-
近十几年来,随着水产、养殖、医药等行业的迅速发展,我国的水体环境污染状况日趋严重。污染水体由最初的生活污水、工业废水衍变为地表水、地下水等在全国范围内的污染。在水污染治理技术中,膜技术由于其高效、环保的特点被广范应用。在膜技术处理废水的过程中,通过调节膜的孔径、表面结构等组装不同孔径的膜组件系列装置,可广泛用在炼油废水、印染废水及生活污水等的治理中[1-3]。但膜污染问题是限制膜技术广泛使用的瓶颈之一。膜污染导致膜的使用周期变短,清洗频率增高,大大提升了膜处理废水时的运行成本[4-6]。因此,在治理废水的过程中,如何有效减缓膜污染并节约能耗是当今膜技术研究的热点方向。
微生物燃料电池(microbial fuel cell,MFC)是一种新型的水处理技术[7-9]。该技术利用细菌的胞外电子传递机制,MFC的阳极厌氧细菌可将污水中氧化有机物时产生的电子释放出来,流经外接电路传递到阴极,在阴极与电子受体(多为O2)结合产生水,形成持续的电子回路,从而将污水中有机物的化学能转化为电能,进行能源回收。据研究报道,ZHANG等[10]将2个4 L的U型MFC用在城镇污水处理示范性工程中,结果表明,在水力停留时间为11 h时,MFC对COD的去除率达到0.2 kg·m−3,此时产生的电流密度为9 A·m−3。GE等[11]将200 L的MFC用在城镇污水处理过程中,最高产能达到0.009 kWh·m−3。但MFC单独处理污水时仅依靠细菌的降解作用,缺乏后续的深度处理技术,故其出水的水质通常较差,难以达到理想的处理效果。
将MFC与膜技术联用可以实现多重优势[12-14]。首先,膜过滤可以提升MFC处理污水后的出水水质,提升污水处理的整体效率;其次,MFC中电子和质子的定向移动会产生微电场,可以有效地减缓细菌代谢产物等向膜表面的附着,缓解膜污染。所以,将MFC与膜技术联用是一种集高效、节能为一体的污水处理技术。
电催化膜的研发是实现MFC与膜技术联用的关键技术之一[15]。在水处理过程中,电催化膜由于兼具导电和过滤作用,可同时充当MFC的阴极及过滤膜。污染物在经MFC分解后,再经过膜过滤,实现高效的污染物处理效率;并且,在此过程中可以将污水中的能源经MFC转化为电能,实现节能减排。在电催化膜上负载催化剂(如石墨烯、碳纳米管、过渡金属氧化物、聚苯胺等)可以有效提高MFC在污水处理中的产能效果[15-17]。
本研究将聚吡咯(polypyrrole,PPy)、碳纤维布和聚偏氟乙烯(polyvinylidene fluoride,PVDF)膜复合,制备出PPy-PVDF/碳纤维催化膜(PPy-PVDF/碳纤维膜),研究了PPy对PVDF/碳纤维膜催化活性和抗污染性能的影响,并探究了PPy-PVDF/碳纤维膜在MFC-电催化膜反应器中的污染物去除效率和产能效果。
-
吡咯单体(C4H5N,化学纯),磷酸二氢钾(KH2PO4)、氯化钾(KCl)、聚乙烯吡咯烷酮((C6H9NO)n)、N,N-二甲基甲酰胺(C3H7NO)和乙醇(C2H6O)为分析纯。
-
在MFC-电催化膜反应器污水处理过程中,阳极室与阴极室呈H型构型(如图1所示),体积均为200 mL。阳极室中填充产电微生物负载的石墨颗粒,接种的产电微生物为杂菌,其有效的菌种成分是具胞外电子传递特点的厌氧希瓦氏菌M2-1。阴极室放置制备的电催化膜,底部配置气石曝气。阳极室与阴极室之间采用多孔隔板隔开。反应器进水中各污染物的浓度约为COD∶N∶P=100∶5∶1。MFC-电催化膜污水处理反应器中,进水从阳极室底部进入,随后经渗流进入阴极室,最后经过蠕动泵对电催化膜的减压抽滤得到出水,反应器采用连续进出水模式,运行一个周期为15 d。运行过程中阳极液稳定在(80±5) mL,阴极液为180 mL。
在电流输出回路中,阳极室放置碳棒导出电子,用铜丝与500 Ω的电阻连接,电阻另一端用铜丝与阴极电催化膜连接,构成完整的电子回路。
-
吡咯单体溶液的配制 250 mL水∶乙醇(V∶V)为9∶1的溶液中,加入1.68 g吡咯单体、1.86 g氯化钾及0.34 g磷酸二氢钾。配制的吡咯单体溶液含0.1 mol·L−1 吡咯、0.1 mol·L−1 KCl和0.34 g KH2PO4。
PVDF/碳纤维膜的制备 称取2 g聚偏氟乙烯(polyvinylidene fluoride,PVDF),0.2 g聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)加入到20 g N,N-二甲基甲酰胺(N,N-dimethylformamide,DMF)中,磁力搅拌3 h。随后,在上述溶液中加入0.2 g碳纳米纤维(150~200 nm,纯度>99.9%),继续磁力搅拌1 h。随后超声脱泡20 min,在碳纤维布表面浇铸刮膜,刮膜厚度为300 μm,后经相转化后,制备出PVDF/碳纤维膜。PVDF铸膜液中添加碳纳米纤维可提升PVDF/碳纤维膜的导电性。
电氧化聚合PPy在三电极体系(CHI660E,上海辰华仪器有限公司)中,饱和甘汞电极作为参比电极,铂片电极作为辅助电极,PVDF/碳纤维膜作为工作电极,吡咯单体溶液作为聚合液,在0.8 V的恒电位下,持续沉积5、10和15 min,得到PPy改性的PVDF/碳纤维膜(后面简称电催化膜),并对比不同的沉积时间(沉积量)对电催化膜活性的影响。
-
电催化膜的表征测试。本研究采用扫描电子显微镜(scanning electron microscopy,SEM)测试电催化膜的表面形貌;采用傅里叶变换红外光谱仪(fourier transform infrared spectroscopy,FT-IR)分析聚合形成的PPy。
电催化膜的活性测试。本研究对PPy聚合沉积前和沉积后的电催化膜在三电极体系中进行活性测试。配制5 mmol·L−1 K3Fe(CN)6 + 1 mol·L−1 KCl溶液作为电解液,饱和甘汞电极(saturated calomel electrode,SCE,0.241 2 V)作为参比电极,1 cm×1 cm Pt片电极作为辅助电极,电催化膜作为工作电极,采用循环伏安法[15],扫描电压设在0~0.8 V,扫速为10 mV·s−1,得到电催化膜的活性曲线。
电催化膜的抗污染性能测试。在清水通量的测试中,实验将PPy10-/PVDF/碳纤维膜用膜组件组装后,放置在超纯水中,在86 cm的水头压差(8.1 kPa)下测得40 min后的稳定通量为4 493.49 L·(m2·h)−1。在膜抗污染性能的测试中,本研究采用酵母菌(Zeta电位为−12.9 mV,平均粒径7 μm)模拟污水中活性污泥,配制的MLSS浓度为2 g·L−1。在处理污废水时,活性污泥的代谢产物在膜表面的黏附是导致过滤膜污染严重的主要因素之一[4]。酵母菌具有与活性污泥类似的特点如表面负电位性、粒径等,因而采用酵母菌替代活性污泥可以模拟膜在运行过程中的污染情况。实验将PPy10-PVDF/碳纤维膜用膜组件组装并作为阴极,膜的进出水的水头压差为66 cm(8.1 kPa)。将同面积的不锈钢网电极作为阳极,2个电极之间相对放置,且水平间距保持1 cm。阳极和阴极连接直流电源,输出电压控制在0.4 V。
MFC-电催化膜反应器的产能测试。在测试功率密度曲线和极化曲线时,先将阳极与阴极回路断开,保持开路2 h以上;随后将电阻箱连接到2侧电极上,并连接数字万用表(选择电压测量档位),通过变换不同的电阻值记录相应电压值,做出极化曲线和功率密度曲线。
MFC-电催化膜反应器的污染物降解测试。实验对反应器中COD(chemical oxygen demand,化学需氧量)的值进行了测定分析。每隔1 d取适量进水水样和出水水样,测定其相应的COD值并计算去除效率。此外,本研究还测量计算了MFC-电催化膜反应器在处理污水时的库仑效率,计算方法[10]如式(1)所示。
式中:ηCE代表库仑效率;Q输出代表反应器在运行时间t内产生的总电子数,C;Q消耗代表在运行时间t内降解去除的有机物中被完全氧化时产生的总电子数,C;I代表反应器中阴极和阳极短接时输出的电流,A;t代表运行时间,s;MCOD去除代表反应器在运行时间t内去除COD的摩尔数,mol。
-
对沉积在PVDF/碳纤维膜表面的PPy进行了红外光谱测试,结果如图2所示。在1 538 cm−1和1 468 cm−1附近出现的峰分别为吡咯环中C—C双键伸缩振动和C—C骨架上的不对称伸缩振动;1 650 cm−1处为吡咯环内NH2弯曲振动峰;3 350 cm−1处为N—H伸缩振动峰;2 460 cm−1处为C—N—C的伸缩振动峰;1 280 cm−1和1 021 cm−1处为聚吡咯环上C—H面内弯曲振动峰。同时,本研究对制备的材料进行了扫描电镜测试,结果如图3所示。由红外光谱测试和扫描电镜观察可知,经过0.8 V的恒电位沉积后,PPy已成功地沉积在光滑的PVDF/碳纤维膜表面。
-
阴极电极的电化学活性对MFC-电催化膜反应器的产能具有重要影响。高活性的阴极电极可以加速电子传递,并加快氧气与质子、电子在阴极介孔内的反应,从而有效提高MFC-电催化膜反应器的产电性能。
经过5、10和15 min的电氧化聚合制备的PPy沉积PVDF/碳纤维膜(分别用PPy5-PVDF/碳纤维膜,PPy10-PVDF/碳纤维膜和PPy15-PVDF/碳纤维膜表示),其氧化还原活性测试结果如图4所示。图4表明,PPy10-PVDF/碳纤维膜的氧化还原活性最佳。其氧化峰电位和还原峰电位分别出现在0.36 V和0.13 V附近。在PPy电氧化聚合过程中,电氧化聚合时间直接影响PPy在PVDF/碳纤维膜上的沉积量,最终影响PVDF/碳纤维膜的催化活性。在不同的聚合时间下,PPy在PVDF/碳纤维膜的沉积密度如表1所示。表1显示,在电氧化聚合初始阶段,随着PPy在PVDF/碳纤维膜表面的聚合沉积,PVDF/碳纤维膜的催化活性提高。但随着时间的延长,PPy在PVDF/碳纤维膜表面的沉积虽密度逐步变大,但PVDF/碳纤维膜的电化学活性并不是持续升高,在密度过高时其电催化活性反而下降,表明电氧化聚合时间过长导致PPy在PVDF/碳纤维膜表面密度过高,形成多层累积,反而导致PVDF/碳纤维膜活性降低。上述结果表明,PPy10-PVDF/碳纤维膜的电化学活性最高,其表面PPy的沉积密度为0.75 mg·cm−2。
此外,由图4可知,PPy10-PVDF/碳纤维膜的氧化电位出现在约0.34 V处,比PPy5-PVDF/碳纤维膜的氧化电位(约0.32 V)略高。但是,PPy10-PVDF/碳纤维膜的还原电位出现在约0.12 V,比PPy5-PVDF/碳纤维膜的还原电位(约0.16 V)低。这说明在MFC-电催化膜反应器中,在催化阴极还原反应后,在较低电位下即可实现PPy10-PVDF/碳纤维膜上催化活性的再生。
-
电催化膜抗污染通量的测试结果如图5所示。可以看出,在0.4 V·cm−1的电场环境下,PPy10-PVDF/碳纤维膜在运行55 min后,其通量为317 L·(m2·h)−1,比无电场下测试的通量值212 L·(m2·h)−1提高了约49.5%。实验结果表明,微电场环境可以有效减缓膜的污染程度,延长膜的使用周期。本研究通过组装MFC-电催化膜反应器,构建出过滤膜运行的微电场环境,利用微电场减缓PPy10-PVDF/碳纤维膜的污染程度,从而延长膜的使用周期。
在MFC-电催化膜反应器处理污水过程中,PPy10-PVDF/碳纤维膜的运行通量实测为18.7 L·(m2·h)−1,远低于其临界通量,说明PPy10-PVDF/碳纤维膜可以保持较长时间的稳定运行。
-
将PPy10-PVDF/碳纤维膜作为阴极膜在MFC-电催化膜反应器中进行污水处理。运行稳定后,反应器的产能效果(空白PVDF/碳纤维膜作为对照)如图6和图7所示。可以看出,采用空白PVDF/碳纤维膜作为MFC阴极兼催化膜构建MFC-电催化膜反应器,在处理污水过程中,该反应器产能最大功率密度约为99 mW·m−3;而采用PPy10-PVDF/碳纤维膜构建MFC-电催化膜反应器时,在处理污水时反应器产能最大功率密度达到约166 mW·m−3。
在阴极膜上沉积PPy后,MFC-电催化膜反应器在处理污水时其产能功率密度提高了约67%。经计算,采用PPy10-PVDF/碳纤维膜作阴极,MFC-电催化膜反应器的库仑效率为2.2%[10],与PVDF/碳纤维膜作阴极时的库伦效率1.5相比,提升了约50%。本实验结果与ZHANG等[10]的相比,产能效果略低。其原因在于:本研究是基于实际城镇污水水质进行的模拟产能测试,反应器中未添加任何离子盐类,电解质浓度较低,故污水的电导率低是限制本反应器产能的一个关键因素;另一方面,作为阴极的电催化膜表面有限的接触面积也是导致其与其他单独MFCs相比产能较低的原因之一。
-
在PPy10-PVDF/碳纤维膜作为阴极膜构建的MFC-电催化膜反应器中,反应器对污水中有机污染物的降解效果如图8所示。进水中的COD约在920~970 mg·L−1,经过MFC-电催化膜反应器处理(水力停留时间为6.7 h),在出水中检测到COD稳定在20~40 mg·L−1,反应器对污染物的去除率高达96%以上。这表明MFC-电催化膜反应器可将污水中有机污染物高效快速分解。
上述实验结果表明,在MFC-电催化膜反应器处理污水过程中,不仅处理效果高,膜污染程度大大减缓;而且在处理过程中还可以将污水中的能源转化回收,实现节能减排。因此,MFC-电催化膜反应器是一种高效环保的污水处理新技术。
-
1)聚吡咯(PPy)的沉积可有效提高PVDF/碳纤维膜的催化活性,在沉积密度为0.75 mg·cm−2时,PPy10-PVDF/碳纤维膜的催化活性最佳。
2)采用PPy10-PVDF/碳纤维膜构建的MFC-电催化膜反应器在污水处理过程中表现出高效的污染物去除效果和能源转化效率,并在降解过程中有效地减缓了膜污染,实现了水处理的节能减排。
MFC-电催化膜反应器中PPy-PVDF/碳纤维膜的污水处理性能
Performance of polypyrrole-PVDF/carbon fiber cloth composite membrane in a MFC-electrocatalytic membrane coupled reactor on wastewater treatment
-
摘要: 为解决膜分离技术在水处理中存在膜污染和高能耗的问题,通过电氧化聚合法将聚吡咯(polypyrrole,PPy)沉积在PVDF/碳纤维膜上,制备高活性的PPy-PVDF/碳纤维膜;研究不同沉积时间对电催化膜催化活性的影响及微电场环境对PPy-PVDF/碳纤维膜污染的影响;并构建MFC-电催化膜反应器,测试反应器在处理污水时的产能效果。结果表明,恒电位(0.8 V)聚合10 min时,PPy10-PVDF/碳纤维膜的催化活性最高,PPy的最佳沉积密度为0.75 mg·cm−2。抗污染通量测试结果表明,在0.4 V·cm−1的微电场下,PPy10-PVDF/碳纤维膜的稳定通量(317 L·(m2·h)−1)比无电场时(212 L·(m2·h)−1)提高了约49.5%,说明MFC-电催化膜反应器中的微电场可以有效减缓膜污染。在MFC-电催化膜处理污水的过程中,反应器对COD去除率高达96%以上;反应器产能最大功率密度为166 mW·m−3,与空白PVDF/碳纤维膜(产能密度为99 mW·m−3)相比提高了约67%。PPy10-PVDF/碳纤维膜在MFC-电催化膜反应器表现出较高的污染物去除率、能源回收效率及对膜污染的有效控制。Abstract: In order to solve the problems of membrane fouling and high energy consumption for membrane separation technology, through elctropolymerization of pyrrole monomer and deposition of polypyrrole (PPy) on polyvinylidene fluoride (PVDF)/carbon fiber cloth membrane, the high active PPy-PVDF/carbon fiber cloth composite membrane was prepared. The effect of deposition time on the catalytic activity of electrocatalytic membrane as well as the effect of micro-electric field on the fouling of PPy-PVDF/carbon fiber cloth composite membrane was studied. Then the as-prepared PPy-PVDF/carbon fiber cloth composite membrane was further used in microbial fuel cell (MFC)-electrocatalytic membrane coupled reactor to treat wastewater. The results showed the PPy10-PVDF/carbon fiber cloth composite membrane had the highest catalytic activity at the polymerization time of 10 min and the constant potential of 0.8 V, and the optimized deposition density of PPy was 0.75 mg·cm−2. The anti-fouling test of PPy10-PVDF/carbon cloth composite membrane indicated that the stable flux of the composite membrane was 317 L·(m2·h)−1 at a micro-electric field of −0.4 V·cm−1, which was 49.5% higher than that without electric field (212 L·(m2·h)−1). When MFC-electrocatalytic membrane coupled reactor was used to treat the wastewater, its chemical oxygen demand (COD) removal rate was above 96%, and its maximum power density was 166 mW·m−3, which was approximately 67% higher than that of blank PVDF/carbon cloth membrane (99 mW·m−3). The results indicated the PPy10-PVDF/carbon cloth composite membrane in MFC-electrocatalytic membrane coupled reactor showed an excellent performance in the aspects of contaminants removal, energy recovery and membrane fouling control.
-
Key words:
- polypyrrole /
- electrocatalytic membrane /
- microbial fuel cell /
- wastewater treatment
-
随着现代工业的迅猛发展,更多的工业废水和人工合成物质不断地流入水体,造成水体污染严重[1]。重金属是水源水和处理水中最重要的污染物之一[2],主要来自电镀、采矿、冶金、化工等工业,具有潜在的危害性,特别是汞、镉、铅等重金属具有显著的生物毒性[3]。如果未经处理或处理不彻底的废水渗入到自然环境中,对环境的污染是持久性的,它无法被降解和破坏,当水中的重金属达到一定含量时,将会破坏生态,毒害水体生物[4-5]。随着绿色环保的可持续发展战略的提出,重金属废水处理迫在眉睫[6]。目前,重金属废水的处理方法有沉淀法、电化学法、吸附法、膜分离法、离子交换法等[7]。在实际处理过程中,采用组合工艺对重金属废水进行处理,尽管最终可以使出水重金属浓度达标排放,但是处理成本较高,且不能回收产生的沉淀污泥。本文介绍的流化床结晶造粒技术具有传质速率高、占地面积小、不产生污泥、颗粒含水率低等优点,其相关概述见图1,涵盖了该技术的优良特性、影响因素和参数、应用领域及其优点,流化床结晶造粒技术在国内外已取得了成功探究和实际应用,它在重金属废水处理领域有着较好的应用前景。
1. 液固流化床结晶造粒技术的概述(Overview of Liquid-solid FBC and granulation technology)
1.1 液固流化床
流态化是一种固体颗粒与流体接触的方法。流体向上流经固体颗粒床,使固体颗粒具有流体性能,这种现象称为颗粒流态化[8]。当流体为液体时,称为液固流化床。
流态化过程的实现需要达到最小流化速度。最小流化速度指当流体通过颗粒床层时,随着流速的增加,颗粒由静止状态转为运动状态,当流体向上所产生的曳力等于颗粒床层的重力时,或当流体通过床层时的压力降刚好等于单位床截面上颗粒重量时,颗粒开始流态化,此时的流体表观线速度称为最小流化速度,或临界流态化速度[9]。
1.2 液固流化床结晶造粒
液固流化床结晶造粒是采用流态化原理强化结晶过程的一种技术。通过预先添加结晶载体,诱导异相形核,具有反应面积大,结晶效率高[10],结晶体含水率低,易于液固分离的特点。通过流化床结晶造粒回收利用水体中的重金属,是一个重要的应用领域。
流化床结晶造粒技术从废水中去除和回收重金属是在反应器底部填充载体颗粒,以一定的流速从流化床底部引入废水,使载体处于流化状态,同时向反应器内添加合适的沉淀药剂(Na2CO3、NaS等),其酸碱度调节剂一般采用NaOH、H2SO4等。沉淀药剂能使溶液达到特定过饱和状态,生成的不溶性物质(碳酸盐沉淀、硫化物沉淀、磷酸盐沉淀或氢氧化物沉淀)在载体上非均相结晶,如图2所示。随着结晶过程的进行,载体颗粒直径和重量不断增加,并逐渐沉降到反应器的底部。沉降到反应器底部的颗粒被定期回收,同时向反应器中添加新的载体种子,流化床反应器继续运行。
流化床结晶造粒技术是根据物质的溶度积原理来实现的,促使废水中的金属离子向难溶沉淀物方向进行结晶。溶度积的大小反映了物质的溶解能力,溶度积越小,就越难溶解。表1列出了常见重金属难溶盐的溶度积常数。
表 1 常见重金属难溶盐的溶度积Table 1. Solubility product of common heavy metal insoluble salt金属 Metals 沉淀物 Precipitate 溶度积常数Ksp 来源Source Ni NiCO3 1.40×10−7 [11] Ni(OH)2 5.50×10−16 [11] Cu CuCO3 1.40×10−10 [12] Cu(OH)2 4.80×10−20 [13] Cu2(OH)2CO3 5.99×10−35 [14-16] CuS 6.31×10−36 [17] Zn ZnCO3 1.46×10−10 [18] Zn5(CO3)2(OH)6 2.00×10−9 [19] Zn Zn(OH)2 3.00×10−17 [18] Pb PbCO3 7.41×10−14 [20] Pb(CO3)2(OH)2 1.58×10−19 [20] As As2S3Ca5(AsO4)3(OH) 4.00×10−29 [20] 9.10×10−39 [20] Ag Ag2CO3 7.94×10−12 [17] Mn MnCO3 2.50×10−11 [17] Mn(OH)2 2.00×10−13 [17] Ba Ba3(PO4)2 5.01×10−30 [17] Cd CdCO3 1.0×10−12 [17] Cd(OH)2 2.51×10−14 [17] Hg HgS 3.98×10−53 [17] 1.3 影响因素
(1)进水浓度及沉淀药剂
废水中金属离子的浓度和性质决定了所选择的沉淀药剂的种类和投加量。一般来说,废水中金属离子浓度较低时,相应的沉淀药剂的投加量较少,废水中金属粒子浓度较高时,沉淀药剂的投加量就相应成比例增加。在现有的研究中,主要根据离子的不同来选择沉淀药剂的种类。例如,若要捕集废水中的镍离子,会选择Na2CO3为沉淀药剂,得到碳酸镍的晶体颗粒[21-22]。若捕集废水中的砷,则采用NaS作为沉淀剂,得到AsS或者As2S3的结晶[23]。但采用流化床结晶造粒捕集回收重金属离子大部分情况下采用的沉淀剂为Na2CO3。因为流化床结晶造粒捕集到的金属碳酸盐是纯净的,可以通过在强酸中溶解颗粒来重复利用,碳酸盐以二氧化碳的形式逸出,产生一种纯净的浓缩金属溶液,而载体颗粒砂可以再次用于反应器中,纯浓缩的金属溶液可在金属表面处理、化学和金属加工行业中重复使用[21]。从经济和环境的角度来看,碳酸盐金属结晶时最具有吸引力的,因为苏打是一种相对便宜的化学品,并且将捕集颗粒溶解在强酸中进行金属回收再利用是容易且经济的。
(2)载体选择
选择载体的基本条件是,流化性能强、诱导沉淀反应能力强、与沉淀物结合性好、沉降性能好、性质稳定、比重大、无磁性、无腐蚀性、具有经济性。流化床结晶造粒捕集重金属离子中常常采用石英砂作为载体,少部分应用研究采用沉淀目标物晶种为载体。对于载体尺寸的选择为毫米级,常用粒径一般在0.1—0.5 mm之间[24-28]。为保证加入的载体满足工艺要求,加入前需要对载体进行洗涤和水力筛选,达到去除载体中的污染物和过于细小的颗粒。
(3)水力条件
流化床中的水力条件需要兼顾载体流态化、沉淀结晶效率以及载体和沉淀物不会破裂等因素。适当的水力条件可削减结晶颗粒物晶界膜的厚度,从而有利于结晶反应的进行;过大的水力作用会导致载体颗粒物磨损或破碎而导致细小晶体随出水流出,从而降低流化床结晶造粒的废水处理效果。
(4)进药比
进药比指沉淀药剂与目标金属离子的物质的量比。其值决定了反应体系的溶液过饱和度,进药比的适当增加,结晶反应过程的推动力变大,从而可以促使处理废水的效率提高,但过大的进药比会造成药剂利用率的下降、工艺成本的升高。针对不同离子有最佳的摩尔比范围,例如,镍离子捕集中,进药比的[CO32−]/[Ni2+]比值为2时能得到较好的去除效果[22]。铜离子捕集中,进药比[CO32−]/[Cu2+]的比值为1—2时效果较好[29-31]。
2. 研究与应用(Research and Application)
Ni、Cu、Zn、Pb、As、Ag、Mn、Ba、Cd和Hg是重金属废水处理中受关注度较高的主要微量元素。流化床结晶造粒技术处理重金属废水相比较于传统的化学沉淀技术具有显著的优势。传统的沉淀法通过控制特定的工艺条件和系统设置,得到含水率为60%—80%的污泥。流化床结晶造粒技术捕集回收的颗粒是纯净的,含水量仅为1%—5%的结晶颗粒,含水率低,容易固液分离,颗粒可回收利用,且处理后的废水达到排放标准,节省了大量的废物处理成本。这些发现完全符合国家倡导的可持续发展和循环经济政策。表2显示了流化床结晶造粒处理重金属废水的研究报告。
表 2 流化床结晶造粒技术回收重金属的应用Table 2. Application of fluidized bed crystallization granulation technology for heavy metal recovery.金属类型Type of metal 反应器和载体特性Reactor and carrier properties 操作条件Operational conditions 性能Performance 来源Source Ni D: 2.1 cm,H: 240 cmCarrier: SiO2DC: 0.4—0.5 mm Pre: Na2CO3,pH: 10FH: 0.1 m Cout Ni2+: 0.5 mg·L−1ECS: 1.0 mm [21] Ni D: 2.5 cm,H: 100 cmCarrier: SiO2 and CaCO3DC: 0.21—0.30 mm Cin Ni2+: 150 mg·L−1Pre: Na2CO3,pH: 9.8CO3:Ni= 2:1FH: 0.6 mQin: 3.6 L·h−1 Removal rate: 99.6% [22] Ni D: 2.5 cm,H: 160 cmCarrier: SiO2DC: 0.25 mm Cin Ni2+: 100 mg·L−1Pre: Na2CO3,pH: 9.68CO3:Ni= 2:1FH: 0.2 mQin: 1 mL·min−1 Removal rate: 99% [34] Ni DL: 2 cm,HL: 80 cmDU: 4 cmHU: 20 cm Cin Ni2+: 300 mg·L−1Pre: Na2CO3,pH: 10.8CO3:Ni= 3:1 Removal rate: 97.08%ECS: 0.25—2 mm [11] Ni HL: 80 cmCarrier: NiOOH Cin Ni2+: 1470 mg·L−1Pre: Na2CO3,pH: 9.68CO3:Ni= 1:1FH: 0.5 mVin: 42.9 m·h−1 Removal rate: 99.6%Cout Ni2+: 2.31 mg·L−1 [36] Cu D: 3 cm,H: 120 cmCarrier: SiO2DC: 0.25—0.42 mm Cin Cu2+: 10 mg·L−1Pre: Na2CO3,CO3:Cu= 2:1FH: 0.45 mVin: 25 m·h−1 Removal rate: 96% [29] Cu DL: 3 cm,HL: 50 cmDU: 9 cm,HU: 10 cmCarrier: SiO2DC: 0.2—0.3 mm Cin Cu2+: 100 mg·L−1Precipitant: Na2CO3CO3:Cu= 2:1Vin: 13 m·h−1HRT: 30 min Removal rate: 90% [30] Cu HL: 80 cmCarrier: CuCO3 Cin Cu2+: 1600 mg·L−1Pre: Na2CO3,pH: 6.0—8.0CO3:Cu= 3:1FH : 0.2mHRT: 16.7 min Removal rate: 95% [31] Cu DL: 2 cm,HL: 80 cmDU: 4 cm,HU: 15 cmV: 0.55 L Cin Cu2+: 400 mg·L−1Pre: Na2CO3,pH: 6.0—8.0CO3:Cu= 3:1Qin: 10 mL·min−1 Removal rate: 92% [37] Zn Carrier: SiO2 Cin Zn2+: 45 mg·L−1Pre: Na2CO3,pH: 7.5—8.0FH : 2 mVin: 40 m·h−1 Removal rate: 95%ECS: 1—3 mmMc: 5% [39] Zn DL: 3 cm,HL: 50 cmDU: 9 cm,HU: 10 cmV: 0.55 LCarrier: SiO2DC: 0.2—0.3 mm Cin Zn2+: 20 mg·L−1Pre: Na2S,pH: 9.0FH: 0.1 mVin: 15 m·h−1HRT: 30 min Removal rate: 95%Cout Zn2+: 1.0 mg·L−1 [40] Zn DL: 2 cm,HL: 80 cmDU: 4 cm,HU: 20 cm Cin Zn2+: 500 mg·L−1Pre: Na2CO3,pH: 7.2CO3:Zn= 1.2:1Qin: 1.5 L·h−1 Removal rate: 97.56%Cout Zn2+: 19 mg·L−1ECS: 0.5—1.0 mm [19] Pb D: 2.5 cm,H: 66 cmCarrier: SiO2DC: 0.2—0.3 mm Cin Pb2+: 40 mg·L−1Pre: Na2CO3,pH: 8—9CO3:Pb= 3:1Vin: 22 m·h−1HRT: 380 min Removal rate: 99%Cout Pb2+: 1 mg·L−1 [42] Pb D: 5.2 cm,H: 133 cmV: 1.35 LCarrier: PbCO3DC: 0.053—0.062 mm Cin Pb2+: 200 mg·L−1Pre: Na2CO3,pH: 8—9CO3:Pb= 3:1Qin: 6 mL·min−1 Removal rate: 98% [43] Pb DL: 2 cm,HL: 80 cmDU: 4 cm,HU: 20 cmV: 0.55 L Cin Pb2+: 200 mg·L−1Pre: Na2CO3,pH: 7CO3:Pb= 1.2:1 Cout Pb2+: 1 mg·L−1 [20] As D: 2 cm,H: 160 cmCarrier: SiO2DC: 0.2—0.5 mm Cin As: 611 mg·L−1Pre: Na2S,pH: 1.0S:As= 2:1Qin: 1.62 L·h−1 Cout As: 7.2 mg·L−1ECS: 1—3 mm [23] As D: 2 cm,H: 185 cmV: 0.66 LCarrier: SiO2 Cin As: 200 mg·L−1Pre: Na2S,pH: 2Dosage C: 400 gS:As= 2.2:1 Cout As: 0.5 mg·L−1 [44] Ag D: 1.8 cm,H: 150 cmCarrier: SiO2DC: 0.2—0.3 mm Cin Ag: 1080 mg·L−1Pre: Na2CO3,pH: 10.2CO3:Ag= 3:1 Cout As: 10 mg·L−1ECS: 0.6 mm [45] Mn D: 10 cm,Carrier: Manganese sandDC: 0.4 mm Cin Mn: 8.5 mg·L−1Pre: Na2CO3,pH: 9.5Vin: 25 m·h−1 Cout Mn: 0.5 mg·L−1 [46] Ba D: 4 cm,H: 100 cm pH: 8.8Ba:P= 1:1Qin: 2.88 L·h−1 Removal rate: 98%ECS: 0.36 mm [47] Cd D: 2 cm,H: 240 cmCarrier: SiO2DC: 0.2—0.3 mm Cin Cd: 2080 mg·L−1Pre: Na2CO3。pH: 7.9CO3:Cd= 1.6:1FH: 1 m Cout Cd: 1 mg·L−1ECS: 1 mm [48] Hg Carrier: SiO2DC: 0.1—0.3 mm Cin Hg: 20 mg·L−1Pre: Na2S,pH: 4—5 Cout Hg: 0.002 mg·L−1ECS: 1—3 mm [24] Polymetallic D: 14.5 cm,H: 550 cmCarrier: SiO2 Cin Ni: 510 mg·L−1Cin Cd: 640 mg·L−1Cin Zn: 1900 mg·L−1pH: 7.2Qin: 32 L·h−1 Removal rate: 99%、92%、97%Cout Ni: 7 mg·L−1Cout Cd: 53 mg·L−1Cout Zn: 50 mg·L−1 [25] Polymetallic D: 10 cm,H: 220 cmCarrier: SiO2DC: 0.15—0.30 mm Cin: 20 mg·L−1Pre: Na2CO3,pH: 9.0FH: 0.4 m Removal rate: 95% [18] Polymetallic D: 10 cm,H: 90 cmCarrier: SiO2DC: 0.25—0.42 mm Cin Cu: 250 mg·L−1Cin Pb: 130 mg·L−1Cin Ni: 130 mg·L−1Pre: Na2CO3,pH: 8.7—9.1FH: 0.3 m Removal rate: 97%、96%、93%Cout Cu: 0.5 mg·L−1Cout Pb: 0.5 mg·L−1Cout Ni: 0.9 mg·L−1 [26] Polymetallic Carrier: SiO2DC: 0.25 mm Pre: Na2CO3CO3: Metal= 1.2:1Qin: 25 L·h−1HRT: 1.8 min Removal rate: 95% [27] Polymetallic D: 5 cm,H: 200 cmCarrier: CaCO3DC: 0.12—0.18 mm Cin Fe: 0.94 mg·L−1Cin Mn: 1.95 mg·L−1Pre: NaOH,pH: 9.6FH: 0.5 m Cout Fe: 0.246 mg·L−1Cout Mn: 0.061 mg·L−1 [28] D: Reactor diameter; DL: Lower diameter; DU: Upper diameter; H: Total height of reactor; HL: Lower height; HU: Upper height; V: Reactor volume; DC: Carrier particle size; Dosage C: Carrier dosage; Cin: Influent concentration; Cout: Effluent concentration; FH: Fill Height; Pre: Precipitant; HRT: Hydraulic Retention Time; A:B: The molar ratio of A and B; Vin: Inlet flow rate; Qin: Into the liquid flow; ECS: Carrier excluded particle size; Mc: Moisture content. 2.1 镍
1980年,荷兰的DHV就研发了一种球团反应器中结晶系统,用于从化工、金属加工和电镀行业的几乎所有类型的废水中回收重金属。1987年,在重金属回收领域的第一个全规模的镍回收工厂已投入运行,反应器直径为0.6 m,反应器系统结构紧凑,投资成本相对较低,结晶过程稳定,操作容易[32]。Wilms等[21]利用流化床反应器结晶碳酸镍回收废镀液中的镍,载体采用石英砂,填充高度为1 m。沉淀药剂采用浓度为1.06 g·L−1的碳酸钠溶液,合成镍废水浓度为1350 mg·L−1。结果表明,出水镍浓度低于0.5 mg·L−1,得到直径约为1 mm的碳酸氢镍颗粒,通过将颗粒溶解在HCl或H2SO4中,获得氯化镍的纯溶液,说明了流化床结晶造粒技术处理镍废水是有效的。
Guillard等[22]研究了流化床中碳酸镍的沉淀。实验装置如图3所示,反应器内载体采用粒径为0.21—0.30 mm的白色石英砂,填充高度0.6 m。沉淀剂为3.6 g·L−1的无水碳酸钠溶液。合成废水的镍浓度为50—150 mg·L−1,进水流量为3.6 L·h−1,沉淀剂流量为1.08 L·h−1,温度为24 ℃,当反应pH为9.8,[CO32−]/[Ni2+]物质的量比为2∶1和4∶1时,合成废水镍的去除率分别为99.6%和97.2%。在前述研究的基础上,Guillard等[33]研究了去除镍的最佳工艺并讨论了系统参数对去除效率的影响程度,当反应pH 9.97,[CO32−]/[Ni2+]物质的量比为3.5,废水镍浓度为69.5 mg·L−1,进水泵转速为43.9 r·min−1时,出水中降至1.37 mg·L−1,镍的去除率达到98%。该研究中[CO32−]/[Ni2+]物质的量比、酸碱度、进水镍浓度具有最显著的影响,再循环比和进料点数目对工艺效率的影响最小。
图 3 流化床反应器示意图[22]Figure 3. Schematic representation of the fluidized bed reactorCostodes等[34]研究了进料点数量变化对结晶造粒过程的影响,对比了2个进药口与6个进药口两系统的情况,研究结果表明,2个进药口系统在床层中存在着底部高、顶部低的过饱和再分配不均的现象,导致了均匀形核导致细粒的过量产生。用6个进药口系统得到了更均匀的过饱和再分配,可有效控制和降低局部过饱和水平,提高除镍效率。并且前者结晶是通过均相成核进行,后者由于过饱和的均匀分布,镍的去除通过异相成核到硅砂上生长聚集。Salcedo等[35]研究了在流化床中均相结晶回收合成废水中的镍,通过改变进水镍浓度、进药比和沉淀剂的酸碱度,当进水镍浓度为300 mg·L−1,[CO32−]/[Ni2+]物质的量比为1.5时,pH 10.8时,镍离子去除率为84.93%。在合成瓦槽废水中添加钙离子提高了造粒效率,但降低了合成废水中镍的去除率。钙离子的存在可能已经在碳酸盐的反应中与镍竞争,发生CaCO3和Ca(OH)2的形成,形成的颗粒很脆,当它们相互碰撞时,就会发生磨损。因此,随着钙浓度的增加,去除效率降低。
Ballesteros等[11]采用流化床均相造粒去除镍,通过测定不同的进水镍浓度、进药比和pH,确定了最佳工艺条件:镍浓度为200 mg·L−1,[CO32−]/[Ni2+]物质的量比为2.0,pH 10.7,镍去除率为98.80%,制粒效率为97.80%,但由于反应时间的延长、流化引起的粉末碰撞等因素,形成的颗粒团聚程度较高,通过能谱分析结果碳、氧、镍的原子百分比约为12%、35%、50%,与碳酸镍一致。在卢明俊等[36]的专利中,以流化床均相结晶技术合成碱式氧化镍(NiOOH)结晶物,将含镍溶液与氧化药剂引入反应器混合以产生碱式氧化镍颗粒晶体,调整水质条件包括pH、截面负荷、水体停留时间,所获得的处理效率与结晶颗粒纯度高。
流化床结晶造粒工艺处理镍废水可同时实现废水中镍的去除和回收,已有良好的应用实例,因此可认为该方法在镍废水处理领域极具研究和应用价值。对于镍废水的处理,下一步可着重对实际废水中其他成分对结晶过程的影响以及如何减少不利因素等方面进行系统地研究。
2.2 铜
Lee等[29]研究了含铜废水在砂粒表面的沉淀,考察了pH值、进药比、水力负荷和化学试剂类型等参数的影响。随着水力负荷的增大,流化床中颗粒受到相互碰撞会在溶液中形成微粒,从而导致铜的去除量减小。最佳工艺条件下:进水铜浓度为10 mg·L−1,pH 8.4—8.6,[CO32−]/[Cu2+]的物质的量比为2,水力负荷不超过25 m·h−1,铜去除率达到96%,结晶产物结构致密,具有一定的强度,且主要构成元素为铜和氧,其中铜约占总量的50%,适于回收。
阎中等[30]研究了诱导结晶处理含铜废水,在最佳工艺条件下,进药比为1—2,水力负荷为13 m·h−1,水力停留时间为30 min,连续运行145 d,处理浓度为20 mg·L−1、50 mg·L−1、100 mg·L−1的含铜废水,去除率均可以达到90%以上,去除和回收铜总计212 g,结晶颗粒为碱式碳酸铜。
卢明俊等[31]的专利中提出了一种以流化床结晶技术合成均质碱式碳酸铜及氧化铜结晶物,废水初始铜浓度为1300 mg·L−1,[CO32−]/[Cu2+]物质的量比为2,水力停留时间为16.7 min,pH 6—8,得到碱式碳酸铜颗粒;当反应pH>8时,可获得氧化铜颗粒。
Lertratwattana等[37]通过流化床均相结晶从冶金工业废水中去除和回收铜,废水铜浓度为400 mg·L−1时,在双酸碱度操作模式下,pH 6—8,[CO32−]/[Cu2+]物质的量比为1.5,进水流速为0.6 L·h−1,铜去除率为92%,颗粒回收率为96.3%。对球状晶体产物的表征确定了孔雀石是唯一的晶相,氢氧化铜沉淀是孔雀石的主要晶相组成。有专利[38]提到一种结晶铜的硫化物的方法和设备,使用流化床反应器将铜结晶成硫化物,达到去除污水中的铜的目的,同时使材料能够再循环。药剂采用硫化钙(CaS)或者九水合硫化钠(Na2S·6H2O),最终得到硫化铜结晶。
在流化床结晶造粒工艺下,含铜废水可成功从废水中结晶为碱式碳酸盐、氧化物及硫化物,并且废水中铜的去除率较高,具有易控制、效率高、出水水质好、无二次污染等优点,实现了铜废水的高效处理。
2.3 锌
Jansen[39]提出了一种从废水中去除锌的方法,在反应器载体上结晶为相应的重金属碳酸盐沉淀。圆柱形反应器中采用砂粒作为结晶载体,沉淀药剂为碱金属碳酸盐或重碳酸盐(例如:Na2CO3、NaHCO3、K2CO3、KHCO3)。对于锌浓度为45 mg·L−1的废水,载体填料高度为2 m,进水流速为40 m·h−1,pH 7.5—8时,锌去除率可达到95%。工艺取出的碳酸盐颗粒(粒径约为1—3 mm)含水率低于0.5%,非常适用于电镀工艺的废水处理。
杨艳等[40]研究了诱导结晶处理含锌废水,对进药比、进水pH、等工艺参数进行了讨论,对不同浓度的进水进行了对比试验。得到了最佳工艺条件:沉淀药剂为硫化钠,废水锌浓度为80—100 mg·L−1,进药比[S2−]/[Zn2+]为1—2,pH 9,水力负荷15 m·h−1,水力停留时间30 min,出水含锌量为1.0 mg·L−1左右,去除率达到95%。
Udomkitthaweewat等[19]研究流化床造粒工艺去除螺杆生产废水中的锌。不添加载体,沉淀药剂为Na2CO3,进水锌浓度为500 mg·L−1,进水流量和药剂流量为1.5 L·h−1,[CO32−]/[Zn2+]物质的量比为1.2,pH 7.2,出水锌浓度为19 mg·L−1,锌去除效率为97.56%,结晶率为93.39%。
专利[41]提出了一种采用流化床结晶技术合成均质含锌结晶物的方法,当锌废水的浓度为100 mg·L−1,[CO32−]/[Zn2+]物质的量比为1.2,反应pH 8,停留时间为10—50 min时,工艺除锌效率为99.9%,出水的锌浓度为0.15 mg·L−1。
2.4 铅
Chen等[42]在流化床反应器中结晶去除合成废水中的铅。最佳工艺条件:载体为白色石英砂,填充高度为反应器总高度的0.25—0.3,沉淀剂为Na2CO3,进水铅浓度为40 mg·L−1,pH 8—9,进水[CO32−]/[Pb2+]物质的量比为3:1,进水流速小于22 m·h−1,反应器运行380 min时,出水铅浓度为1 mg·L−1,铅去除率达到99%。
Luna等[43]用结晶法在流化床反应器中去除和回收铅。证明了流化床反应器结晶过程去除和回收合成废水中铅的潜力,并且确定了流化床中种子结晶可以产生较高的铅转化效率。载体采用粒径为0.053—0.062 mm的PbCO3颗粒,沉淀剂为Na2CO3,废水铅浓度为200 mg·L−1,pH 8—9,[CO32−]/[Pb2+]物质的量比为3,进水和沉淀药剂的流量为0.36 L·h−1,再循环流量为11.1 L·h−1,采用2.5 g种子晶粒,铅去除率达到98%。
Chen等[20]研究了以硅砂为种子的流化床结晶工艺和无载体的流化床均相结晶工艺对含铅废水的处理效果。在不同的pH条件下,两种晶相(PbCO3和Pb3(CO3)2(OH)2)的碳酸铅被回收,其中均相结晶颗粒尺寸为100 μm,表明通过流化床均相结晶去除铅是可行的。
2.5 砷
Lee等[23]的专利中通过使用填充载体流化床的反应器从水中去除砷。沉淀剂采用硫化钠溶液。进水砷浓度为611 mg·L−1,进水流量为0.3 L·h−1,沉淀药剂流量为1.6 L·h−1,进药比为2,pH 1,结晶率为93%,反应器内排出橙色晶体(雄黄AsS和雌黄As2S3的混合物)直径为1—3 mm,处理出水砷浓度为7.2 mg·L−1,经过超滤系统后砷浓度为0.5 mg·L−1。
Huang等[44]研究了流化床结晶法处理高浓度含砷废水。实验装置如图4所示,载体为硅砂。沉淀药剂为硫化钠(Na2S)和亚砷酸钠(NaAsO2),对进药比、pH和进水砷浓度进行了变量实验,硫化物投加量和操作pH值是确定出水残余As浓度的两个最重要的参数,实验结果表明满足砷排放条件的最佳pH 2,进药比为2.2,反应器出水中的砷浓度小于0.5 mg·L−1。
图 4 FBC处理高浓度砷废水工艺流程图[44]Figure 4. Diagram of FBC process for the treatment of wastewater containing high-strength As2.6 其他金属
Wilms等[45]以石英砂为载体在流化床反应器中结晶碳酸银,在最佳工艺条件下:石英砂粒径为0.2—0.3 mm,填充高度为0.6 m,沉淀药剂为Na2CO3,[CO32−]/[Ag+]物质的量比为3,水力负荷为45 m·h−1,出水pH 10.2,出水中的银浓度低于8 mg·L−1,排出颗粒为Ag2CO3,粒径为0.6 mm,质量分数大于99%,研究表明,流化床结晶造粒捕集回收银是从废水中回收银的经典方法的一种有价值的替代方法。
有一篇专利[46]提出了一种流化床结晶回收锰的方法。可用于工业废水,特别是含有高浓度溶解性锰的水的处理。载体材料采用锰砂(也可采用粒径为0.1—5.0 mm的粒状物质:砂、蒽石、活性炭、碳化物、树脂等),填充高度优选1—3 m,药剂采用氢氧化钠、碳酸钠等,反应器设置多个进药口。原水溶解锰浓度为8.5 mg·L−1,pH 9.5,进水速度为25 m·h−1,处理水锰浓度为0.5 mg·L−1。
Su等[47]采用流化床结晶法回收钡,研究了流体上升速度、载体加入量、载体粒度等工艺条件对钡盐晶体生长的影响。当上升流速为2.8 L·h−1,进药比为1.0,pH 8.4—8.8时,钡的去除率为98%,回收得到平均粒径为0.36 mm的颗粒。XRD结果表明,在pH小于10时,结晶产物为BaHPO4以及微量BaO,在pH为11时,结晶产物为Ba3(PO4)2。
Dotremont等[48]通过在流化床反应器内研究了碳酸镉结晶的最佳条件,载体石英砂采用粒径为0.2—0.3 mm,填充高度为1 m。当[CO32−]/[Cd2+]物质的量比为1.6,pH 7.9时,处理镉浓度为1120 mg·L−1的合成废水,出水镉浓度为1 mg·L−1,捕集到的颗粒为CdCO3和少量Cd(OH)2的混合物,粒径为1 mm,溶解于强酸可得到镉离子浓溶液,进行回收利用。
Janssen[24]的专利中研究了从废水中去除汞金属的方法。载体采用粒径为0.1—0.3 mm的沙子,沉淀药剂可用碱金属硫化物(例如Na2S、K2S)或者碱金属硫氢化物(例如HS、KHS)或者硫化铵或硫化亚铁。pH 4—5,处理Hg浓度为5—20 mg·L−1的废水,出水Hg浓度为0.020—0.055 mg·L−1,经过滤后Hg浓度为0.002 mg·L−1,工艺结晶产物为粒径1—3 mm的硫化物颗粒。
从采用流化床结晶造粒处理镍、铜废水及其它各类单一金属废水综合可以得知,该技术处理镍、铜废水方面已被证实了长期稳定性,但在锌、铅、砷等金属方面的研究只是进行了一些可行性的探究,需要进行深入的探讨和优化工艺参数。
2.7 多金属复合结晶
流化床结晶造粒工艺处理单一重金属废水取得了良好的效果,为了考察处理多种重金属废水的可行性,学者们做了大量的研究,Nielsen等[25]利用流化床反应器去除烟气脱硫废水中的重金属,研究表明流化床结晶造粒技术已被证明能够处理工业废水和地下水中的几种溶解重金属,载体颗粒为石英砂,沉淀药剂为KMnO4,进水镍、镉、锌浓度分别为510 、640、1900 mg·L−1,当废水流量为32 L·h−1,pH 7.2时,出水镍、镉、锌浓度分别为7 、53 、50 mg·L−1,镍、镉、锌的回收率分别为99%、92%、97%。产生的致密颗粒密度为2.5—3.0 kg·L−1,人工脱水后含水量低于20%。
Zhou等[18]开发了一种去除工业废水中重金属的新工艺。串联两个相同规模的流化床反应器进行实验,载体采用粒径为0.15—0.30 mm的沙子,填充高度为0.4 m,沉淀剂Na2CO3,重金属废水为铜、镍、锌的合成废水,当pH 9—9.1,废水中每种重金属离子浓度为10 mg·L−1和20 mg·L−1时,去除率达到92%和95%;当反应pH大于8.7时,92.4%以上的沉淀为更加不溶于水的氢氧化物。
Lee等[26]采用顺序流化床反应器去除合成废水中的重金属,对比于单个流化床反应器,顺序式流化床反应器的重金属去除效率和进水金属浓度限值均占优势。如图5所示,载体采用粒径为0.25—0.42 mm的石英砂,填充高度为0.3 m。
图 5 顺序流化床实验装置示意图[26]Figure 5. Schematic diagram of sequential fluidized bed experimental device合成废水中Cu浓度为250 mg·L−1、Pb浓度为130 mg·L−1、Ni浓度为130 mg·L−1。当[CO32−]/[Cu2+]=1.5、[CO32−]/[Pb2+]=3、[CO32−]/[Ni2+]=3时,三者的去除率分别为97%、96%、93%。经滤纸过滤后Cu浓度几乎为0 mg·L−1、Pb浓度为0.3 mg·L−1、Ni浓度为0.8 mg·L−1。结晶产物每颗砂中金属体量约为1.16 g。
孙杰等[27]研究了诱导结晶新工艺处理重金属废水,考察了不同浓度的重金属废水的处理情况,当进水流量为25 L·h−1,进药流量为4 L·h−1,水力停留时间为1.8 min,进药比为1.2:1时,沉积在硅砂表面的重金属的去除率最高可达95%,对反应饱和后的硅砂可采取加酸溶解回收重金属会采用水泥固化硅砂的方法,从而达到对重金属废水的最终无害化处理。
唐章程等[28]通过中试实验考察了结晶造粒流化床技术对水中铁、锰的同步去除效果及影响因素,确定了相关工艺条件。实验装置如图6,载体为方解石,填充高度为0.5 m,进水铁浓度为0.87—0.94 mg·L−1,锰浓度为1.86—1.95 mg·L−1,pH 9.6时,出水中锰浓度降低至0.061 mg·L−1,铁浓度为0.246 mg·L−1,结晶颗粒物中铁和锰分别以FeOOH和Mn3O4、MnO2形态存在,所占比例分别为50.14%、49.86%。
图 6 实验装置示意图[28]Figure 6. Schematic diagram of experimental device3. 结论及展望(Conclusion and outlook)
虽然目前研究中的数据大部分处于实验研究阶段,但在荷兰、中国台湾等发展基础较深厚的地区已经得到了应用。这已经充分说明流化床结晶造粒工业应用的可行性和具有良好的发展前景。这些综合的信息可以帮助学者们进行进一步的探索研究。重金属废水经流化床结晶造粒技术处理后,重金属离子去除率较高,处理后的废水可进行标准化排放,且系统不产生污泥。金属包覆颗粒含水率低,且结构密实,易溶解于强酸,可重新投入工业使用。由所综述的综合文献可知,研究中的流化床反应器内径由2—60 cm,高度由0.6—5.5 m,可处理废水浓度由5—1900 mg·L−1,既能够处理单金属废水,也可以处理多金属混合废水,采用流化床结晶造粒工艺去除重金属是一种回收金属、实现资源化利用的好方法。
尽管该技术已得到了令人鼓舞的结果,但仍需要进行更多的研究来解决文献中的一些空白和相关问题:
(1)液固流态化的实现很大程度上依赖于以往的经验方法。众所周知,流化床反应器的操作很复杂,而且针对于不同的水质,需要灵活调节操作参数,因此,使用其处理重金属废水是具有挑战性的。已有的研究大多报道了处理效果以及一些参数对处理效果的影响。但是基于流态化模型的理论研究不多,在此基础上,还需要对流化床反应器在废水处理中的工艺优化进行进一步的理论研究。
(2)从实验室小规模的研究转型至实际应用的大装置,该过程药剂的使用量和能耗不容易被接受。而且还应考虑流化床反应器的扩大设计以便于使其得到实际应用。虽然已有部分大型设备得到了应用,但是其工艺能耗等方面还需要改进。例如:在颗粒排出方面,装置的自动化程度还需要进行优化。
(3)处理每种金属离子的反应条件不相同,对于不同的工业废水需要进行不同处理研究,从实验室的探索研究,到中试试验,再进行工业化处理,最后投入到工业生产中。在这个长期的研究过程中需要科研工作者克服各种困难,不断前进。
从开始应用到现在,该技术研究的仍然火热。近年来,人们对这一课题的兴趣与日俱增,很明显,流化床结晶造粒技术在重金属废水处理中能够得到充分的发挥使用。总体而言,该技术具有改善工艺性能和降低各种重金属废水处理的成本。若处理得当,在解决实际排放问题的同时还能够实现废水资源化应用。因此,采用流化床结晶造粒技术处理重金属废水的规模化研究具有巨大的发展空间和应用前景。
-
表 1 不同电氧化聚合时间下PPy在PVDF/碳纤维膜的沉积密度
Table 1. Deposition densities of PPy on PVDF/carbon fiber cloth membrane at different electro-oxidative polymerization time
聚合时间/min 沉积密度/(mg·cm−2) 标准偏差 5 0.24 5.7 10 0.75 4.2 15 0.91 7.8 -
[1] 陈福泰, 范正虹, 黄霞. 膜生物反应器在全球的市场现状与工程应用[J]. 中国给水排水, 2008, 24(8): 14-18. doi: 10.3321/j.issn:1000-4602.2008.08.004 [2] 尹星, 吴志超, 王志伟, 等. MBR-纳滤组合工艺在生活污水和大型超市废水处理中的研究[J]. 环境工程学报, 2010, 4(1): 120-124. [3] LE-CLECH P. Membrane bioreactors and their uses in wastewater treatments[J]. Applied Microbiology and Biotechnology, 2010, 88(6): 1253-1260. doi: 10.1007/s00253-010-2885-8 [4] 孟凡刚. 膜生物反应器膜污染行为的识别与表征[D]. 大连: 大连理工大学, 2007. [5] MENG F, CHAE S, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512. doi: 10.1016/j.watres.2008.12.044 [6] ZHANG J, WANG Z, WANG Q, et al. Comparison of antifouling behaviours of modified PVDF membranes by TiO2 sols with different nanoparticle size: Implications of casting solution stability[J]. Journal of Membrane Science, 2017, 525: 378-386. doi: 10.1016/j.memsci.2016.12.021 [7] ZENG L, LI X, SHI Y, et al. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin[J]. Biosensors and Bioelectronics, 2017, 91(1): 367-373. [8] GE Z, LI J, XIAO L, et al. Recovery of electrical energy in microbial fuel cells: Brief review[J]. Environmental Science & Technology Letters, 2013, 1(2): 137-141. [9] OU S, KASHIMA H, AARON D, et al. Multi-variable mathematical models for the air-cathode microbial fuel cell system[J]. Journal of Power Sources, 2016, 314(1): 49-57. [10] ZHANG F, GE Z, GRIMAUD J, et al. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility[J]. Environmental Science & Technology, 2013, 47(9): 4941-4948. [11] GE Z, HE Z. Long-term performance of a 200 L modularized microbial fuel cell system treating municipal wastewater: Treatment, energy, and cost[J]. Environmental Science: Water Research & Technology, 2016, 2(2): 274-281. [12] ZHANG F, BRASTAD K, HE Z. Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation[J]. Environmental Science & Technology, 2011, 45(15): 6690-6696. [13] SU X, TIAN Y, SUN Z, LU Y, et al. Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling[J]. Biosensors & Bioelectronics, 2013, 49(22): 92-98. [14] ZHANG G, ZHANG H, MA Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation[J]. Enzyme and Microbial Technology, 2014, 60(1): 56-65. [15] LI Y, LIU L, LIU J, et al. PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (alizarin red’s) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system[J]. Desalination, 2014, 349: 94-101. doi: 10.1016/j.desal.2014.06.027 [16] MAHMOUD M, GADALLAH T, ELKHATIB K, et al. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications[J]. Bioresource Technology, 2011, 102(22): 10459-10464. doi: 10.1016/j.biortech.2011.08.123 [17] 杨改秀, 孔晓英, 孙永明, 等. 微生物燃料电池非生物阴极催化剂的研究进展[J]. 应用化学, 2012, 29(2): 123-128. -