, and the effluent water quality could stably meet the Discharge Standards of Water pollutants for Pharmaceutical Industry Fermentation Products Category (GB 21903-2008). Compared with the BAF process alone, the average removal rates of COD and${\rm{NH}}_4^{+} $ -N in the effluent of combined process increased by 66% and 15%, respectively, and the effluent quality was significantly better than that of the BAF process alone.-
Key words:
- pharmaceutical wastewater /
- catalysis /
- ozonation /
- biological aerated filter /
- advanced treatment
-
-
[1] 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价[J]. 环境科学, 2018, 30(12): 1-13. doi: 10.3969/j.issn.1673-1212.2018.12.001 [2] CHEN J, LIU Y S, ZHANG J N, et al. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics[J]. Bioresource Technology, 2017, 238: 70-77. doi: 10.1016/j.biortech.2017.04.023 [3] 阮林高, 徐亚同, 丁浩. 抗生素制药废水处理研究进展[J]. 上海化工, 2007, 32(4): 1-4. doi: 10.3969/j.issn.1004-017X.2007.04.001 [4] AUBERTHEAU E, STALDER T, MONDAMERT L, et al. Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance[J]. Science of the Total Environment, 2017, 579: 1387-1398. doi: 10.1016/j.scitotenv.2016.11.136 [5] 张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. [6] MA K, QIN Z, ZHAO Z Q, et al. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant[J]. Chemosphere, 2016, 158: 163-170. doi: 10.1016/j.chemosphere.2016.05.052 [7] 王驭龙, 刘刚, 谌建宇, 等. 臭氧-BAF组合工艺处理电镀RO浓水[J]. 环境工程学报, 2016, 10(8): 4055-4060. [8] 周洪正, 刘平, 张静, 等. 微气泡臭氧催化氧化-生化耦合处理难降解含氮杂环芳烃[J]. 中国环境科学, 2017, 37(8): 2978-2985. doi: 10.3969/j.issn.1000-6923.2017.08.021 [9] HU EN L, WU X B, SHANG S M, et al. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst[J]. Journal of Cleaner Production, 2016, 112: 4710-4718. doi: 10.1016/j.jclepro.2015.06.127 [10] BAO T, CHEN T H, TAN J, et al. Synthesis and performance of iron oxide-based porous ceramsite in a biological aerated filter for the simultaneous removal of nitrogen and phosphorus from domestic wastewater[J]. Separation and Purification Technology, 2016, 167: 154-162. doi: 10.1016/j.seppur.2016.05.011 [11] WU C Y, ZHOU Y X, WANG Y, et al. Innovative combination of Fe2+-BAF and ozonation for enhancing phosphorus and organic micropollutants removal treating petrochemical secondary effluent[J]. Journal of Hazardous Materials, 2017, 323: 654-662. doi: 10.1016/j.jhazmat.2016.10.029 [12] LI X, CHEN W, TANG Y, et al. Relationship between the structure of Fe-MCM-48 and its activity in catalytic ozonation for diclofenac mineralization[J]. Chemosphere, 2018, 206: 615-621. doi: 10.1016/j.chemosphere.2018.05.066 [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] 余斌, 刘锐, 程家迪, 等. 臭氧-曝气生物滤池深度处理印染制革园区废水[J]. 环境工程学报, 2013, 7(12): 4799-4804. [15] 赵雷, 孙志中, 马军. 蜂窝陶瓷催化臭氧化降解水中草酸的研究[J]. 环境科学, 2007, 28(11): 2533-2538. doi: 10.3321/j.issn:0250-3301.2007.11.022 [16] 马骕骦, 潘兆琪, 陈伟锐, 等. 铈负载SBA-15分子筛催化臭氧氧化水中环丙沙星[J]. 环境化学, 2016, 35(5): 910-916. [17] 刘旭, 崔康平, 王翠萍, 等. 高级氧化-生化深度处理工业园区生化尾水[J]. 环境工程学报, 2016, 10(8): 3993-3998. [18] GOLDMAN J H, ROUNDS S A, NEEDOBA J A. Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream[J]. Environmental Science & Technology, 2012, 46(8): 4374-4381. [19] LI C H, JIANG F, SUN D Z, et al. Catalytic ozonation for advanced treatment of incineration leachate using (MnO2-Co3O4)/AC as a catalyst[J]. Chemical Engineering Journal, 2017, 325: 624-631. doi: 10.1016/j.cej.2017.05.124 [20] 孙会玲, 陈庆国, 刘梅, 等. 水力停留时间对水解酸化-改性贻贝壳填料曝气生物滤池处理模拟生活污水的影响[J]. 安全与环境学报, 2016, 16(2): 309-313. [21] 韩庭苇, 王政, 薛侨, 等. 曝气生物滤池在水处理中的应用研究进展[J]. 煤炭与化工, 2017, 40(5): 22-26. [22] 宋鑫, 任立人, 田哲, 等. 生化-臭氧-曝气生物滤池组合工艺处理制药园区综合废水[J]. 环境工程学报, 2013, 7(11): 4201-4206.