-
剩余污泥是采用活性污泥法的污水处理厂主要的副产物[1]。目前,针对剩余污泥有多种处理处置方法,主要包括填埋、焚烧、厌氧消化、好氧堆肥等。其中,厌氧消化作为一种成本较低、稳定有机物、减少污泥体积、产出甲烷能源的技术,吸引了越来越多的关注[2]。然而,由于污泥在厌氧消化过程中具有缓慢的水解速率和较弱的产甲烷潜力,使该技术的应用受到了较大的限制[3-4]。为改善污泥的厌氧消化性能,常采用热水解[5]、超声波[6]、碱解法[4]等预处理技术对污泥中的细胞和胞外聚合物进行破解,从而释放有机物进入液相,达到改善污泥的水解速率和产甲烷潜力的目的。在众多预处理技术中,超声波破解效率快、破解程度高且无化学添加,使超声波破解污泥技术成为了热门的研究方向之一[6-8]。然而,目前大部分超声波破解污泥的研究仅限于实验室阶段,距离工业化应用仍有较大差距。
超声波反应器分探头式和槽式超声波反应器2种[9]。近年来,一些研究人员对2种类型的超声波技术进行了工业化应用的尝试。NICKEL等[10]在研究中报道了一种管道式超声波反应器,最大功率为3.6 kW,体积为1.3 L,利用该反应器破解污泥后,厌氧消化一级反应动力学速率常数由0.26 d−1提高至0.52 d−1。此外,NICKEL等[10]还开发了一种工业化规模探头式超声波反应器,体积为29 L,共计5个频率20 kHz、功率2 kW的超声波换能器,停留时间为30 s,在连续塞流式超声波处理污泥情况下,70 Wh·L−1能量输入条件下可获得50%的COD溶出率。GOGATE等[11-12]先后研发了双频率、三频率多探头超声波槽式反应器,但只是应用于废水处理,并未在污泥处理中取得应用。
上述研究对2种类型的超声波反应器均进行了优化并进行了工业化应用尝试。有研究[11-14]表明,同等功率下低功率多换能器槽式超声波反应器相比传统大功率单换能器探头式超声波反应器的声场强度更大,声场分布更均匀,能量利用效率更高。然而,目前对于工业化规模低功率多探头槽式超声波反应器破解污泥的研究还未见报道。本研究利用1台250 L的低功率多探头槽式超声波反应器,建立工业化规模超声波破解污泥实验,并探究了工业化规模超声波对不同浓度固体(TS)污泥物理化学特性及后续厌氧消化性能的改善效果。
工业化规模超声波预处理对不同固体浓度污泥厌氧消化性能的影响
Effect of full-scale ultrasonic pretreatment on anaerobic digestion performance of sludge with different solid concentrations
-
摘要: 针对活性污泥厌氧消化水解速率慢的问题,通过工业化规模超声波反应器对不同固体浓度污泥开展了破解研究。采用粒径分析及溶解性COD、蛋白质和多糖浓度监测的方法研究了超声波破解前后污泥物理化学特性的变化;评估了超声波破解对污泥厌氧消化产甲烷潜力及有机物降解规律的影响。结果表明:工业化规模超声波破解不同固体浓度污泥后,污泥粒径均有所降低,而溶解性COD、蛋白质和多糖的浓度均有增加;超声波对污泥的破解程度与破解时间和固体浓度有关,其随破解时间增加而增加,随污泥固体浓度增加而减弱;超声波破解固体浓度2%和4%的污泥30 min后,累积甲烷产率分别提升41.2%和30.2%,当破解时间和固体浓度进一步增加时,污泥甲烷产率无明显变化。本研究结果可为超声波破解污泥技术的工业化应用提供参考。Abstract: To resolve the problem of low hydrolysis rate of activated sludge during anaerobic digestion process, an industrial scale ultrasonic reactor was used to disintegrate excess sludge under different solid concentrations. The physical and chemical characters of sludge before and after ultrasonic disintegration were evaluated in terms of particle size, and soluble COD, protein, carbohydrate. Effects of ultrasonic disintegration on cumulative methane yield and organism decomposition during anaerobic digestion process were studied. The results indicated that with the pretreatment of ultrasonic operation, the particle size of sludge was reduced, while an obvious increase of the concentrations of SCOD, soluble protein and carbohydrate occurred. The disintegration degree increased with sonication time extension, and decreased with the increase of solid concentrations. After 30 min ultrasonic pretreatment of 2% and 4% TS sludge, their methane yield increased up to 41.2% and 30.2%, respectively. However, there was no obvious increase of methane yield as ultrasonic time and sludge TS further increased. Through above research, the results provide technological support for ultrasonic pretreatment at industrial scale.
-
Key words:
- full-scale /
- ultrasonic pretreatment /
- sludge pretreatment /
- activated sludge /
- anaerobic digestion
-
表 1 超声预处理后污泥VS去除率的变化
Table 1. Changes in VS removal of sludge after ultrasonic pretreatment
TS浓度/% VS去除率(对照组)/% VS去除率(超声处理)/% 超声15 min 超声30 min 超声45 min 超声60 min 2 34.83 36.67 41.17 40.68 42.61 4 33.52 35.02 42.44 41.70 42.94 6 32.11 33.74 32.08 34.21 31.04 8 28.54 30.01 29.62 29.55 28.42 10 28.27 27.32 29.09 30.62 28.33 -
[1] ZHANG L, DUAN H, YE L, et al. Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge[J]. Water Research, 2019, 149: 406-413. doi: 10.1016/j.watres.2018.11.008 [2] 晏发春, 汪恂, 张雷, 等. 高温热水解预处理厌氧消化技术实例分析[J]. 中国给水排水, 2016, 32(18): 35-37. [3] ŞAHINKAYA S, SEVIMLI M F. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 197-206. [4] TIAN X, WANG C, TRZCINSKI A P, et al. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge[J]. Journal of Environmental Sciences, 2015, 29: 97-105. doi: 10.1016/j.jes.2014.07.024 [5] 王平. 热水解厌氧消化工艺的分析和应用探讨[J]. 给水排水, 2015, 3(1): 33-38. doi: 10.3969/j.issn.1002-8471.2015.01.008 [6] PILLI S, YAN S, TYAGI R D, et al. Anaerobic digestion of ultrasonicated sludge at different solids concentrations-computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2016, 166: 374-386. [7] ZHANG B, JI M, WANG F, et al. Damage of EPS and cell structures and improvement of high-solid anaerobic digestion of sewage sludge by combined (Ca(OH)2 + multiple-transducer ultrasonic) pretreatment[J]. RSC Advances, 2017, 7(37): 22706-22714. doi: 10.1039/C7RA01060E [8] GONZALEZ A, HENDRIKS A, VAN L, et al. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step[J]. Biotechnology Advances, 2018, 36(5): 1434-1469. doi: 10.1016/j.biotechadv.2018.06.001 [9] PILLI S, YAN S, LEBLANC R, et al. Ultrasonic pretreatment of sludge: A review[J]. Ultrasonics Sonochemistry, 2011, 18(1): 1-18. doi: 10.1016/j.ultsonch.2010.02.014 [10] NICKEL K, NEIS U. Ultrasonic disintegration of biosolids for improved biodegradation[J]. Ultrasonics Sonochemistry, 2007, 14(4): 450-455. doi: 10.1016/j.ultsonch.2006.10.012 [11] GOGATE P, SIVAKUMAR M, PANDIT A. Destruction of rhodamine B using novel sonochemical reactor with capacity of 7.5 L[J]. Separation and Purification Technology, 2004, 34(1/2/3): 13-24. [12] GOGATE P, MUJUMDAR S, PANDIT A. Sonochemical reactors for waste water treatment: Comparison using formic acid degradation as a model reaction[J]. Advances in Environmental Research, 2003, 7(2): 283-299. doi: 10.1016/S1093-0191(01)00133-2 [13] GOGATE P, SUTKAR V, PANDIT A. Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems[J]. Chemical Engineering Journal, 2011, 166(3): 1066-1082. doi: 10.1016/j.cej.2010.11.069 [14] ASGHARZADEHAHMADI S, ABDULRAMAN A, PARTHASARATHY R, et al. Sonochemical reactors: Review on features, advantages and limitations[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 302-314. doi: 10.1016/j.rser.2016.05.030 [15] American Public Health Association. Standard Methods for the Examination of Water and Wastewater[M]. Washington D C: American Public Health Association, 1995. [16] GAUDY A F. Colorimetric determination of protein and carbohydrate[J]. Industrial Water Wastes, 1962, 7: 17-22. [17] JIMENEZ J, VEDRENNE F, DENIS C, et al. A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples[J]. Water Research, 2013, 47(5): 1751-1762. doi: 10.1016/j.watres.2012.11.052 [18] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275. [19] TYAGI V, LO S, APPELS L, et al. Ultrasonic treatment of waste sludge: A review on mechanisms and applications[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(11): 1220-1288. doi: 10.1080/10643389.2013.763587 [20] JIANG S, CHEN Y, ZHOU Q. Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification[J]. Chemical Engineering Journal, 2007, 132(1/2/3): 311-317. [21] KIM D, CHO S, LEE M, et al. Increased solubilization of excess sludge does not always result in enhanced anaerobic digestion efficiency[J]. Bioresource Technology, 2013, 143: 660-664. doi: 10.1016/j.biortech.2013.06.058 [22] FERNÁNDEZ J, PÉREZ M, ROMERO L I. Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration[J]. Bioresource Technology, 2010, 101(16): 6322-6328. doi: 10.1016/j.biortech.2010.03.046