-
随着人口聚集以及城市化的推进,城市区域不透水地面面积越来越大,由此导致城市内涝频发并产生径流污染问题[1]。特别是雨水径流中存在大量的N、P等营养物质,当这些N、P污染物随雨水径流进入自然水体后,会造成水体富营养化[2]。为了解决城市内涝以及径流污染,各种基于源头控制的低影响开发措施逐渐受到人们的关注。
生物滞留池作为一种雨水径流源头控制的低影响开发措施,能有效缓解城市雨水径流对水文、水质及水生态带来的冲击[3]。其对于一些重金属、悬浮物等的去除效果良好,但对N、P等营养物的去除效果波动较大[4-5]。雨水径流中的P主要以磷酸盐形式(H3PO4,pH<2.16;
${\rm{H}}_2{\rm{PO}}_4^{-} $ ,pH<7.20;${\rm{HPO}}_4^{2-}$ ,pH<12.35)存在[6]。有研究[7]表明,填料性能特别是填料的化学吸附特性是决定生物滞留池除磷效果的最主要因素。为此,有研究[2, 8]通过改良填料以提高P的去除效果,通过在生物滞留池中添加5%的水处理残渣或10%硫酸铝处理过的蒙脱石提高对P的去除效果。RICHARDSON等[9]指出,生物滞留池中磷的去除主要依靠填料中铁氧化物的吸收,并且填料中铁的含量对填料吸附磷的效果具有一定影响。有研究[10-12]发现,抬高生物滞留池出水口高度形成一定淹没滞水区可创造一定厌氧条件,同时在淹没滞水区添加木屑、生物炭等碳源作为电子供体,可促进反硝化过程,从而提高对总N的去除率,但这种改进方法对于生物滞留池P的去除效果会产生一定的负面影响。LI等[13]和ZHANG等[14]通过表面活化等方法将铁、镁附着于生物炭表面,能制备对P吸附性能优越的生物炭,这种新型生物炭目前主要用于土壤改良,尚未用于生物滞留池填料的改良。通过在淹没区投加一定量铁改性生物炭,既可以作为电子供体,也可以提高填料对P的吸附效果,避免因生物滞留池淹没区的设置造成对P的去除影响。本研究提出了铁改性生物炭和普通生物炭改良生物滞留池填料的方法,通过分析不同填料生物滞留实验柱在不同淹没区高度和不同落干期条件下对
${\rm{PO}}_4^{3-} $ -P的去除效果及不同高度的填料对${\rm{PO}}_4^{3-} $ -P的截流量,探讨了铁改性生物炭以及普通生物炭对于生物滞留池填料的改良作用;在此基础上,开展了生物滞留池对典型地区雨水径流中${\rm{PO}}_4^{3-} $ -P的去除效果研究,力求通过对生物滞留池填料的优化来提高生物滞留池雨水净化功能。
改良填料生物滞留池对雨水径流中磷的去除效果
Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank
-
摘要: 针对生物滞留池在一定淹没区高度条件下同时添加碳源对P的去除效果波动较大问题,开展了生物滞留池填料改良方法的研究。通过构建3根模拟实验柱,分别填充传统填料、普通生物炭改良填料和铁改性生物炭改良填料,分析了不同生物炭改良填料生物滞留池在不同淹没区高度和不同落干期条件下对
${\rm{PO}}_4^{3-} $ -P的去除效果;同时,探讨了生物炭对生物滞留池填料的改良作用。研究结果表明:在淹没区高度为300 mm的条件下,铁改性生物炭改良填料生物滞留池对于${\rm{PO}}_4^{3-} $ -P去除效果最好,平均去除率接近90%,而普通生物炭改良填料生物滞留池对${\rm{PO}}_4^{3-} $ -P去除效果最差,平均去除率低于60%;同时,在不同落干期条件下,所有实验柱均未发生${\rm{PO}}_4^{3-} $ -P淋出现象。铁改性生物炭改良填料生物滞留池在设有一定高度淹没区条件下对雨水径流中磷具有很好的去除效果,并对不同落干期变化具有较强的适应性。Abstract: Aiming at the problem that phosphorus (P) removal effect fluctuates greatly with the addition of carbon source at a certain height of submerged zone in a bioretention tank, the improvement method of its media was investigated. In this study, three simulated experimental columns were constructed and filled with conventional media, general biochar-improved media, and iron-coated biochar-improved media, respectively. The${\rm{PO}}_4^{3-} $ -P removal effects of the bioretention cells with different biochar-improved media at different submerged heights and drying periods were analyzed, and the improvement effect of biochar on media was evaluated. The results showed that the iron-coated biochar-improved media presented the best${\rm{PO}}_4^{3-} $ removal effect at the submerged height of 300 mm in the bioretention tank, and the corresponding average removal efficiency approached 90%. However, the general biochar-improved media presented the lowest${\rm{PO}}_4^{3-} $ removal effect with average removal rate below 60%. At the same time, under different drying periods,${\rm{PO}}_4^{3-} $ leaching from media did not occur in all the experimental columns. In conclusion, the bioretention tank filled with the iron-coated biochar-improved media had a good performance on phosphorus removal from rain runoff and a strong adaptability to different drying periods when a submerged zone with certain height was preset.-
Key words:
- runoff pollution /
- bioretention tank /
- biochar /
- improved media /
- phosphorus removal
-
表 1 填料理化性质
Table 1. Physicochemical properties of media
填料名称 pH 灰分/% CEC/(cmol·kg−1) ζ电位/mV 比表面积/(m2·g−1) GXT 2.91±0.08 38.52±0.57 81.25±0.30 −5.00±0.05 170.00±3.00 SWT 8.28±0.46 42.20±80.69 30.51±0.50 −3.00±0.03 150.00±5.00 土 7.35±0.07 89.20±0.03 7.00±0.10 −1.37±0.03 — 混凝土砂 8.23±0.16 96.72±0.70 1.50±0.40 −16.00±0.02 11.80±0.60 注:CEC为阳离子交换容量;—表示未检测。 表 2 生物炭及改性炭对
${\bf{PO}}_4^{3-} $ -P的Langmuir吸附方程参数Table 2. Parameters for Langmuir isotherms of
${\bf{PO}}_4^{3-} $ -P adsorption on biochar生物炭种类 KL/(L·mg−1) qmax/(mg·g−1) R2 RL SWT 0.027 15.680 0.996 0.270~0.787 GXT 0.108 35.857 0.972 0.085~0.481 -
[1] 住房城乡建设部. 海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[M]. 北京: 中国建筑工业出版社, 2014. [2] LIU J, DAVIS A P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention[J]. Environmental Science & Technology, 2014, 48: 607-614. [3] HUNT W F, DAVIS A P G R. Meeting hydrologic and water quality goals through targeted bioretention design[J]. Journal of Environmental Engineering, 2012, 138(6): 698-707. doi: 10.1061/(ASCE)EE.1943-7870.0000504 [4] LI J, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90: 141-155. doi: 10.1016/j.watres.2015.12.015 [5] DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology: overview of current practice and future needs[J]. Journal of Environmental Engineering, 2009, 135(3): 109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109) [6] ERICKSON A J, GULLIVER J S, WEISS P T. Enhanced sand filtration for storm water phosphorus removal[J]. Journal of Environmental Engineering, 2007, 133(5): 485-497. doi: 10.1061/(ASCE)0733-9372(2007)133:5(485) [7] DAVIS A P, SHOKOUHIAN M, SHARMA H, et al. Laboratory study of biological retention for urban stormwater management[J]. Water Environment Research, 2001, 73(1): 5-14. doi: 10.2175/106143001X138624 [8] YAN Q, DAVIS A P, JAMES B R. Enhanced organic phosphorus sorption from urban stormwater using modified bioretention media: batch studies[J]. Journal of Environmental Engineering, 2016, 142(4): 1-11. [9] RICHARDSON J L, VEPRASKAS M J. Wetland Soils[M]. London, UK: CRC Press LLC, 2001. [10] TIAN J, JIN J, CHIU P C, et al. A pilot-scale, bi-layer bioretention system with biochar and zerovalent iron for enhanced nitrate removal from stormwater[J]. Water Research, 2019, 148: 378-387. doi: 10.1016/j.watres.2018.10.030 [11] TIAN J, MILLER V, CHIU P C, et al. Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment[J]. Science of the Total Environment, 2016, 553: 596-606. doi: 10.1016/j.scitotenv.2016.02.129 [12] 许萍, 黄俊杰, 张建强, 等. 模拟生物滞留池强化径流雨水中的氮磷去除研究[J]. 环境科学与技术, 2017, 40(2): 107-112. [13] LI J, LV G, BAII W, et al. Modification and use of biochar from wheat straw (triticum aestivum l.) for nitrate and phosphate removal from water[J]. Desalination and Water Treatment, 2014, 57(10): 1-13. [14] ZHANG M, GAO B, YAO Y, et al. Synthesis of porous mgo-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210: 26-32. doi: 10.1016/j.cej.2012.08.052 [15] NCDWQ. Chapter 12: Bioretention. Stormwater Best Management Practices Manual[M]. Raleigh: N.C. Department of Environmental and Natural Resources, Divison of Water Quality, 2007: 12-13. [16] 田婧. 生物炭对生物滞留池水文效应和氮素去除影响的研究[D]. 成都: 西南交通大学, 2016. [17] 陈莹, 赵剑强, 胡博, 等. 西安市城市主干道路面径流污染负荷研究[J]. 安全与环境学报, 2011, 11(4): 112-117. doi: 10.3969/j.issn.1009-6094.2011.04.026 [18] 袁宏林, 陈海清, 林原, 等. 西安市降雨水质变化规律分析[J]. 西安建筑科技大学学报(自然科学版), 2011, 43(3): 391-395. doi: 10.3969/j.issn.1006-7930.2011.03.015 [19] TAN K H. Sample preparation[M]//TAN K H. Soil Sampling, Preparation, and Analysis. USA: Chapman and Hall/CRC, 2005. [20] 中华人民共和国环境保护部. 土壤有效磷的测定 碳酸氢钠浸提-钼锑抗分光光度法[M]. 北京: 中国环境科学出版社, 2014. [21] TAN K H. Cation exchange capacity and base saturation determination[M]//Soil Sampling, Preparation, and Analysis. USA: Chapman and Hall/CRC, 2005. [22] BALDWIN D S, MITCHELL A M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: A synthesis[J]. Regulated Revers: Research & Management, 2000, 16: 457-467. [23] CLAUSEN M, JOHNC D. Saturation to improve pollutant retention in a rain garden[J]. Environmental Science & Technology, 2006, 40(4): 1335-1340. [24] CORRELL D L. Phosphorus: A rate limiting nutrient in surface waters[J]. Poultry Science, 1999, 78: 674-682. doi: 10.1093/ps/78.5.674 [25] BOHN H L, MCNEAL B L, O'CONNOR G A. Soil Chemistry[M]. 3rd Edition. New York: John Wiley & Sons, Ins., 2001. [26] DAVIS A P, SHOKOUHIAN M, SHARMA H, et al. Water quality improvement through bioretention media: Nitrogen and phosphorus removal[J]. Water Environment Research, 2006, 78(3): 284-293. doi: 10.2175/106143005X94376