-
我国是世界13个人均水资源最贫乏的国家之一,水资源紧缺严重制约着我国的社会经济发展。将城镇污水再生回用、实现“污水资源化”是解决水资源紧缺的有效途径。补给水环境是再生水的主要用途之一,但其中的磷是造成水体富营养化的关键因素[1-2]。《城市污水再生利用景观环境用水水质》(GB/T 18921-2002)[3]规定观赏性或娱乐性景观环境用水的总磷(total phosphorus,TP)浓度限值为0.5 mg·L−1(湖泊类)或1.0 mg·L−1(河道类)。水体中TP浓度高于0.02 mg·L−1即处于富营养化状态[4],有研究[5-6]表明,污水处理厂出水TP浓度必须控制在0.05 mg·L−1以下。
针对污水处理厂二级处理出水(简称二级出水)低浓度磷的特点,化学沉淀除磷和吸附法除磷不失为经济高效的深度除磷方法。目前,对于化学沉淀除磷,研究者主要关注混凝剂的种类、影响因素和除磷效果[7-9]。对于吸附法除磷,主要集中于吸附材料、吸附机理和吸附性能优劣的研究[10-11]。化学沉淀除磷和吸附法除磷在二级出水中的应用以及对水中不同形态磷的去除效果研究较少。并且前人的研究多数是针对难以达标的水进行化学强化除磷,使出水TP达到规定的排放标准0.5 mg·L−1[12-13]。但是,按照目前的水质标准,再生水若回用于封闭的或流动缓慢的景观环境水体,仍存在爆发水华的风险[14]。因此,对二级出水进行深度除磷,使TP浓度降至更低的水平势在必行。目前,国内对出水TP浓度低于0.05 mg·L−1深度除磷的研究尚未见报道。
针对国内的研究现状,本研究以北京市某城市污水处理厂二级出水为研究对象,将出水TP控制在0.05 mg·L−1以下为研究目的,对磷的形态及浓度分布进行了分析,分别采用化学沉淀法和吸附法对其展开了除磷研究,分析了不同形态磷的去除效果,并对其进行技术经济分析,以期为再生水深度除磷技术提供参考。
城市污水处理厂二级处理出水中磷深度去除技术
Advanced phosphorus removal from the second effluent of municipal sewage treatment plant
-
摘要: 以某城市污水处理厂二级出水为研究对象,分析了其中磷的形态及浓度分布,分别采用FeCl3、PAC、Al2(SO4)3混凝剂和羟基铁颗粒吸附剂开展了基于化学法和吸附法的深度除磷技术的研究。在相同的水质和环境条件下,对不同形态磷的去除效果进行了分析,并对两者的技术经济性进行了对比。结果表明,该厂二级出水中TP浓度的平均水平为0.332 mg·L−1,其中可溶性活性磷酸盐为主要存在形态,占TP浓度的64.16%。与FeCl3相比,Al2(SO4)3和PAC比较适合本实验原水水质,当其投加量为3 mg·L−1时,出水TP可降至0.05 mg·L−1以下。以Al2(SO4)3和PAC作为混凝剂,各种形态的磷均得到不同程度的去除,可溶性活性磷酸盐的去除效果最好,几乎全部得以去除,而颗粒态磷和其他溶解性磷的去除效果较差。通过技术经济比较,Al2(SO4)3在除磷效果和药剂费用上均比PAC占有优势。羟基铁颗粒吸附剂对可溶性活性磷酸盐吸附效果显著,对其他溶解性磷吸附效果较差,当空床接触时间(EBCT)大于10 min时,出水TP可降至0.05 mg·L−1以下。从长期的技术和经济效益综合考虑,吸附剂优于混凝剂。Abstract: In this research, three commonly used coagulants (FeCl3, PAC and Al2(SO4)3) and hydroxyl iron particle adsorbent were used to remove phosphorus from the secondary effluent of a municipal treatment plant. Based on the analysis of the speciation and concentration of phosphorus, the removal effects of different phosphorus forms and technical economy of the coagulation and adsorption methods were discussed under the same water quality and environmental conditions. The results showed that the average TP concentration in the secondary effluent of this plant was 0.332 mg·L−1. The soluble active phosphate was the main form, accounting for 64.16% of TP. Compared with FeCl3, Al2(SO4)3 and PAC were two suitable coagulants for TP removal, and TP concentration in effluent lowered to below 0.05 mg·L−1 at Al2(SO4)3 or PAC dosage of 3 mg·L−1. Additionally, the removal efficiency of particulate phosphorus and other soluble phosphorus was relatively inferior to that of soluble reactive phosphate, the later could be completely removed by Al2(SO4)3 or PAC coagulation. Through the analysis of technical economy of TP removal system, Al2(SO4)3 was selected as the best coagulant. Besides, the adsorption effect of hydroxyl iron adsorbent on soluble reactive phosphate was significant, while on other soluble phosphorus was relatively poor. The TP concentration in effluent was below 0.05 mg·L−1 when the empty bed contact time (EBCT) was longer than 10 min. In view of long-term economic benefits, the performance of adsorbent was better than that of coagulant.
-
表 1 某污水处理厂二级出水中磷形态及浓度分布
Table 1. Phosphorus speciation and concentration in the secondary effluent of a sewage treatment plant
采样日期 总磷 可溶性总磷 可溶性活性磷酸盐 颗粒态磷 其他溶解性磷 2018-10-08 0.260 0.201 0.170 0.059 0.031 2018-10-11 0.387 0.288 0.254 0.099 0.034 2018-10-14 0.334 0.237 0.201 0.097 0.036 2018-10-17 0.351 0.273 0.236 0.078 0.037 2018-10-20 0.327 0.259 0.202 0.068 0.057 表 2 羟基铁粉末与颗粒的主要性能指标
Table 2. Properties of hydroxyl iron powder and granular adsorbents
吸附剂 粒径/mm BET比表面积/(m2·g−1) 孔容/(m3·g−1) 平均孔径/nm 吸附容量/(mg·g−1) 羟基铁粉末 — 139.731 2 0.147 7 4.229 3 37.45 羟基铁颗粒 2.0 84.132 1 0.112 9 5.369 7 13.61 注:上述吸附容量均指温度为25 ℃、pH为7.0时的吸附容量。 -
[1] SCHINDLER D W, HECKY R E, FINDLAY D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences, 2008, 105(32): 11254-11258. doi: 10.1073/pnas.0805108105 [2] CORRELL D L. The role of phosphorus in the eutrophication of receiving waters: A review[J]. Journal of Environmental Quality, 1998, 27(2): 261-266. [3] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 城市污水再生利用景观环境用水水质: GB 18921-2002[S]. 北京: 中国标准出版社, 2003. [4] 陈旭华. 用尼梅罗(Nemerow)污染指数评价地表水营养状况的探讨[J]. 安全与环境学报, 2003, 3(2): 24-26. doi: 10.3969/j.issn.1009-6094.2003.02.006 [5] RAGSDALE D. Advanced treatment to achieve low concentration of phosphorus[R]. Washington, D C: United States Environment Protection Agency, 2007. [6] WALKER J L, YOUNOS T, ZIPPER C E. Nutrients in lakes and reservoirs: A literature review for use in nutrient criteria development[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2007. [7] OMOIKE A I, VANLOON G W. Removal of phosphorus and organic matter removal by alum during wastewater treatment[J]. Water Research, 1999, 33(17): 3617-3627. doi: 10.1016/S0043-1354(99)00075-5 [8] 李子富, 云玉攀, 曾灏, 等. 城市污水处理厂化学强化生物除磷的实验研究[J]. 中国环境科学, 2014, 34(12): 3070-3077. [9] AGUILAR M I, SAEZ J, LORENS M A, et al. Nutrient removal and sludge production in the coagulation-flocculation process[J]. Water Research, 2002, 36(11): 2910-2919. doi: 10.1016/S0043-1354(01)00508-5 [10] ZENG L, LI X M, LIU J D. Removal of phosphate from aqueous solutions using iron oxide tailings[J]. Water Research, 2004, 38(5): 1318-1326. doi: 10.1016/j.watres.2003.12.009 [11] YOSHIMI S, YOSHIO N. Removal of phosphate by layered double hydroxides containing iron[J]. Water Research, 2002, 36(5): 1306-1312. doi: 10.1016/S0043-1354(01)00340-2 [12] 方华, 万震, 江玒, 等. 二级生化出水化学法深度除磷实验[J]. 南京信息工程大学学报(自然科学版), 2013, 5(5): 462-465. [13] 冯锦梅, 陆俊晨. 二级生化出水除磷及磷形态研究[J]. 污染防治技术, 2012, 25(6): 1-4. [14] 胡洪营, 吴乾元, 黄晶晶, 等. 再生水水质安全评价与保障原理[M]. 北京: 科学出版社, 2011. [15] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [16] CARAVELLI A H, CONTRERAS E M, ZARITZKY N E. Phosphorus removal in batch systems using ferric chloride in the presence of activated sludge[J]. Hazardous Materials, 2010, 177(1/2/3): 199-208. [17] 孟顺龙, 裘丽萍, 陈家长. 污水化学沉淀法除磷研究进展[J]. 中国农学通报, 2012, 28(35): 264-268. doi: 10.3969/j.issn.1000-6850.2012.35.049 [18] TANADA S, KABAYAMA M, KAWASAKI N, et al. Removal of phosphate by aluminum oxide hydroxide[J]. Journal of Colloid and Interface Science, 2003, 257(1): 135-140. doi: 10.1016/S0021-9797(02)00008-5 [19] MA B W, CHEN G X, HU C Z, et al. Speciation matching mechanisms between orthophosphate and aluminum species during advanced P removal process[J]. Science of the Total Environment, 2018, 642: 1311-1319. doi: 10.1016/j.scitotenv.2018.06.171 [20] 边兴玉, 王文超, 张志斌, 等. 化学辅助除磷工艺药剂投加量的优化研究[J]. 山东建筑大学学报, 2007, 22(2): 513-516. [21] 侯红娟, 王洪洋, 周琪. 低碳、高氮磷城市污水的化学辅助除磷研究[J]. 中国给水排水, 2007, 23(11): 24-27. doi: 10.3321/j.issn:1000-4602.2007.11.007 [22] CRITTENDEN J, BERRIGAN J, HAND D. Design of rapid small scale adsorption tests for a constant diffusivity[J]. Water Pollution Control Federation, 1986, 58(4): 312-319. [23] ZENG H, FISHER B, GIAMMAR D E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J]. Environmental Science and Technology, 2008, 42(1): 147-152. doi: 10.1021/es071553d