-
中国是仅次于巴西的世界第二大铁矿石生产国。作为铁矿石生产的副产品,铁尾矿的大量储存对周边环境具有很大的威胁和危害,而环境责任和矿产资源的可持续发展对于采矿业是一个至关重要的问题[1]。据估算,每生产1 t铁精矿就会产生约2.5~3.0 t铁尾矿。截至2013年,我国铁尾矿总量已达到50×108 t,且其数量正不断增加[2]。长期以来,通过堆放和掩埋的方式处理铁尾矿,不仅占用了很大的空间,而且耗费了大量的处理费用[3]。随着我国矿山资源日渐枯竭,矿山尾矿对环境污染的问题日趋严重[4],铁尾矿减量化、无害化和资源化利用迫在眉睫。提取和回收尾矿中的重金属不仅可以实现较高的经济效益,同时也有利于尾矿的无害化处理,具有很好的环境效益,故一直以来受到了广泛关注[5-8]。
近年来,氯化焙烧在城市固体垃圾[9]、污泥飞灰[10]、垃圾焚烧飞灰[11-12]、半导体材料[13]等固体废物中重金属挥发特性方面已有广泛研究。在CaCl2热分解机理和氯化焙烧工艺的研究方面,FRAISSLER等[14]指出,在干燥和潮湿空气条件下,氯的释放发生在CaCl2熔点以上(782 ℃)。在干空气条件下,与O2反应生成Cl2;在湿空气条件下,与H2O反应生成HCl。NOWAK等[9]分别对氮气和空气条件下的氯化挥发进行了热力学平衡计算,发现CaCl2反应释放了Cl2和HCl,Cl2和HCl可进一步与金属再发生氯化反应,是间接氯化反应。YU等[15]发现,相比氧化焙烧,氯化焙烧能在较低温度下挥发重金属。JIAO等[16]发现,CaCl2的添加对飞灰中Cs的挥发效果很好。常耀超等[17]采用氯化焙烧工艺从硫铁矿烧渣中回收有价金属,在焙烧温度为1 250 ℃、焙烧时间为1 h条件下,Cu、Pb、Zn的挥发率分别达到73.1%、93.9%和75.2%。
氯化焙烧受焙烧温度、焙烧时间、焙烧气氛等因素影响。许多研究表明,氯化焙烧可实现重金属的挥发[9-13],可以去除和回收固体废物中的重金属。但目前对氯化焙烧的研究多集中在焙烧温度、氯化剂添加比及焙烧时间的影响上,对于氮气等无氧条件下及空气等有氧条件下CaCl2的热行为的对比实验研究还比较缺乏,对焙烧气氛及焙烧后氯化产物的回收处理方面仍存在不足[18]。本研究对CaCl2和铁尾矿进行氯化焙烧,探究了CaCl2分别在氮气和干空气条件下热处理过程中的热行为和分解机理,并研究了焙烧气氛及焙烧温度对铁尾矿中Cu、Pb、Zn的去除效果的影响及冷凝和吸收液洗涤吸收对挥发烟气中重金属的回收效果。
CaCl2氯化焙烧回收铁尾矿中的重金属Cu、Pb、Zn
Recovering Cu, Pb and Zn in iron tailings by chlorination roasting with CaCl2
-
摘要: 针对铁尾矿资源化利用问题,通过添加CaCl2对铁尾矿进行氯化焙烧。使用X射线衍射仪、热重分析法对CaCl2进行了分析,采用原子吸收光谱法、X射线荧光分析对焙烧渣和收集物进行了分析;探究了氮气和干空气条件下CaCl2的作用机理;研究了焙烧气氛和温度对铁尾矿中Cu、Pb、Zn的挥发效果的影响及不同方法对挥发物的收集效果。结果表明:在氮气条件下,CaCl2在反应后生成了CaClOH且释放Cl;在空气条件下,CaCl2分别与H2O和O2反应释放Cl;重金属Cu、Pb、Zn的挥发率次序为Pb>Cu>Zn,且随着温度的升高而增大;在氮气条件下,Pb的挥发效果优于干空气条件,Zn与之相反,而焙烧气氛对Cu的挥发效果影响较小;氮气条件下的烟气中重金属更易于被冷凝收集,干空气条件下的烟气中重金属更易于被湿法洗涤吸收。氯化焙烧处理后,铁尾矿中Cu、Pb、Zn均实现了很大程度的挥发。Abstract: In view of the resource utilization of iron tailings, the iron tailings were chlorination roasted by adding CaCl2. X-ray diffraction analysis and thermogravimetric analysis were used to analyze CaCl2, and atomic absorption spectrometry and X-ray fluorescence were used to analyze the roasted slag and collected materials. The CaCl2 action mechanisms under nitrogen and dry air conditions were investigated, the effects of roasting atmosphere and temperature on the volatilization rates of Cu, Pb and Zn in iron tailings, as well as the effects of different collection methods on the collection rates were studied. The results show that the CaCl2 reaction could generate Ca(OH)Cl and release Cl in nitrogen atmosphere, while CaCl2 reacted with O2 or H2O to release Cl in the dry air. The order of heavy metal volatilization rates was Pb>Cu>Zn, and the rates increased with the increase of temperature. For Pb volatile effect, nitrogen atmosphere was better than air atmosphere, which was contrary for Zn volatile effect, while roasting atmosphere has little influence on Cu volatile effect. In nitrogen atmosphere, the heavy metals in the flue gas were more easy to be collected by condensation, while in the circumstance of dry air, the heavy metals in the flue gas were more easy to be recovered by wet-washing and absorption. After chlorinated roasting, large part of Cu, Pb and Zn in iron tailings volatilized.
-
Key words:
- metal ore /
- iron tailings /
- chlorination roasting /
- volatilization rate /
- heavy metal /
- solid waste
-
表 1 铁尾矿中重金属浓度
Table 1. Heavy metal concentration in iron tailings
mg·kg−1 Cu Pb Zn Cr Cd 4 568.00 1 761.68 2 518.70 85.81 2.81 表 2 干空气和氮气条件下不同温度热处理后的冷凝液主要成分
Table 2. Main compositions of condensate after heat treatment under different temperature in dry air and N2 atmosphere
气体和温度条件 H2O Cl Si Zn Cu Pb Fe 干空气-600 ℃ 73.57 26.21 0.20 0.02 0.01 — — 干空气-800 ℃ 73.21 26.54 0.16 0.04 0.02 0.02 — 干空气-1 000 ℃ 71.67 27.93 0.21 0.09 0.04 0.04 — N2-600 ℃ 71.82 27.92 0.17 0.01 0.01 0.03 — N2-800 ℃ 71.09 28.23 0.18 0.11 0.14 0.20 0.01 N2-1 000 ℃ 70.19 28.88 0.19 0.17 0.24 0.22 0.02 注:“—” 未检出。 -
[1] ZHAO S J, FAN J J, WEI S. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete[J]. Construction & Building Materials, 2014, 50: 540-548. [2] MA B G, CAI L X, LI X G, et al. Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products[J]. Journal of Cleaner Production, 2016, 127: 162-171. doi: 10.1016/j.jclepro.2016.03.172 [3] 李玉凤, 包景岭, 张锦瑞. 铁尾矿资源开发利用现状分析[J]. 中国矿业, 2015(11): 77-81. doi: 10.3969/j.issn.1004-4051.2015.11.017 [4] 邢宁, 吴平霄, 李媛媛, 等. 大宝山尾矿重金属形态及其潜在迁移能力分析[J]. 环境工程学报, 2011, 5(6): 1370-1374. [5] SIRKECI A A, GÜL A, BULUT G, et al. Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator[J]. Mineral Processing & Extractive Metallurgy Review, 2006, 27(2): 131-141. [6] 李登敏, 杨雪莹, 邓久帅, 等. 从某铁尾矿中回收钛的试验[J]. 现代矿业, 2017(7): 217-218. doi: 10.3969/j.issn.1674-6082.2017.07.067 [7] 李芸邑, 梁嘉良, 刘阳生. 从铁尾矿中回收铁的磁化技术研究[J]. 环境工程, 2014, 32(s1): 634-638. [8] 孙达, 李永聪, 高志明. 从某铁尾矿中回收铜的试验研究[J]. 金属矿山, 2007(9): 119-122. doi: 10.3321/j.issn:1001-1250.2007.09.034 [9] NOWAK B, ROCHA S F, ASCHENBRENNER P, et al. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type[J]. Chemical Engineering Journal, 2012, 179: 178-185. doi: 10.1016/j.cej.2011.10.077 [10] NOWAK B, ASCHENBRENNER P, WINTER F. Heavy metal removal from sewage sludge ash and municipal solid waste fly ash: A comparison[J]. Fuel Processing Technology, 2013, 105: 195-201. doi: 10.1016/j.fuproc.2011.06.027 [11] 韦琳, 吕晓蕾, 刘阳生, 等. CaCl2高温热处理垃圾焚烧飞灰中重金属的挥发特性[J]. 环境工程学报, 2013, 7(11): 4533-4539. [12] 赵鹏, 景明海, 刘盖, 等. 熔盐法处置高熔点垃圾焚烧飞灰重金属的浸出特性[J]. 环境工程学报, 2018, 12(1): 324-330. [13] NISHINAKA K, TERAKADO O, TANI H, et al. Pyrometallurgical recovery of gallium from GaN semiconductor through chlorination process utilizing ammonium chloride[J]. Materials Transactions, 2017, 58(4): 688-691. doi: 10.2320/matertrans.M2016395 [14] FRAISSLER G, JÖLLER M, BRUNNER T, et al. Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination[J]. Chemical Engineering & Processing Process Intensification, 2009, 48(1): 380-388. [15] YU J, SUN L S, MA C, et al. Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl2·6H2O[J]. Waste Management, 2016, 49: 124-130. doi: 10.1016/j.wasman.2015.12.015 [16] JIAO F, IWATA N, KINOSHITA N, et al. Vaporization mechanisms of water-insoluble Cs in ash during thermal treatment with calcium chloride addition[J]. Environmental Science and Technology, 2016, 50(24): 13329-13334. [17] 常耀超, 徐晓辉, 王云. 硫铁矿烧渣氯化焙烧扩大试验[J]. 有色金属(冶炼部分), 2013(10): 1-3. doi: 10.3969/j.issn.1007-7545.2013.10.001 [18] 姜平国, 吴朋飞, 汪正兵, 等. 氯化挥发的研究进展[J]. 有色金属科学与工程, 2016, 7(6): 43-49. [19] 李全超, 童张法, 陈志传, 等. 氯化焙烧法制备无水氯化钙的工艺研究[J]. 无机盐工业, 2016, 48(10): 36-39. [20] YU J, QIAO Y, SUN L S, et al. Detoxification of ashes from a fluidized bed waste incinerator[J]. Chemosphere, 2015, 134: 346-354. doi: 10.1016/j.chemosphere.2015.04.045 [21] YU J, SUN L S, XIANG J, et al. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator[J]. Chemosphere, 2012, 86(11): 1122-1126. doi: 10.1016/j.chemosphere.2011.12.010 [22] LIU J, FALCOZ Q, GAUTHIER D, et al. Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion[J]. Chemosphere, 2010, 80(3): 241-247. doi: 10.1016/j.chemosphere.2010.04.028 [23] LIU J Y, LIU C, SUN G, et al. Thermodynamic behaviors of Cu in interaction with chlorine, sulfur, phosphorus and minerals during sewage sludge co-incineration[J]. Chinese Journal of Chemical Engineering, 2018, 26: 1160-1170. doi: 10.1016/j.cjche.2017.10.019 [24] 潘贵, 邵京明, 钱虎, 等. 金精矿焙砂氯化挥发多元素综合提取新技术研究[J]. 世界有色金属, 2017(23): 230-232.