-
人类生活过程中产生的污水,是水体的主要污染源之一,其特点是含有大量的氮、磷等元素,易造成江河湖海的富营养化。现今水华、赤潮等水体污染灾害频发,使得从源头治理生活污水成为亟待解决的问题[1]。目前,已有不少学者利用植物修复技术治理生活污水,利用绿色植物来转移、容纳或转化污染物使其对环境无害化,并取得了不错的效果。用于植物修复的大部分水生植物集中在水葫芦(Eichhornia crassipes)、粉绿狐尾藻(Myriophyllum aquaticum)、大薸(Pistia stratiotes)等常见种,他们净化效果突出,却也是外来引种植物,如人为管控不足或缺乏清理,在富营养化水体中极易引起种群大爆发,挤占当地植物生态位,对水体造成二次危害。因此,越来越多的学者尝试向本地乡土植物方向开展研究,寻求以乡土植物改善或取代外来种修复污水的长久之计。杨立红等[2]对紫萼(Hosta ventricosa)、鸭舌草(Monochoria vaginalis)、泽泻(Alisma orientale)等5种乡土植物进行植物修复研究,发现5种植物对富营养化水体均有明显的净化作用,在水体中生长5 d时总氮去除率均在80%以上,总磷去除率(10 d)也达到70%以上。吕建国等[3]以灯心草(Juncus effusus)、菖蒲(Acorus calamus)、金针菜(Hemerocallis fulva)、香茶菜(Isodon inflexus)4种乡土植物为实验材料,研究其对洱海水体中氮、磷的净化效果,发现4种植物对洱海水体总氮的去除率均在65%以上,总磷的去除率超过72.88%。高吉喜等[4]研究认为,慈茹(Sagittaria sagittifolia)、茭白(Zizania latifolia)、菹草(Potamogeton crispus)、水花生(Alternanthera philoxeroides)对滇池水体氮的净化能力显著,茭白与满江红(Azolla imbricata)对磷具有明显的净化能力。由此可见,乡土植物在污水净化方面具有更大的开发潜力。
笔者选择广东省的聚花草(Floscopa scandens)、疏穗莎草(Cyperus distans)、鱼腥草(Houttuynia cordata)、线叶水芹(Oenanthe linearis)、石龙芮(Ranunculus sceleratus)5种乡土植物,用化学试剂配制模拟生活污水,测定实验水体中化学需氧量(COD)、总氮(TN)、总磷(TP)及氨氮(NH4+-N)并以此为水生植物净污能力的评价指标,探究其对不同浓度生活污水的净化效果,为华南地区植物筛选和治理生活污水提供参考依据和可行方案。
-
供试植物聚花草、疏穗莎草、线叶水芹、石龙芮和鱼腥草采自广州龙洞宵箕窝、华南植物园观赏区沼泽湿地,选取生长健壮、大小基本一致的植株洗净后在自来水中进行数天的适应性培养。
供试污水以葡萄糖(C6H12O6)、(NH4)2SO4、可溶性蛋白、磷酸二氢钾(KH2PO4)、碳酸钠(Na2CO3)和碳酸氢钠(NaHCO3)按不同比例配制(见表1)。
-
实验设置1个空白对照(不种植物)和3个浓度处理:低污染处理(L);中污染处理(M);高污染处理(H)。5种植物分别按以上3个浓度梯度的生活污水分别进行处理,每个处理设置3个重复。所有植物均种植在2 L的塑料桶中,每桶的加入1.4 L自来水或配好的生活污水,并在1.4 L的位置做好水位标记。每个处理组分别放入生物量为200 g且处在营养期的长势相同的植株,实验周期为4 d,每1周期观察1次植物长势和水质变化、测定污水中的COD、TN、
NH+4-N 、TP的情况,并根据其蒸发量及时补充去离子水。实验持续时间为20 d。实验地选为华南植物园水生植物实验大棚,实验环境基本与自然环境保持一致。 -
水样的COD采用高锰酸钾法(GB 11914-1989)[5]测定;TN通过碱性过硫酸钾消解紫外分光光度法(GB 11894-1989)[6]测定;NH4+-N采用纳氏试剂光度法法(GB 7479-1987)[7]测定;TP通过磷用钼酸铵分光光度法(GB 11893-1989)[8]测定。为明确5种水生植物的水质净化能力以及水生植物氮、磷吸收在水质净化过程中的作用,本研究在测定水质COD、TN、
NH+4-N 、TP浓度的基础上进行水体COD、氮、磷的去除率[9]计算,计算方法见式(1)。式中:η为污染水体中COD、氮、磷的去除率;C1、C2为水质的起始、终止浓度,mg·L−1;Q1、Q2为水质的起始、终止水量,g。采用SPSS数据处理系统和Excel软件[10]对实验结果进行方差分析。
-
不同浓度梯度的生活污水处理下,5种乡土植物对COD的净化效果明显(表2)。5种乡土植物对COD的去除效果均表现为实验前期污水中的COD迅速降低;8 d后,各处理中的COD含量趋于稳定。植物之间对COD的去除效果差异性显著(P<0.05),净化效果强弱顺序依次为疏穗莎草>聚花草>鱼腥草>线叶水芹>石龙芮。其中,疏穗莎草在低、中、高浓度污水处理下,对COD的去除效果均表现最好,去除率分别达58.59%、84.05%、89.56%(表2);石龙芮净化效果明显低于其他几种水生植物的净化效果。有研究[11]表明,植物对于COD的去除都与根系的吸收以及根际微生物的作用密切相关,疏穗莎草和聚花草光合能力强,进行光合作用产生的氧气向下通过根状茎和茎节上的不定根输送到根际,使水体中溶解氧增加,为根区微生物的活动创造了有利的条件,促进了有机物的好氧分解,从而提高COD去除率[12]。
-
5种植物在不同程度污染下,对TN的去除效果也表现出了差异(表3和表4)。疏穗莎草和鱼腥草对TN的净化效果明显高于其他3种植物(P<0.05),对TN的去除率仍能达到82.66%~91.75%和83.52%~85.50%(20 d);聚花草和线叶水芹净化效果次之;石龙芮最差。5种植物对
NH+4 -N的去除效果基本与TN的去除效果基本表现一致。实验设置的3种浓度梯度的污水下,供试植物未出现明显的抑制作用,净化效果强弱顺序依次为疏穗莎草>鱼腥草>聚花草>线叶水芹>石龙芮。在12 d左右,各处理污水中NH+4-N 的含量基本保持不变。实验中,各植物对TN和NH+4-N 的去除效果呈正相关关系,这与陈双等[13]的结果一致,有研究者认为,TN的去除得益于微生物的硝化作用[14]。疏穗莎草强大的光合作用能迅速积累生物量,刺激根系的发育;鱼腥草为水生藤本植物,在茎的各个节上都能长出发达的不定根,发达的根系有利于附着其上的硝化和反硝化细菌创造良好的生长繁殖环境,能高效分解水体中的NH+4 -N,促进植物对氮素的吸收。 -
5种植物对TP的去除效果明显(表5),且在低磷的污水中去除效果明显强于在中度污染和高度污染水体。疏穗莎草的净化效果最强,在低、中、和高浓度下对TP的去除率分别为88.80%、93.57%和83.32%(20 d);聚花草的净化效果次之,去除率分别为80.00%、91.43%和80.84%。上述两者去除效果相当,且明显优于其他3种植物。有研究[15]表明,植物对总磷的去除作用主要包括自然沉淀、微生物固定和植物吸收等作用,植物吸收在磷元素的去除上,只占据很小的一部分[16]。而本研究不存在基质层,通过沉淀去除P的比例不高,可以猜测P的最终去除途径归根到底仍然是植物根系的吸附和微生物的固定[17],不同植物根系的微生物量和微生物群落类型直接影响植物对TP的去除效果。
-
有研究发现,水葫芦在不同浓度污水处理下,对COD和NH4+-N的去除率分别为37.84%~81.8%和61.80%~98.03%[18-19];粉绿狐尾藻在轻度和重度污染水体中,对TN的去除率在76.5%~100%之间[13, 20]。上述两者在不同程度污染水体或不同比例污染物处理下,都优于本次实验的5种供试植物。疏穗莎草对各污染指标的控制同样表现出色,尤其在高浓度污水中,对有机污染物的去除率甚至高于水葫芦,这为乡土植物替代外来种治理城市污水提供了有力依据。美人蕉(Canna indica)、空心莲子草(Alternanthera philoxeroides)适宜于低污染的水体修复,对污水中TN、TP的去除率维持在41.27%~62.42%和74.73%~89.68%范围内[21-22],略逊于本次实验的疏穗莎草和聚花草。此外,本研究的鱼腥草和线叶水芹对TN、TP的去除率都能达到48.1%~85.5%和35.87%~70.8%,对中、低污染浓度的生活污水也有不错的净化效果。
-
1)5种植物相比于没有植物处理的对照组,对生活污水的净化效果明显,对COD、TN、TP和NH4+-N的去除率范围分别在19.9%~89.56%、37.26%~91.75%、44.06%~88.89%和52.3%~93.57%。各处理污染物在实验初期都呈现降低的趋势,在12~15 d后,随处理时间的推移,COD、TN、NH4+-N、TP的含量不再发生明显变化。
2)5种乡土植物的对生活污水的净化效果存在差异。疏穗莎草具有优良的污水净化能力,20 d内各不同污染程度的生活污水的各项评价指标净化率都超过80%,且其有较强的胁迫耐受性,可在高污染水体下存活并完成水体净化过程;而石龙芮则净化污水能力相对最低,但在20 d内,也会将各浓度污水净化致一级水质排放标准。
3)不同植物在3种污染梯度间存在差异。疏穗莎草更适于中、高浓度的污水净化,而石龙芮和线叶水芹则偏向于较低浓度的污水治理。鱼腥草较适于高氮低磷条件下的污水治理,在各种污染程度的污水中,其对TN的去除率皆可达到83%以上,却不耐受磷素污染;聚花草对磷的降解作用明显,适合于高磷低氮的水体修复。
5种华南地区水生植物对城市生活污水的净化效果
Effects of five aquatic plants in South China on purification of municipal wastewater
-
摘要: 为考察乡土植物对当地生活污水的净化效果,探究乡土植物替代外来引种植物应用于水体修复的可能性,选取聚花草(Floscopa scandens)、疏穗莎草(Cyperus distans)、线叶水芹(Oenanthe linearis)、石龙芮(Ranunculus sceleratus)和鱼腥草(Houttuynia cordata)5种广东省乡土植物,以不同浓度梯度的自配溶液模拟生活污水,分析几种植物对化学需氧量(COD)、总氮(TN)、氨氮(
NH+4-N )和总磷(TP)的去除效果。结果表明,5种乡土植物对生活污水均具有明显的净化效果,且各植物之间净化效果差异显著。疏穗莎草处理生活污水的效果最好,高浓度污水处理下,对COD、TN、NH+4-N 和TP的去除率分别为89.56%、82.66%、88.89%和83.32%(20 d);鱼腥草对TN和NH+4-N 的去除效果明显,各浓度污水处理下,其对TN的去除率为83.52%~85.50%,NH+4-N 的去除率为77.40%~89.33%,但对磷元素的净化效果较差,适合治理高氮低磷污染类型;聚花草对TP的去除效果明显,不同浓度梯度污水处理下,其去除率最高可达91.43%,建议应用于低氮高磷的生活污水治理。Abstract: In order to determine the purification effect of domestic wastewater by indigenous plants and investigate the possibility of substituting indigenous plants for exotic species in water remediation, in this study, five indigenous plants, including Floscopa scandens, Cyperus distans, Oenanthe linearis, Ranunculus sceleratus and Houttuynia cordata, were selected to investigate the removal effects of chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH+4 -N) and total phosphorus (TP) in synthetic municipal wastewater. The results showed that all the selected five indigenous plants had an obvious performance on COD, TN, TP, andNH+4 -N removal from synthetic municipal wastewater, and significant differences occurred in their purification efficiencies. Cyperus distans showed the best treatment results for high concentration wastewater, and the removal rates of COD, TN,NH+4 -N and TP were 89.56%, 82.66%, 88.89% and 83.32% after 20 d treatment. Houttuynia cordata presented the remarkable removal rates of TN andNH+4 -N, which were 83.52%%~85.50%% and 77.40%~89.33% for wastewater with different concentration gradients, respectively. However, Houttuynia cordata had poor purification effect on phosphorus, and might be suitable for polluted water treatment with high nitrogen and low phosphorus. Floscopa scandens had good TP removal effect with the highest removal rate of 91.43% in three kinds of wastewater. The result suggests that Floscopa scandens may be suitable for treatment of municipal wastewater with low nitrogen and high phosphorus concentrations. -
地下水修复是污染场地修复的核心内容,然而我国场地修复行业长期存在“重土轻水”的问题。污染物在土壤中的赋存分布呈现高度的非均质性,而地下水是一个动态开放系统,故地下水监测更容易反映出地层的污染状况,对于挥发性有机物 (VOCs) 污染场地来说更为突出[1]。因此,笔者长期呼吁在污染地块管理领域对地下水环境质量的监管应提升到与土壤环境质量相同的地位。上述观点及其科学机制已在本系列专论1《我国挥发性有机污染地块调查评估中存在的问题及对策建议》和专论3《地下水监测在污染场地管理中的重要作用、存在问题与对策建议》中已经进行过详细的讨论[1-2]。在近期发表的专论4《我国挥发性有机污染场地修复中存在的问题及对策建议》中,笔者总结了我国VOCs污染场地修复管控及效果评估方面存在的5个问题[3]:1) 污染修复深度止步于土壤层,忽视了基岩层中的污染;2) 表层土采样可能会高估VOCs污染土壤的修复效果;3) 修复效果评估中地下水监测数据的指示作用未受到足够重视;4) 地下水修复目标值的制定流程不规范,部分项目存在修复目标值过于宽松的问题;5) 少数复杂高风险场地未能彻底修复即进行敏感用地类型开发。本文则基于问题4展开关于制定地下水修复目标值的讨论。
1. 地下水修复目标值设定方面存在的问题及解决问题总思路
污染场地修复效果评估是污染场地环境管理工作的关键环节,在管理链条中起最终把关作用。修复目标值是评判污染场地修复是否合格,以及修复后地块能否安全利用的唯一标准,因此制定合理的修复目标值对于污染场地修复治理和安全利用起着至关重要的作用。目标值设定过严会导致过度修复,而目标值设定过松则无法保障地块的风险可控和安全利用。
污染场地修复一般同时包括土壤和地下水的修复。2022年12月,生态环境部发布了《建设用地土壤污染修复目标值制定指南 (试行) 》,然而地下水修复目标值制定的指南标准长期缺位。目前,国内常以GB/T14848的III类或者IV类地下水标准作为修复目标,当难以达到IV类地下水标准时一般利用风险评估计算一套更加宽松的目标值。然而,少数项目基于风险评估计算出的地下水修复目标值过于宽松,无法保障地块未来的安全利用。特别是对于挥发性有机物 (volatile organic compounds,VOCs,如苯系物、氯代烃等) 污染场地,项目制定的VOCs的地下水修复目标值超过了这些化合物的有效溶解度,这意味着地层中存在该化合物的的纯相 (即非水相液体,nonaqueous phase liquids,NAPL) ,即修复后场地地层中仍存在NAPL相污染物亦会被认为修复达标(合格),且该地块达到了安全利用标准,这显然是极其不合理的。NAPL是污染场地最重要的污染源形态,如果污染源没有清除干净,则说明修复治理的效果不佳,应继续进行修复治理。关于地层中是否存在NAPL,典型错误是认为“高密度的土壤钻孔没有发现NAPL则说明地层中不存在NAPL”。然而,“Absence of evidence is not evidence of absence”,由于NAPL赋存分布的高度非均质性,土壤钻孔可能无法勘测到NAPL(特别是DNAPL)[2],但并不代表地层中没有NAPL。而且跟土壤监测相比,地下水监测更容易指示污染源的存在[1]。
解决上述问题的关键是借鉴土壤环境管理的思路,制定一个类似于《土壤环境质量 建设用地土壤污染风险管控标准 (试行) 》(GB36600-2018)中“土壤管制值”的“地下水修复目标上限值 (风险管制值) ”。在任何修复项目中,地下水修复目标值的设定不应超过这个上限值,以避免“一放就乱”。同时参考《建设用地土壤污染修复目标值制定指南 (试行) 》中的思路,允许地下水修复目标值根据项目的实际情况进行适度的调整,避免“一收就死”。随着科学研究的进展、修复技术的进步、经济的发展及社会文明程度的提升,修复目标上限值还应做到不断地调整优化,从而实现对于我国地下水环境质量的动态管理和不断提升。
2. 制定地下水修复目标上限值的思考和建议
目前,在实际项目中,常以GB/T14848的III类或者IV类地下水标准作为修复目标,当难以达到IV类地下水标准时则通过风险评估计算一套更加宽松的目标值。然而,少数项目基于风险评估计算得出的地下水修复目标值过于宽松,无法保障地块未来的安全利用。笔者认为地下水修复目标上限值 (或管制值) 的制定不能只基于风险评估计算的结果,而应充分考虑每种污染物的理化性质、迁移转化归趋机制、环境赋存特征、健康和环境风险、国外同类标准的取值、检测方法的准确度和成本、经济社会承受能力等因素,力争做到合规合法、科学严谨、综合平衡。以下将从风险评估方法的可靠性、有效溶解度的影响、不同污染物的迁移归趋暴露毒性的差异、现行地下水标准存在的问题、现行标准与国外同类标准的差距等方面展开讨论。
2.1 制定修复目标值时不应完全参照风险评估计算结果,因其具有较大的主观性和不确定性
我国已建立起基于风险的污染场地管理制度和技术体系,然而“基于风险”并不意味着“仅仅依赖风险评估计算”。因为风险评估计算存在较大的主观性和不确定性,其结果并不是唯一的、确定的、完全客观公正的。风险评估模型计算结果的误差有多个来源,包括概念模型误差、数学模型误差、输入参数误差等。《污染场地VOCs蒸气入侵风险评估与管控》第六章第五节对于挥发吸入室内空气 (蒸气入侵) 暴露途径的风险评估模型误差进行了详细介绍[4]。本文仅以输入参数误差为例对风险评估计算的不确定性进行介绍。风险评估计算需输入包括环境介质理化性质 (土、水、气) 、污染物理化性质、毒性参数、暴露参数等4大类共计几十种输入参数。任何一种输入参数的变化都会影响风险计算结果,部分关键参数的微小变化可能导致计算结果几倍甚至数量级的变化 (模型敏感性高) 。在实际场地中,很多参数都存在不同程度的时间和空间变异性,在同一场地部分参数的时间-空间波动可能高达几个数量级,然而在风险计算时 (如我国HJ 25.3方法或者美国ASTM方法) 每种输入参数只取一个数值,因此风险评估计算结果具有较高的不确定性 (模型不确定性高) 。另外,风险评估计算的输入参数是人为选择的,甚至部分输入参数选取不同的数值都能找到一定的合理性都能自圆其说,因此风险评估计算具有一定的主观性,很难做到完全精准和绝对客观公正。
2.2 有效溶解度决定了污染物在地下水中的浓度上限
水中溶解度是指每升水中所能溶解的溶质的总质量,单位为mg·L−1。有效溶解度是指混合物中特定组分在每升水中所能溶解的溶质的总质量。如苯在水中的溶解度是1 800 mg·L−1,而常规汽油中苯在水中的有效溶解度只有20~40 mg·L−1。这是由于苯仅是汽油上千种化学组分中的一种 (质量占比约为汽油的1%~2%),因此汽油中苯的有效溶解度远低于其纯物质的水中溶解度。有效溶解度构成了污染物地下水浓度的上限,如果地下水中检测到的有机物浓度超过其有效溶解度,则说明地层中存在有机物的纯相 (即NAPL相) 。
而实际上,由于地下水流动往往很缓慢,只有与NAPL源紧邻区域的地下水中污染物质量浓度才能达到或接近其有效溶解度。当污染物溶解进入地下水后,在对流、弥散、扩散等机制作用下其质量浓度会不断被稀释而降低,另外在地下水采样时污染物在监测井中可能被进一步稀释。因此,即使在地层中存在NAPL,采样监测得到的污染物质量浓度可能也远低于其有效溶解度。BRUCE等[5]认为测得的地下水中苯质量浓度超过其有效溶解度的20%即可认为地层中存在LNAPL。经验值显示,汽油污染地下水中的苯质量浓度超过5 mg·L−1,或者总石油烃浓度超过30 mg·L−1时,认为存在LNAPL。也有研究认为,油污染地下水中的苯质量浓度超过1 mg·L−1即可认为存在LNAPL[6]。综合以上研究成果和国外实际经验,笔者认为地下水修复目标值不应超过有效溶解度 (注意不是水中溶解度) 的20%。
2.3 制定修复目标值时需考虑不同类型污染物的迁移、归趋、暴露和毒性等方面的差异
不同类型的污染物 (如重金属、VOCs、SVOCs) 在迁移转化行为、环境归趋机制、暴露途径及毒性方面的差异巨大。易溶于水的化合物泄漏进入地层后往往迅速溶于地下水,因此会出现土壤中无检出而地下水中浓度较高的现象。对于这类物质,在制定地下水修复目标值时要特别关注。对于再开发场地,重金属和SVOCs都可相对容易地通过风险管控措施切断人体暴露途径,而VOCs由于其易挥发和易迁移的特点,很难通过风险管控完全阻断人体暴露。土壤或者地下水中的VOCs可通过挥发进入室内空气 (蒸气入侵) 和挥发进入室外空气产生人体暴露。国内已经有若干再开发场地的蒸气入侵实际案例[2, 7]。因此,对于VOCs的地下水污染及其修复目标值应给与额外的关注。
2.4 GB/T 14848中的与地下水环境管理需求不完全匹配,地下水修复目标值制定应聚焦环境管理需求
原国土资源部和水利部共同制定的《地下水质量标准》 (GB/T 14848) 是现阶段地下水环境管理工作的主要依据,而生态环境部尚未发布基于环境管理需求的地下水环境质量标准。这给我国地下水以及污染场地环境管理工作带来了一系列问题。目前,大部分场地调查项目通常选择GB/T 14848中的39项常规指标作为监测指标,然而这39项中的大部分指标并非污染因子。其中,与污染场地关系密切的仅包括4项VOCs (三氯甲烷、四氯化碳、苯、甲苯) 和6项金属 (汞、砷、硒、镉、六价铬、铅) ,而实际场地的污染物种类远多于这4+6种。另外,部分场地调查项目选择GB36600中的45项基本项目作为地下水监测指标,而GB 36600是土壤风险管控标准并未考虑污染物在土壤和地下水中赋存特征的差异。综上所述,笔者建议生态环境管理部门尽快制定满足环境管理需求的地下水监测指标及其标准值。
GB/T 14848用于污染场地和地下水环境管理时存在的其他问题还有:1) 部分高毒性和常用污染物的指标偏高,未必能有效管控其环境和健康风险,如氯乙烯、二氯甲烷;2) 个别指标不明确,如 1,2-二氯乙烯未规定顺式、反式或是总量;3) 一些污染场地中的常见指标缺乏,如C6-C9石油烃、C10-C40石油烃、甲基叔丁基醚等;4) 一些重点行业的典型特征污染物缺乏,如杂环芳烃、酚类等。
综上所述,笔者建议管理部门应尽快对地下水监测因子进行扩容,在扩容时应综合考虑国内外地下水标准、国内已有的监测方法标准、国内场地调查实践检出频率较高的特征污染物。本文提出了一些具体的补充建议:C6-C9石油烃、C10-C40石油烃、三甲基苯类、异丙苯、甲基叔丁基醚、四乙基铅、1,2-二溴乙烷、烷基萘类、丙酮、甲醛、乙醛、苯酚类、烷基酚类、氯酚类、苯胺类、甲苯胺类、氯苯胺类、硝基苯胺类、硝基苯类、硝基甲苯类、硝基氯苯类、二硫化碳、苊、菲、芘、芴、含氮杂环芳烃类、含硫杂环芳烃类、含氧杂环芳烃类、顺-1,2-二氯乙烯、反1,2-二氯乙烯、1,2,3-三氯丙烷、1,1-二氯乙烷、四氯乙烷类、六氯丁二烯、六氯乙烷。
2.5 地下水环境质量标准的制定应跟上国家整体的发展态势以及其他环保行业的发展步伐
环境质量标准的核心功能在于为环境质量状况提供比对依据,与援引环境质量标准的法律规定、行政规划等要求共同发挥设定目标、考核激励、督政问责的作用[8]。近十年来,我国大气污染防治取得了举世瞩目的成就,我国大气污染物排放量大幅下降,主要空气指标显著改善,并赢得了国际社会高度评价。2012年被认为是这一切变化的起点,当年原环境保护部修订了《环境空气质量标准 (GB3095-2012) ,从而开启了大气污染防治的“黄金十年”[9]。中国现行的环境空气质量标准及大气污染物排放标准中的部分指标已达到甚至比发达国家更加严格,正是严格的环境标准推动中国成为全球空气质量改善速度最快的国家,蓝天保卫战的成就极大地提升了全体国民的获得感和幸福感。在地下水环境标准的宽严程度方面,我国与发达国家的差距仍十分明显,环境监管的提升空间很大。第2个百年目标要求2049我国要建成富强、民主、文明、和谐、美丽的社会主义现代化强国。展望未来的26年,我国的地下水环境质量管理要跟上国家整体的发展态势及其他环保领域的发展步伐,以全面推进美丽中国建设。
-
表 1 不同污染程度生活污水评价指标
Table 1. Evaluation indexes of domestic sewage with different pollution levels
污染程度 评价指标/(mg·L−1) COD TN NH+4 -NTP 低污染(L) 102 24.4 8.6 2.5 中污染(M) 338 43.8 14.8 4.2 高污染(H) 624 68.5 22.4 8.3 表 2 不同浓度下5种植物对COD的去除率
Table 2. COD removal rate of five plants at different concentrations
污染程度 对照 疏穗莎草 聚花草 鱼腥草 线叶水芹 石龙芮 低污染(L) 7.84±0.22 58.59±1.74 51.32±1.71 35.87±0.52 30.55±1.59 19.9±1.52 中污染(M) 8.28±0.12 84.05±0.50 81.46±0.47 68.07±0.56 64.02±0.14 31.7±0.18 高污染(H) 7.37±0.03 89.56±0.26 84.04±0.15 69.21±0.19 67.64±0.09 52.49±0.14 表 3 不同浓度下5种植物对TN的去除率
Table 3. TN removal rate of five plants at different concentrations
污染程度 对照 疏穗莎草 聚花草 鱼腥草 线叶水芹 石龙芮 低污染(L) 14.75±0.07 91.75±0.57 62.16±0.19 85.5±1.04 57.59±0.86 38.52±0.46 中污染(M) 7.92±0.34 85.55±0.08 72.97±0.25 83.52±0.51 64.5±0.65 54.27±1.01 高污染(H) 4.67±0.40 82.66±0.37 60.76±0.86 85.08±0.32 48.1±0.70 37.26±0.65 表 4 不同浓度下5种植物对
NH+4 -N的去除率Table 4.
NH+4 -N removal rate of five plants at different concentrations污染程度 对照 疏穗莎草 聚花草 鱼腥草 线叶水芹 石龙芮 低污染(L) 10.39±0.21 77.17±0.09 68.84±0.30 77.4±0.24 68.72±0.08 44.06±0.04 中污染(M) 18.72±0.12 84.32±0.05 65.91±0.18 84.12±0.14 64.65±0.05 45.7±0.02 高污染(H) 11.2±0.04 88.89±1.38 63.96±0.03 89.33±0.05 62.49±0.11 45.6±0.11 表 5 不同浓度下5种植物对TP的去除率
Table 5. TP removal rate of five plants at different concentrations
污染程度 对照 疏穗莎草 聚花草 鱼腥草 线叶水芹 石龙芮 低污染(L) 23.6±0.36 88.8±0.07 80±0.28 66.4±0.85 70.8±0.4 54.62±0.44 中污染(M) 11.43±0.66 93.57±0.04 91.43±0.17 53.62±0.51 68.33±0.24 65±0.02 高污染(H) 10.24±0.38 83.32±0.88 80.48±0.14 35.87±0.92 64.82±0.32 52.3±0.13 -
[1] 宋国君, 韩冬梅. 中国城市生活污水管理绩效评估研究[J]. 中国软科学, 2012, 25(8): 75-83. doi: 10.3969/j.issn.1002-9753.2012.08.007 [2] 杨立红, 卓丽环. 水生植物对富营养化水体净化能力的研究[J]. 吉林农业大学学报, 2006, 28(6): 663-666. doi: 10.3969/j.issn.1000-5684.2006.06.019 [3] 吕建国, 刘周权, 杨晓霞, 等. 乡土植物对洱海水体的净化效果研究[J]. 大理学院学报, 2012, 11(3): 45-48. doi: 10.3969/j.issn.1672-2345.2012.03.016 [4] 高吉喜, 叶春, 杜娟, 等. 水生植物对面源污水净化效率研究[J]. 中国环境科学, 1997, 4(3): 56-60. [5] 吴晓梅, 叶美锋, 吴飞龙, 等. 狐尾藻对生猪养殖场沼液Cu、Zn的富集与净化效果[J]. 福建农业学报, 2018, 33(11): 1195-1200. [6] 徐杰, 何萍, 王钦, 等. 夏季白洋淀沉水植物分布与水环境因子的关系[J]. 湿地科学, 2013, 11(4): 488-494. doi: 10.3969/j.issn.1672-5948.2013.04.013 [7] 席磊, 王永芬, 赵芙蓉, 等. 五种水培蔬菜对鸭场污水净化效果的研究[J]. 中国家禽, 2015, 37(4): 27-31. [8] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999. [9] 葛滢, 王晓月, 常杰. 不同程度富营养化水中植物净化能力比较研究[J]. 环境科学学报, 1999, 19(6): 690-692. doi: 10.3321/j.issn:0253-2468.1999.06.021 [10] 金树权, 周金波, 朱晓丽, 等. 10种水生植物的氮磷吸收和水质净化能力比较研究[J]. 农业环境科学学报, 2010, 29(8): 1571-1575. [11] 魏晓慧. 六种水生植物对汾河水体中氨氮、COD、总氮和总磷的净化作用研究[D]. 太原: 山西大学, 2012. [12] RIEMER D, POS W, MILNE P, et al. Observations of nonmethane hydrocarbons and oxygenated volatile organic compounds at a rural site in the south easterm United States[J]. Journal of Geophysical Research, 1998, 103(D21): 28111-28128. doi: 10.1029/98JD02677 [13] 陈双, 王国祥, 许晓光, 等. 水生植物类型及生物量对污水处理厂尾水净化效果的影响[J]. 环境工程学报, 2018, 12(5): 1424-1433. [14] ROMERO J A, COMIN F A, GARCIA C. Restored wetlands as filters to remove nitrogen[J]. Chemosphere, 1999, 39(2): 323-332. doi: 10.1016/S0045-6535(99)00113-7 [15] 卢少勇, 金相灿, 余刚. 人工湿地的磷去除机理[J]. 生态环境学报, 2006, 15(2): 391-392. doi: 10.3969/j.issn.1674-5906.2006.02.040 [16] 敖子强, 张杰, 彭桂群, 等. 生态浮床处理农村生活污水的植物功能及筛选[J]. 北方园艺, 2017, 41(11): 195-198. [17] 张芳. 不同水生植物对富营养化水体净化效果和机理的比较[D]. 南京: 南京理工大学, 2016. [18] 高运强, 王荣富. 水葫芦净化富营养化水体有机物的研究[J]. 安徽农学通报, 2008, 14(11): 74-75. doi: 10.3969/j.issn.1007-7731.2008.11.030 [19] 黄晓辉, 罗五魁, 茹晶晶, 等. 水葫芦对宁德市东湖塘污水的净化研究[J]. 化学工程与装备, 2015, 40(5): 224-226. [20] 马永飞, 杨小珍, 赵小虎, 等. 污水氮浓度对粉绿狐尾藻去氮能力的影响[J]. 环境科学, 2017, 38(3): 1093-1101. [21] 吴诗杰, 陈慧娟, 许小桃, 等. 美人蕉、鸢尾、黄菖蒲和千屈菜对富营养化水体净化效果研究[J]. 安徽大学学报(自然科学版), 2016, 40(1): 98-108. doi: 10.3969/j.issn.1000-2162.2016.01.016 [22] 蒯圣龙, 尹程, 张祥霖, 等. 9种植物对模拟污水中氮、磷的净化能力比较研究[J]. 淮北师范大学学报(自然科学版), 2015, 36(3): 63-68. doi: 10.3969/j.issn.2095-0691.2015.03.013 -