Processing math: 100%

改良填料生物滞留池对雨水径流中磷的去除效果

熊家晴, 何一帆, 白雪琛, 王晓昌. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178
引用本文: 熊家晴, 何一帆, 白雪琛, 王晓昌. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178
XIONG Jiaqing, HE Yifan, BAI Xuechen, WANG Xiaochang. Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178
Citation: XIONG Jiaqing, HE Yifan, BAI Xuechen, WANG Xiaochang. Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178

改良填料生物滞留池对雨水径流中磷的去除效果

    作者简介: 熊家晴(1969—),男,博士,副教授。研究方向:城市水环境系统设计等。E-mail:xiongjiaqing@xauat.edu.cn
    通讯作者: 熊家晴, E-mail: xiongjiaqing@xauat.edu.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2012ZX07308-001-08);陕西重点科技创新研究团队计划(2018KWT-11);陕西省海绵城市研究创新团队计划(2017KCT-19-02)
  • 中图分类号: X703

Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank

    Corresponding author: XIONG Jiaqing, xiongjiaqing@xauat.edu.cn
  • 摘要: 针对生物滞留池在一定淹没区高度条件下同时添加碳源对P的去除效果波动较大问题,开展了生物滞留池填料改良方法的研究。通过构建3根模拟实验柱,分别填充传统填料、普通生物炭改良填料和铁改性生物炭改良填料,分析了不同生物炭改良填料生物滞留池在不同淹没区高度和不同落干期条件下对PO34-P的去除效果;同时,探讨了生物炭对生物滞留池填料的改良作用。研究结果表明:在淹没区高度为300 mm的条件下,铁改性生物炭改良填料生物滞留池对于PO34-P去除效果最好,平均去除率接近90%,而普通生物炭改良填料生物滞留池对PO34-P去除效果最差,平均去除率低于60%;同时,在不同落干期条件下,所有实验柱均未发生PO34-P淋出现象。铁改性生物炭改良填料生物滞留池在设有一定高度淹没区条件下对雨水径流中磷具有很好的去除效果,并对不同落干期变化具有较强的适应性。
  • 突发环境事件是由污染物排放或者生产安全事故、自然灾害等次生的,短时间内可能导致环境质量下降或者造成生态环境破坏的事件[1]。云南省矿产资源极为丰富,尤以有色金属及磷矿著称,被誉为“有色金属王国”,尾矿库泄漏事故次生环境风险突出;地形以高原、山地为主,地势起伏,交通险阻,江河纵横,湖库棋布,道路运输事故引发的突发环境事件高发;位于亚欧板块和印度洋板块交界地带,地质运动活跃导致地震多发和地质灾害频发,易造成企业环保设施受损,导致环境事件发生;地处上游地区,河流和湖泊众多,多数河流具有落差大、水流湍急、流量变化大的特点,且跨国境、跨省界河流多,防范流域突发水污染事件压力大。总体来说,云南省突发环境事件风险特征明显且面临易发多发的高风险态势。

    “十四五”期间,云南省突发环境事件的高风险态势加剧,生态环境应急形势更加严峻。在重金属、跨界污染风险突出的形势下,随着原油、成品油输送网络的形成和石化产业链的延伸,应对石化相关产业存储、运输和生产环节的环境风险挑战逐渐增多。加快推进的交通运输建设,加之公路货运仍占主体地位,危险化学品运输次生突发环境事件概率增加;水运业务快速增长,港口、码头环境风险增大。7级地震平静时长突破历史记录,“十四五”时期地震形势更加严峻复杂。基础设施重大工程建设将加剧地质灾害次生突发环境事件的概率。

    在把握云南省突发环境事件风险特征的基础上,根据云南省“十四五”经济社会发展规划,深入分析产业结构、运输结构、能源结构布局和重点行业发展变化趋势,提前研判“十四五”云南省生态环境应急形势的新特点新趋势,研究生态环境应急规划的思路和重点,针对性做好风险防控和应急准备,提高应急处置及其保障能力,推进生态环境应急体系和能力现代化,对于妥善应对突发环境事件,维护生态环境安全底线,具有十分重要的现实意义。文章立足于云南省环境应急的现状和问题,结合生态环境应急形势分析,提出了云南省“十四五”生态环境应急规划的思路和建议。

    “十三五”时期,云南省管控违法排污造成突发环境事件的成效显著,因违法排污引起的突发环境事件明显减少,但仍需严厉打击危险废物非法转移和倾倒等违法犯罪活动造成的突发环境事件。生产安全事故、道路运输事故和自然灾害次生的突发环境事件多发频发情况短期内难以改变。

    支撑云南省高质量发展的基础仍不牢固,在产业发展方面的短板仍然明显,主要表现在发展方式粗放,制造业产业层次普遍偏低[2]。目前,涉及重大环境风险工艺及物质的石化、化纤、医药、化工、轻工、冶炼、港口/码头、石油天然气及其长输管道等行业在全省均有分布。全省共有尾矿库588座,位居全国第四。2021年,云南省生产事故总量仍然偏大,除道路运输事故外,全省发生各类生产安全事故443起,可能次生突发环境事件的金属非金属矿山事故32起,化工和危险化学品事故5起,工贸行业事故75起[3]

    “十三五”期间,中缅油气管道建成运营,云南省建成投运油气管道总里程达到4 914 km,原油、成品油、天然气三大管网已初成体系,中石油云南石化1 300万吨/年炼油项目建成投产。“十四五”期间,将建设覆盖全省各州、市的天然气支线管道,建成一批原油和成品油储备项目,形成以昆明市为中心的放射状成品油管道输送网络,成品油管道达2 500 km以上,输送能力达3 128万吨/年;将推进石化产业向下游产业链延伸,大力发展功能性化学品、化工新材料等精细化工[2]

    云南省山地面积约占全省总面积的94%左右,地形地貌复杂,道路坡陡弯急,路网安全运行基础薄弱,安全防护设施历史欠账较多,极易发生交通事故并次生突发环境事件。2021年,全省发生道路运输事故1 035起,其中较大事故16起,水上交通事故1起,铁路运输事故9起[3]

    到2025 年,云南省综合交通实体线网总里程将达到36万km,其中高速公路通车里程新增6 000 km、达到1.5万 km,新改建国省道3 000 km,新改建农村公路6万km,铁路营运里程新增1 800 km、达到6 000 km。在建及运营运输机场总数量达到20个。新增及改善航道里程1 000 km、达到5 300 km,新增内河港口泊位60个。预计2021~2035年,公路货运仍占主体地位,货物运输仍然集中在滇中地区,水富港至长江中下游水上运输业务快速增长[4-5]。“十四五”规划的37条国家和地方高速公路项目线路涉及54个集中式饮用水水源保护区,规划的13条铁路项目线路涉及34个集中式饮用水水源地保护区[4-5]

    云南省自然灾害种类多、分布地域广、发生频率高,属地质灾害多发频发区和地震多发省份,地质、地震和洪涝等自然灾害诱发突发环境事件风险隐患大,各类灾害风险交织叠加,不确定因素多。2021年与近5年灾害发生频次均值相比,地质灾害增加126.56%、洪涝灾害增加44.23%。2021年因地震灾害共造成10个州(市)的23个县(市、区)不同程度受灾[6]

    云南省地质构造复杂,地层岩性复杂,近地表岩土体破碎,不稳定岩土体广泛分布,稳定性差。复杂脆弱的地质环境背景条件,遭遇高强度降雨(雪)或长时间连续降雨等极端天气以及强烈地震,导致滑坡、泥石流和崩塌等地质灾害多发频发。“十四五”交通、水利和能源等大规模基础设施建设工程将加剧地质灾害的发生。地处印度洋板块与亚欧板块碰撞带附近,地壳运动比较强烈,沿构造线或大的断裂带,常有强烈地震发生,具有频度高、强度大、震源浅、分布广的特征。全省91.2%的国土面积处于7度以上地震高烈度区,1 500万人居住并在活动断层控制的盆地区域内从事生产活动。7级地震平静时长突破历史记录,“十四五”时期震情形势更加严峻复杂,大量长距离、大跨度油气管线等基础设施邻近或直接处于大震危险源地带[7-8]

    目前,云南省县级及以上城市集中式饮用水水源地共236个,除7个为地下水型饮用水源地外,其他均为湖库型和河流型饮用水水源地;“千吨万人”饮用水水源共330个,湖库型和河流型260个,占比78.8%;乡镇级集中式饮用水源共966个,湖库型和河流型685个,占比70.9%。总体来说,全省湖库型和河流型饮用水水源占比大,环境风险受体敏感性突出。存在交通穿越的县级以上集中式饮用水水源地共69个,因流动源造成突发环境事件的风险较大。“十四五”期间,将新建和续建大、中、小型水库13个[2]

    云南省是“一带一路”建设、长江经济带两大国家发展战略的重要交汇点,涉及水系包括长江(金沙江)水系、珠江(南盘江)水系、元江(红河)水系、澜沧江(湄公河)水系、怒江(萨尔温江)水系和大盈江(伊洛瓦底江)水系。全省跨国境、跨省界河流众多,与缅甸、越南存在跨国境断面,与西藏、四川、贵州和广西省(自治区)存在跨省界断面。16个州(市)中,8个州市涉及跨国境河流,9个州(市)涉及跨省界河流。跨国境断面共22个,涉及红河水系、澜沧江水系、怒江水系和大盈江水系的河流干流及其一、二级支流共20条。跨省界断面共36个,涉及长江水系、珠江水系、怒江水系和大盈江水系的河流干流及其一、二级支流共26条。

    云南省产业结构性、布局性环境风险依旧突出。产业结构以资源型产业为主,大部分产业处于全球产业价值链中低端,企业“乱、散、小”问题突出,发展质量亟待提高。各类化工园区、企业依水而建,沿江、沿河10 km范围内风险企业较多。全省“一废一库一品”企业较多。云南省是长江经济带省(市)中尾矿库数量最多的省份,纳入监管尾矿库588座,涉及16个州(市)。截至2021年12月底,全省危险废物经营许可证持证企业共100家。目前,共有重大突发环境事件风险企业90余家,较大突发环境事件风险企业近400家。“十四五”全省按照“大抓产业、主攻工业”思路,将着力扩大工业投资,实现规模以上工业企业数量翻番,大力发展新材料、生物医药、先进装备制造、绿色食品加工、电子信息、化工、卷烟及配套产业[9]

    突发环境事件的妥善应对,需要结合本省环境风险源和风险受体特点,针对风险源可能造成的环境影响范围和程度,提前做好风险管控和应急准备。云南省生态环境应急工作起步较晚,应对突发环境事件的准备基础十分薄弱,存在明显的短板和不足,体制机制还未完全理顺,风险底数尚不清楚,应急保障极不充分,应急能力亟须提升。

    当前云南省环境应急管理的体制机制与“十四五”环境安全形势发展的要求不相适应,环境应急管理体制不够完善,联动机制不够健全。云南省生态环境厅突发环境事件应急响应预案以及各州(市)突发环境事件应急预案和响应预案更新滞后,不能满足环境应急预案修订时限和环境应急工作高质量发展要求。缺乏生态环境应急管理制度、管理办法和工作规范,环境应急制度化和规范化工作格局尚未形成。与四川、贵州、广西和西藏省(自治区)签订了跨省(区)流域上下游突发水污染事件联防联控机制合作协议,但省内相邻流域、区域的应急协调联动机制普遍未建立,省政府组成机构间生态环境应急协作联动机制尚未建立。

    云南省至今未开展过突发环境事件风险专项调查和评估工作,全省突发环境事件风险底数不清,包括环境风险源基本情况、环境风险受体信息、环境风险防控与应急处置能力。因此,不能通过分析建立环境风险源和敏感受体之间的影响关联,不能识别环境风险源及其风险物质特点,不能明确风险源可能造成的环境影响途径、范围和程度。进一步导致政府和部门突发环境事件应急预案编制的支撑基础不牢,开展风险防控和应急准备工作的针对性不足,无法构建与风险水平相适应的环境应急技术和保障能力。

    由于云南省突发环境事件风险底数不清,尚未建立全省突发环境事件风险源和风险受体分类分级风险管控和隐患排查治理监管机制,未能从源头着手防范化解重特大突发环境事件风险。企业编制的应急预案普遍流于形式、质量不高,针对性、实用性和操作性差,不重视、不执行、不管用的问题突出,事件场景设置不合理,且应急资源种类和数量不足,未与政府预案形成体系。集中式饮用水水源地环境应急预案覆盖不全面,并存在针对性和科学性不足的问题。

    云南省于2021年成立了省生态环境应急调查投诉中心,曲靖市和昭通市建立了专职环境应急机构,其余14个州、市均未组建专职的环境应急机构和队伍,开展生态环境应急工作的人员多数为兼职人员,人员流动频繁,难以满足当前敏感严峻的环境应急形势需要。无论专职还是兼职环境应急人员,均缺乏系统性和规范化培训。未针对云南省突发环境事件风险特征和形势开展相关技术开发和应用研究,难以科学支撑复杂、难度较大突发环境事件的应对和处置,全省环境应急队伍专业能力亟须提升。

    云南省未设立各级环境应急专项资金保障突发环境事件的处置。环境应急装备更新较慢,不能达到应急现场防护和快速监测的要求。应急物资信息库管理有待加强,全省未建设环境应急物资储备库和建立应急物资管理、调运机制。多数企业没有根据自身的环境风险特征储备足量的应急物资。环境应急综合管理和指挥平台开发缓慢,信息化工作有待进一步加强,数据共享机制有待建立,不能有效支撑环境应急管理体系和能力现代化要求。总体来说,一旦遭遇重特大突发环境事件,将面临不能充分保障突发环境事件处置的问题。

    李昌林等[10]从国家层面提出突发环境事件应急体系及完善建议,着重强调法律法规的衔接性、应急预案编制技术规范、多元主体参与机制、应急技术研发、应急人才培养和应急物资储备规划。朱文英等[11]也从国家层面提出环境应急管理制度体系发展建议,侧重完善事前防范和管理标准体系、提高事中处置规范化水平、增强事后赔偿和修复规范化水平。云南省生态环境应急工作在发展阶段和发展水平上均同国家环境应急整体发展状况存在较大差距,需立足云南省生态环境应急现状及存在的主要问题,基于突发环境事件风险特征和“十四五”生态环境应急面临的形势,按照“强体系、摸底数、防风险、提能力、促保障”的总体工作思路,基于可推动实现的目标,全面贯彻分类分级的理念和主线,“十四五”期间以突发水环境事件为重心,突出重点行业、重点企业、重点环节、重点风险物质,针对性做好风险防控和应急准备,着力防范和应对重特大突发环境事件发生,推进生态环境应急体系与能力现代化。

    加快修订云南省生态环境厅突发环境事件应急响应预案,理顺厅内应急响应程序和机制,明确厅内各部门分级应对突发环境事件的职能职责。形成以风险评估为基础编制政府及其部门突发环境事件应急预案的导向,推进州(市)政府及生态环境部门按期修订突发环境事件应急预案及应急响应预案。根据环境应急重点工作需要,制定出台一系列管理制度、管理办法和工作规范,提高生态环境应急工作制度化和规范化水平。加强区域、流域和部门间协调协作,推进建立高效顺畅的相邻区域、流域应急协调联动机制,推动建立与应急管理、消防救援、水利、能源、交通运输、自然资源和地震等部门的联动协作机制,尤其要建立与应急管理、消防救援、交通运输和水利部门间的信息共享机制。

    对16个州(市)开展区域突发环境事件风险评估,全面掌握全省突发环境事件风险底数,为提升政府及其部门应急预案的针对性提供支撑,为实现分类分级、重点精准风险管控奠定基础,针对性做好应急准备,构建与风险水平相适应的环境应急技术和保障能力。同时,将风险评估成果信息化,集成在环境应急管理和指挥系统平台,及时根据环境风险源和风险受体变化情况实时更新,实现突发环境事件风险动态管理目标,提高生态环境应急管理精准化和信息化水平。积极推动流域突发环境风险评估试点工作。

    提升突发环境事件风险管控水平,健全环境风险防范化解机制,突出重点行业和企业,坚持从源头上防范化解重特大突发环境事件风险。在掌握风险底数和实现动态更新的基础上,从企业和流域层面系统构建多层级的突发环境事件风险防控体系,推进风险管控能力现代化。建立企业突发环境事件风险分级管控和隐患排查治理双重防控机制。提升应急预案规范化和精准化管理水平,建立企业应急预案核查管理技术要点和方法体系,开展企业突发环境事件应急预案抽查复核。推动县级及以上集中式饮用水水源地环境应急预案全覆盖。全面推广应用“以空间换时间”的“南阳实践”,以“南阳实践”为抓手防控流域突发水污染事件,实现重点河流“一河一策一图”全覆盖。

    在目前我国应急管理体系为政府主导的治理模式下,着力推动基层生态环境应急机构和队伍建设,推动建立州(市)、县(区)环境应急专职机构。制定环境应急人员系统性、长期性培训计划,提高应对突发环境事件的专业素质和能力,重点强化基层应急人员信息报告和先期处置能力。重视应急技术深化应用,加强与环境应急技术研究单位的交流合作,结合全省产业结构、运输结构、能源结构布局和重点行业发展水平,根据风险评估成果针对性建立环境应急处置技术库并进一步研究提高应用水平,以支撑现场应急处置。完善环境应急监测和应急处置专家库。推动依托企业和社会组织,组建突发环境事故专业救援队伍。

    推动在省和州(市)层面设立生态环境应急专项资金,确保环境应急资金保障。加强环境应急监测能力建设,探索建立企业、市场、政府多方参与的应急监测保障机制。在继续做好环境应急物资信息库建设和管理的基础上,根据区域行业特点、风险源分布和风险物质类型,研究细化应急物资种类、数量及其储备布局、模式和更新周期,建立实物储备、合同储备和生产储备相结合的应急物资储备模式,推动建设常用应急物资储备库。加快建设环境应急综合管理和指挥平台,初步实现环境应急管理和指挥“一张图”。加强环境应急信息化建设,首要以信息化提高环境风险防控精准化及动态管理水平、促进环境应急物资管理、储备和调运等保障能力。

  • 图 1  实验柱结构与编号

    Figure 1.  Structure and number of experimental columns

    图 2  DI或SW中生物炭PO34-P累计淋失量

    Figure 2.  Cumulative phosphate leaching amount from biochars in DI water or SW

    图 3  DI淋洗SWT和GXT对PO34-P的吸附等温线

    Figure 3.  PO43−-P adsorption isotherms of DI leached SWT and GXT biochars

    图 4  不同淹没高度下不同实验柱对PO34-P去除率

    Figure 4.  PO34-P removal effects at different submerged heights of different experimental columns

    图 5  不同实验柱不同高度填料中PO34-P含量

    Figure 5.  Contents of PO34-P in different height of media of different experimental columns

    图 6  不同落干期生物滞留池对PO34-P的去除效果

    Figure 6.  PO34-P removal by different experimental columns at different durations of drying periods

    表 1  填料理化性质

    Table 1.  Physicochemical properties of media

    填料名称pH灰分/%CEC/(cmol·kg−1)ζ电位/mV比表面积/(m2·g−1)
    GXT2.91±0.0838.52±0.5781.25±0.30−5.00±0.05170.00±3.00
    SWT8.28±0.4642.20±80.6930.51±0.50−3.00±0.03150.00±5.00
    7.35±0.0789.20±0.037.00±0.10−1.37±0.03
    混凝土砂8.23±0.1696.72±0.701.50±0.40−16.00±0.0211.80±0.60
      注:CEC为阳离子交换容量;—表示未检测。
    填料名称pH灰分/%CEC/(cmol·kg−1)ζ电位/mV比表面积/(m2·g−1)
    GXT2.91±0.0838.52±0.5781.25±0.30−5.00±0.05170.00±3.00
    SWT8.28±0.4642.20±80.6930.51±0.50−3.00±0.03150.00±5.00
    7.35±0.0789.20±0.037.00±0.10−1.37±0.03
    混凝土砂8.23±0.1696.72±0.701.50±0.40−16.00±0.0211.80±0.60
      注:CEC为阳离子交换容量;—表示未检测。
    下载: 导出CSV

    表 2  生物炭及改性炭对PO34-P的Langmuir吸附方程参数

    Table 2.  Parameters for Langmuir isotherms of PO34-P adsorption on biochar

    生物炭种类KL/(L·mg−1)qmax/(mg·g−1)R2RL
    SWT0.02715.6800.9960.270~0.787
    GXT0.10835.8570.9720.085~0.481
    生物炭种类KL/(L·mg−1)qmax/(mg·g−1)R2RL
    SWT0.02715.6800.9960.270~0.787
    GXT0.10835.8570.9720.085~0.481
    下载: 导出CSV
  • [1] 住房城乡建设部. 海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[M]. 北京: 中国建筑工业出版社, 2014.
    [2] LIU J, DAVIS A P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention[J]. Environmental Science & Technology, 2014, 48: 607-614.
    [3] HUNT W F, DAVIS A P G R. Meeting hydrologic and water quality goals through targeted bioretention design[J]. Journal of Environmental Engineering, 2012, 138(6): 698-707. doi: 10.1061/(ASCE)EE.1943-7870.0000504
    [4] LI J, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90: 141-155. doi: 10.1016/j.watres.2015.12.015
    [5] DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology: overview of current practice and future needs[J]. Journal of Environmental Engineering, 2009, 135(3): 109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109)
    [6] ERICKSON A J, GULLIVER J S, WEISS P T. Enhanced sand filtration for storm water phosphorus removal[J]. Journal of Environmental Engineering, 2007, 133(5): 485-497. doi: 10.1061/(ASCE)0733-9372(2007)133:5(485)
    [7] DAVIS A P, SHOKOUHIAN M, SHARMA H, et al. Laboratory study of biological retention for urban stormwater management[J]. Water Environment Research, 2001, 73(1): 5-14. doi: 10.2175/106143001X138624
    [8] YAN Q, DAVIS A P, JAMES B R. Enhanced organic phosphorus sorption from urban stormwater using modified bioretention media: batch studies[J]. Journal of Environmental Engineering, 2016, 142(4): 1-11.
    [9] RICHARDSON J L, VEPRASKAS M J. Wetland Soils[M]. London, UK: CRC Press LLC, 2001.
    [10] TIAN J, JIN J, CHIU P C, et al. A pilot-scale, bi-layer bioretention system with biochar and zerovalent iron for enhanced nitrate removal from stormwater[J]. Water Research, 2019, 148: 378-387. doi: 10.1016/j.watres.2018.10.030
    [11] TIAN J, MILLER V, CHIU P C, et al. Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment[J]. Science of the Total Environment, 2016, 553: 596-606. doi: 10.1016/j.scitotenv.2016.02.129
    [12] 许萍, 黄俊杰, 张建强, 等. 模拟生物滞留池强化径流雨水中的氮磷去除研究[J]. 环境科学与技术, 2017, 40(2): 107-112.
    [13] LI J, LV G, BAII W, et al. Modification and use of biochar from wheat straw (triticum aestivum l.) for nitrate and phosphate removal from water[J]. Desalination and Water Treatment, 2014, 57(10): 1-13.
    [14] ZHANG M, GAO B, YAO Y, et al. Synthesis of porous mgo-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210: 26-32. doi: 10.1016/j.cej.2012.08.052
    [15] NCDWQ. Chapter 12: Bioretention. Stormwater Best Management Practices Manual[M]. Raleigh: N.C. Department of Environmental and Natural Resources, Divison of Water Quality, 2007: 12-13.
    [16] 田婧. 生物炭对生物滞留池水文效应和氮素去除影响的研究[D]. 成都: 西南交通大学, 2016.
    [17] 陈莹, 赵剑强, 胡博, 等. 西安市城市主干道路面径流污染负荷研究[J]. 安全与环境学报, 2011, 11(4): 112-117. doi: 10.3969/j.issn.1009-6094.2011.04.026
    [18] 袁宏林, 陈海清, 林原, 等. 西安市降雨水质变化规律分析[J]. 西安建筑科技大学学报(自然科学版), 2011, 43(3): 391-395. doi: 10.3969/j.issn.1006-7930.2011.03.015
    [19] TAN K H. Sample preparation[M]//TAN K H. Soil Sampling, Preparation, and Analysis. USA: Chapman and Hall/CRC, 2005.
    [20] 中华人民共和国环境保护部. 土壤有效磷的测定 碳酸氢钠浸提-钼锑抗分光光度法[M]. 北京: 中国环境科学出版社, 2014.
    [21] TAN K H. Cation exchange capacity and base saturation determination[M]//Soil Sampling, Preparation, and Analysis. USA: Chapman and Hall/CRC, 2005.
    [22] BALDWIN D S, MITCHELL A M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: A synthesis[J]. Regulated Revers: Research & Management, 2000, 16: 457-467.
    [23] CLAUSEN M, JOHNC D. Saturation to improve pollutant retention in a rain garden[J]. Environmental Science & Technology, 2006, 40(4): 1335-1340.
    [24] CORRELL D L. Phosphorus: A rate limiting nutrient in surface waters[J]. Poultry Science, 1999, 78: 674-682. doi: 10.1093/ps/78.5.674
    [25] BOHN H L, MCNEAL B L, O'CONNOR G A. Soil Chemistry[M]. 3rd Edition. New York: John Wiley & Sons, Ins., 2001.
    [26] DAVIS A P, SHOKOUHIAN M, SHARMA H, et al. Water quality improvement through bioretention media: Nitrogen and phosphorus removal[J]. Water Environment Research, 2006, 78(3): 284-293. doi: 10.2175/106143005X94376
  • 加载中
图( 6) 表( 2)
计量
  • 文章访问数:  4967
  • HTML全文浏览数:  4967
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-12-27
  • 录用日期:  2019-04-15
  • 刊出日期:  2019-09-01
熊家晴, 何一帆, 白雪琛, 王晓昌. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178
引用本文: 熊家晴, 何一帆, 白雪琛, 王晓昌. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178
XIONG Jiaqing, HE Yifan, BAI Xuechen, WANG Xiaochang. Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178
Citation: XIONG Jiaqing, HE Yifan, BAI Xuechen, WANG Xiaochang. Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2164-2172. doi: 10.12030/j.cjee.201812178

改良填料生物滞留池对雨水径流中磷的去除效果

    通讯作者: 熊家晴, E-mail: xiongjiaqing@xauat.edu.cn
    作者简介: 熊家晴(1969—),男,博士,副教授。研究方向:城市水环境系统设计等。E-mail:xiongjiaqing@xauat.edu.cn
  • 1. 西安建筑科技大学环境与市政工程学院,西安 710043
  • 2. 西北水资源与环境生态教育部重点实验室,西安 710043
  • 3. 中联西北工程设计研究院有限公司,西安 710077
基金项目:
国家水体污染控制与治理科技重大专项(2012ZX07308-001-08);陕西重点科技创新研究团队计划(2018KWT-11);陕西省海绵城市研究创新团队计划(2017KCT-19-02)

摘要: 针对生物滞留池在一定淹没区高度条件下同时添加碳源对P的去除效果波动较大问题,开展了生物滞留池填料改良方法的研究。通过构建3根模拟实验柱,分别填充传统填料、普通生物炭改良填料和铁改性生物炭改良填料,分析了不同生物炭改良填料生物滞留池在不同淹没区高度和不同落干期条件下对PO34-P的去除效果;同时,探讨了生物炭对生物滞留池填料的改良作用。研究结果表明:在淹没区高度为300 mm的条件下,铁改性生物炭改良填料生物滞留池对于PO34-P去除效果最好,平均去除率接近90%,而普通生物炭改良填料生物滞留池对PO34-P去除效果最差,平均去除率低于60%;同时,在不同落干期条件下,所有实验柱均未发生PO34-P淋出现象。铁改性生物炭改良填料生物滞留池在设有一定高度淹没区条件下对雨水径流中磷具有很好的去除效果,并对不同落干期变化具有较强的适应性。

English Abstract

  • 随着人口聚集以及城市化的推进,城市区域不透水地面面积越来越大,由此导致城市内涝频发并产生径流污染问题[1]。特别是雨水径流中存在大量的N、P等营养物质,当这些N、P污染物随雨水径流进入自然水体后,会造成水体富营养化[2]。为了解决城市内涝以及径流污染,各种基于源头控制的低影响开发措施逐渐受到人们的关注。

    生物滞留池作为一种雨水径流源头控制的低影响开发措施,能有效缓解城市雨水径流对水文、水质及水生态带来的冲击[3]。其对于一些重金属、悬浮物等的去除效果良好,但对N、P等营养物的去除效果波动较大[4-5]。雨水径流中的P主要以磷酸盐形式(H3PO4,pH<2.16;H2PO4,pH<7.20;HPO24,pH<12.35)存在[6]。有研究[7]表明,填料性能特别是填料的化学吸附特性是决定生物滞留池除磷效果的最主要因素。为此,有研究[2, 8]通过改良填料以提高P的去除效果,通过在生物滞留池中添加5%的水处理残渣或10%硫酸铝处理过的蒙脱石提高对P的去除效果。RICHARDSON等[9]指出,生物滞留池中磷的去除主要依靠填料中铁氧化物的吸收,并且填料中铁的含量对填料吸附磷的效果具有一定影响。

    有研究[10-12]发现,抬高生物滞留池出水口高度形成一定淹没滞水区可创造一定厌氧条件,同时在淹没滞水区添加木屑、生物炭等碳源作为电子供体,可促进反硝化过程,从而提高对总N的去除率,但这种改进方法对于生物滞留池P的去除效果会产生一定的负面影响。LI等[13]和ZHANG等[14]通过表面活化等方法将铁、镁附着于生物炭表面,能制备对P吸附性能优越的生物炭,这种新型生物炭目前主要用于土壤改良,尚未用于生物滞留池填料的改良。通过在淹没区投加一定量铁改性生物炭,既可以作为电子供体,也可以提高填料对P的吸附效果,避免因生物滞留池淹没区的设置造成对P的去除影响。本研究提出了铁改性生物炭和普通生物炭改良生物滞留池填料的方法,通过分析不同填料生物滞留实验柱在不同淹没区高度和不同落干期条件下对PO34-P的去除效果及不同高度的填料对PO34-P的截流量,探讨了铁改性生物炭以及普通生物炭对于生物滞留池填料的改良作用;在此基础上,开展了生物滞留池对典型地区雨水径流中PO34-P的去除效果研究,力求通过对生物滞留池填料的优化来提高生物滞留池雨水净化功能。

  • 1)生物滞留池填料。本研究中,生物滞留池所用填料主要包含C33混凝土砂、土、普通生物炭(SWT)和铁改性生物炭(GXT)。各种填料理化性质如表1所示。

    2)主要试剂。六水合三氯化铁(FeCl3·6H2O,99.99%)、磷酸二氢钾(KH2PO4,99.50%)、氯化铵(NH4Cl,99.50%)、硝酸钾(KNO3,99.99%)、无水氯化钙(CaCl2,96.00%)、无水乙醇(CH2CH3OH,99.70%)、浓硫酸(H2SO4,95%~98%)、浓盐酸(HCl,36%~38%)。

    3)主要仪器。水质浊度仪(2100Q,美国哈希水质检测有限公司)、水质色度仪(SD9001,上海昕瑞仪器仪表有限公司)、紫外-可见光分光光度计(TU-1900,北京普析通用仪器有限责任公司)、离心机(TGL-16M,贝克曼库尔特有限公司)、超声清洗仪器(KQ-500DE,杭州法兰特超声波有限公司)、马弗炉(SXL1008,中国科学院上海光学精密机械研究所)。

  • 实验采用直径为300 mm,高1 250 mm的HDPE圆柱箱体。实验柱编号及填料层填料类型见图1。箱体内部结构自上而下为超高层(45 mm)、淹没层(255 mm)、覆盖层(100 mm)、填料层(700 mm)、砾石排水层(150 mm)。沿实验柱外壁设有不同高度填料取样口,柱底设有上翻的出水口控制淹没区高度。为了减少外界环境温度的影响,实验柱外壁使用保温膜包裹,同时为避免植物干扰,实验柱中不种植物。

    覆盖层使用粒径为10~20 mm的碎石,砾石排水层使用粒径为30~40 mm的砾石。参考北卡罗纳州雨洪最佳管理手册[15],对照组填料T1采用88%混凝土砂、12%土的质量百分比均匀混合而成,pH为8.03±0.03;改良填料T2为填料T1均匀混合4% SWT,pH为7.33±0.09;改良填料T3为填料T1均匀混合4% GXT,pH为6.94±0.04。

  • 1)生物炭制备及改性方法。SWT原料为稻壳,采用热裂解法制备,热解升温速率为15 ℃·min,最高热解温度为500 ℃。使用FeCl3溶液对SWT进行改性[13],取100 g SWT浸泡于1 L浓度为1.0 mol·L−1的盐酸溶液中1 h,然后淋洗,直至淋洗液为中性;于75 ℃烘干12 h后,按照铁炭的质量比为0.70,将上述生物炭放置于FeCl3溶液中,混合均匀并静置1 h,再用去离子水淋洗至中性,最后于75 ℃烘干,铁改性生物炭被标记为GXT。

    2)生物炭淋洗实验。采取淋洗实验评价不同生物炭在去离子水(DI)或人工模拟降雨径流(SW)连续淋洗条件下营养物的释放特征。称取1 g干燥的SWT或GXT分别加入有40 mL DI或SW离心瓶中,在150 r·min−1频率下振荡24 h后以500 r·min−1高速离心20 min,取上清液经0.45 μm孔径滤纸过滤,重复10次后分析PO34-P含量,设置只装有DI或SW无生物炭的离心瓶作为对照组,做2组重复实验。SW使用pH为7.0±0.20且含有8 mg·L−1 NH+4-N、8 mg·L−1 NO3-N和120 mg·L−1 CaCl2的溶液[16]

    3)生物炭对磷的等温吸附实验。实际应用中,生物滞留池的填料将被入渗的雨水径流不断淋洗,会导致可溶物浸出。为检验淋洗后的生物炭对PO34-P的实际吸附能力,本研究使用在淋洗实验中经DI淋洗10 d后的SWT和GXT作为实验材料。PO34-P等温吸附实验在室温条件下进行,每种生物炭做2组重复实验[16]。0.1 g的SWT(或GXT)加入50 mL不同浓度PO34-P溶液中(0、10、20、30、40、50、60、70、80和100 mg·L−1),在室温下于150 r·min−1振荡24 h,吸附液通过0.45 μm滤头过滤后测定其中的PO34-P浓度。吸附平衡浓度采用式(1)计算。

    式中:qe为吸附平衡时的吸附量,mg·g−1C0为初始溶液浓度,mg·L−1Ce为吸附平衡溶液浓度,mg·L−1V是溶液体积,L;m是吸附剂质量,g。选择Langmuir模型对实验数据进行非线性回归拟合,结果见式(2)。

    式中:qmax为Langmuir模型最大吸附量,mg·kg−1KL为Langmuir模型亲和性参数,L·mg−1。用系数RL来判断是否容易发生吸附,计算方法如式(3)所示。

    当0<RL<1时,容易发生吸附;当RL>1时,不易发生吸附;当RL=0时,为可逆吸附;当RL=1时,为线性吸附。

    4)径流模拟实验。为研究不同淹没高度生物滞留池对于雨水径流中P去除效果,分别设置实验柱出口高度为0、300和600 mm,每一实验条件运行前实验柱预先运行3 d。不同淹没高度实验中的水力条件和污染物浓度一致,雨水径流根据《海绵城市建设技术指南》[1],按照西安市年径流总量控制率为85%的降雨量,生物滞留池和汇水区面积比为5%,径流系数0.8,实验开始连续进水6 h,进水流量56.69 mL·min−1。为避免其他条件干扰,配水使用人工配水,模拟自然降雨,污染物浓度参考西安市道路、屋顶雨水径流污染物浓度平均值确定[17-18],具体污染物及浓度如下:NH+4-N 8 mg·L−1NO3-N 8 mg·L−1PO34-P 2 mg·L−1,COD 300 mg·L−1。每次进水结束时取出水水样,然后间隔18 h重复实验,每一实验条件下重复11次。检测出水中PO34-P、pH、浊度、色度等指标。

    为研究不同落干期对生物滞留池去除P的影响,实验分别设置落干期2、3、4、5、6、7和8 d。淹没区高度采用300 mm,水力条件和污染物浓度等条件和上述实验一致。

    5)填料分析实验。淹没区高度为300 mm的连续径流模拟实验结束后,取每根实验柱中不同高度的填料样品,取样高度自柱底向上分别为250、550和700 mm,样品数合计15个。土样各取1 g放入坩埚中,于105 ℃烘干24 h,测量湿度,其余样品通过风干处理[19]待测。通过测定填料中有效磷含量来确定不同高度的填料对PO34-P的截流效果[20]

  • 采用玻璃电极法检测填料pH;采用灼烧法检测填料灰分;采用乙酸铵法检测填料阳离子交换容量(CEC)[21];采用BET法检测填料比表面积;采用固体ZETA电位仪检测pH为0时填料ζ电位;采用钼锑抗分光光度法检测水样磷酸盐浓度;采用碳酸氢钠浸提-钼锑抗分光光度法检测填料有效磷浓度[20];采用分光光度检测水质色度;采用分光光度法检测水质浊度。

  • 图2中可看出,在DI或SW淋洗条件下,SWT中PO34-P累计淋失量远高过于GXT对应的数值,这说明GXT更适合作为生物滞留池填料的改良剂。在DI淋洗条件下,GXT累计淋失PO34-P量为0.555 μmol·g−1;同样条件下SWT累计淋失PO34-P量为14.426 μmol·g−1,约为GXT的30倍。在SW淋洗条件下,GXT中PO34-P累计淋失量为0.755 μmol·g−1,而SWT中PO34-P累计淋失量为7.848 μmol·g−1,约为GXT中PO34-P累计淋失量的10倍。

  • 图3为SWT和GXT对PO34-P的吸附等温线。Langmuir模型拟合结果表明SWT和GXT对PO34-P均具有较好的吸附效果,SWT和GXT对应的RL均在0~1之间,表明两者对PO34-P的吸附均容易发生。具体模型参数见表2。由表2可以看出,GXT对于PO34-P的最大吸附量远高于SWT,这表明GXT对PO34-P的吸附性能更好,这可能与不同生物炭的比表面积、CEC等性能有关(见表1)。

  • 淹没高度为0 mm时,不同实验柱对PO34-P的去除效果见图4(a)。可以看出,1#和3#实验柱对PO34-P的去除效果差异不明显,但都远高于2#实验柱。这说明在不设置淹没区时,GXT改良填料与传统填料相比对PO34-P的去除性能没有显著提升,而SWT改良填料反而降低了PO34-P的去除性能。2#实验柱去除效果差,可能是因为SWT自身PO34-P的释放,这一推断可通过上面淋洗实验得到验证。

    淹没高度为300 mm时,不同实验柱对PO34-P的去除效果见图4(b)。可以看出,1#实验柱对PO34-P的去除效果最好,2#实验柱PO34-P去除率最低,这证明GXT改良填料可以显著减少PO34-P的淋失。2#实验柱对于PO34-P的去除效果较差,这可能来源于生物炭自身磷的淋出,也可能是由于淹没区的设置造成。一方面,淹没区的设置产生的厌氧条件可能会引起溶解磷的淋出[22];另一方面,淹没区设置造成低氧条件可能导致滤料中离子键磷的移动和排出[23-24]。而1#实验柱因为GXT的改良,使得磷和填料形成更加牢固的化合键,不易脱落[25]

    淹没高度为600 mm时,各实验柱对于PO34-P的去除差异比淹没高度为300 mm时更明显,见图4(c)可以看出,3#实验柱对于PO34-P的去除效果最好、1#次之、2#最差。1#实验柱对PO34-P的去除效果虽然不及3#实验柱,但平均去除率仍然稳定在80%以上;2#实验柱在运行至第5 天后PO34-P去除率开始降低,在运行结束时PO34-P去除率下降至60%以下。

    总体而言,除2#实验柱外,其他2根实验柱不设淹没区时,对PO34-P的去除效果较好。对于1#实验柱来说,在不设淹没区时对于PO34-P的去除效果较好,平均去除率为98.03%,而设置300 mm和600 mm淹没高度时,平均去除率分别为88.70%和84.41%,去除效果有所降低。2#实验柱和其他实验柱不同,当设置600 mm淹没高度时,其对于PO34-P的去除效果最好,平均去除率可达71.26%;在不设淹没区和设置300 mm淹没高度时,对于PO34-P的平均去除率分别为49.75%和47.35%,均低于同等条件下的其他实验柱。作为对照组的3#实验柱,在不设置淹没区和淹没高度600 mm的情况下对PO34-P的去除性能均较好,平均去除率分别为97.86%和95.31%;但在淹没高度为300 mm时,去除率下降至76.20%。不同淹没高度下不同实验柱对于PO34-P的平均去除率见图4(d)

    图5是淹没高度为300 mm条件下模拟径流实验结束后,不同实验柱在不同高度填料样品中 PO34-P的含量。通过对3根实验柱中PO34-P的含量对比,1#实验柱在各区对PO34-P的截流均优于其他2根实验柱;同时,2#实验柱在除高区外,对PO34-P的截流能力均低于其他2根实验柱。总体而言,每根实验柱对PO34-P的截流量随填料深度增大而逐渐递减。以上结果说明,一定的填料高度对于磷的去除是有必要的[26]

  • 图6为不同实验柱在不同落干期时进水和出水PO34-P的浓度。总体而言,各实验柱均未发生填料中PO34-P的淋出现象,且随着落干期的延长,各实验柱出水PO34-P的浓度均呈降低趋势。3#实验柱的平均出水浓度最低,但在落干期延长至6 d以上时,各实验柱出水PO34-P的浓度相差不大,且均低于0.75 mg·L−1。这说明,对于干旱气候来说,生物滞留池对P的去除效果较好。

  • 1)在不设淹没区条件下,除生物炭改良填料生物滞留实验柱外,其他实验柱对于PO34-P的去除效果较好,故在仅考虑除磷功能的前提下,一般生物滞留池可考虑不设置淹没区。

    2)在设置300 mm淹没区高度条件下,铁改性生物炭改良填料生物滞留实验柱性能最优,且优于设置600 mm淹没区高度;添加生物炭的生物滞留池性能最差,平均去除率不足60%。因此,生物滞留池在同时考虑脱氮除磷的前提下,设置淹没区高度为300 mm且使用铁改性生物炭改良填料较好。

    3)淹没高度300 mm时,不同落干期条件下所有实验柱均未发生P的淋出现象,且随着落干期的延长,各实验柱出水PO34-P的浓度均呈降低趋势,这种特性特别适用于干旱半干旱的西北地区。

参考文献 (26)

返回顶部

目录

/

返回文章
返回