环境浓度氧四环素与聚苯乙烯微塑料对黄颡鱼幼鱼肠道的联合毒性效应

孔娟, 范博雅, 原居林, 余丽琴. 环境浓度氧四环素与聚苯乙烯微塑料对黄颡鱼幼鱼肠道的联合毒性效应[J]. 生态毒理学报, 2023, 18(1): 426-439. doi: 10.7524/AJE.1673-5897.20220124001
引用本文: 孔娟, 范博雅, 原居林, 余丽琴. 环境浓度氧四环素与聚苯乙烯微塑料对黄颡鱼幼鱼肠道的联合毒性效应[J]. 生态毒理学报, 2023, 18(1): 426-439. doi: 10.7524/AJE.1673-5897.20220124001
Kong Juan, Fan Boya, Yuan Julin, Yu Liqin. Combined Effects of Environmental Concentration of Oxytetracycline and Polystyrene Microplastics on Intestinal Tract of Juvenile Yellow Catfish (Pelteobagrus fulvidraco)[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 426-439. doi: 10.7524/AJE.1673-5897.20220124001
Citation: Kong Juan, Fan Boya, Yuan Julin, Yu Liqin. Combined Effects of Environmental Concentration of Oxytetracycline and Polystyrene Microplastics on Intestinal Tract of Juvenile Yellow Catfish (Pelteobagrus fulvidraco)[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 426-439. doi: 10.7524/AJE.1673-5897.20220124001

环境浓度氧四环素与聚苯乙烯微塑料对黄颡鱼幼鱼肠道的联合毒性效应

    作者简介: 孔娟(1995—),女,硕士研究生,研究方向为生态毒理学,E-mail:1109424059@qq.com
    通讯作者: 原居林, E-mail: yuanjulin1982@163.com 余丽琴, E-mail: yuliqin@mail.hzau.edu.cn
  • 基金项目:

    农业农村部淡水渔业健康养殖重点实验室开放课题(ZJK202010);中央高校基本科研业务费专项资金(2662021SCPY003)

  • 中图分类号: X171.5

Combined Effects of Environmental Concentration of Oxytetracycline and Polystyrene Microplastics on Intestinal Tract of Juvenile Yellow Catfish (Pelteobagrus fulvidraco)

    Corresponding authors: Yuan Julin, yuanjulin1982@163.com ;  Yu Liqin, yuliqin@mail.hzau.edu.cn
  • Fund Project:
  • 摘要: 近年来,氧四环素(oxytetracycline, OTC)和聚苯乙烯微塑料(polystyrene microplastics, PS-MPs)在水环境中被广泛检出。为了探究PS-MPs与OTC对鱼类的联合毒性效应,选取黄颡鱼(Pelteobagrus fulvidraco)幼鱼为研究对象,将其暴露于CON(对照)组、环境浓度OTC(500 ng·L-1)单独组、MPs-L(100 μg·L-1 PS-MPs)单独组、MPs-L+OTC(100 μg·L-1 PS-MPs+500 ng·L-1 OTC)复合组、MPs-H(1 000 μg·L-1 PS-MPs)单独组和MPs-H+OTC(1 000 μg·L-1 PS-MPs+500 ng·L-1 OTC)复合组中28 d,研究了OTC和PS-MPs单独以及联合暴露对幼鱼生长、肠道结构和肠道菌群的影响。研究结果表明,与对照组相比,OTC单独暴露和MPs-L单独暴露对黄颡鱼幼鱼体长、体质量及体质量增长率,肠道氧化应激酶(超氧化物歧化酶(superoxide dismutase, SOD)和过氧化氢酶(catalase, CAT))活性及消化酶(胰蛋白酶(trypsin, TRS)、淀粉酶(amylase, AMS)和脂肪酶(lipase, LPS))活性,肠道微生物组成(OTU数目、α多样性、β多样性以及门、属水平上物种组成的相对丰度)均无显著性影响。但MPs-L+OTC复合暴露导致SOD和CAT活性显著升高,引起肠道空泡化、肠上皮细胞轻微缺失,变形菌门的相对丰度显著升高,且与OTC单独暴露组相比,肠道CAT活性显著性升高。MPs-H单独暴露抑制了黄颡鱼幼鱼体质量和体质量增长率,引起了肠道空泡化,导致其肠道SOD和CAT活性显著升高,消化酶TRS和LPS活性显著降低,厚壁菌门相对丰度显著降低。与MPs-H单独组和OTC单独组相比,MPs-H+OTC组进一步加剧肠道氧化酶活性升高、消化酶活性降低、肠道损伤和肠道菌群紊乱。相关性分析表明,肠道葡萄球菌属和体长显著负相关;鲸杆菌属和SOD显著正相关;气单胞菌属与LPS显著负相关,与AMS显著正相关。上述结果显示PS-MPs高浓度单独以及与OTC复合暴露可能通过肠道损伤以及肠道菌群的改变,进而影响肠道消化酶活性,导致黄颡鱼幼鱼生长抑制。此外,PS-MPs和OTC的复合肠道毒性表现出显著的协同效应。本实验结果将为水环境中抗生素和微塑料的生态风险评价提供新的视角和理论依据。
  • 加载中
  • 李红亮. 土霉素光催化降解的特性研究[D]. 武汉: 华中科技大学, 2012: 1-2 Li H L. Study on characteristics of photocatalytic degradation of oxytetracycline [D]. Wuhan: Huazhong University of Science and Technology, 2012: 1

    -2 (in Chinese)

    Kümmerer K. Antibiotics in the aquatic environment—A review—Part Ⅰ [J]. Chemosphere, 2009, 75(4): 417-434
    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782
    Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA [J]. The Science of the Total Environment, 2006, 361(1-3): 196-207
    Chang X S, Meyer M T, Liu X Y, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China [J]. Environmental Pollution, 2010, 158(5): 1444-1450
    Chen H, Liu S, Xu X R, et al. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks [J]. Marine Pollution Bulletin, 2015, 95(1): 365-373
    Ma Y P, Li M, Wu M M, et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge [J]. The Science of the Total Environment, 2015, 518-519: 498-506
    Wei R C, Ge F, Huang S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China [J]. Chemosphere, 2011, 82(10): 1408-1414
    Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA [J]. The Science of the Total Environment, 2006, 361(1-3): 196-207
    Sarmah A K, Meyer M T, Boxall A B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs)in the environment [J]. Chemosphere, 2006, 65(5): 725-759
    李兆君, 姚志鹏, 张杰, 等. 兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J]. 生态毒理学报, 2008, 3(1): 15-20

    Li Z J, Yao Z P, Zhang J, et al. A review on fate and ecological toxicity of veterinary antibiotics in soil environments [J]. Asian Journal of Ecotoxicology, 2008, 3(1): 15-20 (in Chinese)

    Chen H, Liu S, Xu X R, et al. Antibiotics in the coastal environment of the Hailing Bay Region, South China Sea: Spatial distribution, source analysis and ecological risks [J]. Marine Pollution Bulletin, 2015, 95(1): 365-373
    沈群辉, 冀秀玲, 傅淑珺, 等. 黄浦江水域抗生素及抗性基因污染初步研究[J]. 生态环境学报, 2012, 21(10): 1717-1723

    Shen Q H, Ji X L, Fu S J, et al. Preliminary studies on the pollution levels of antibiotic and antibiotic resistance genes in Huangpu River, China [J]. Ecology and Environmental Sciences, 2012, 21(10): 1717-1723(in Chinese)

    Rodrigues S, Antunes S C, Correia A T, et al. Rainbow trout(Oncorhynchus mykiss)pro-oxidant and genotoxic responses following acute and chronic exposure to the antibiotic oxytetracycline [J]. Ecotoxicology, 2017, 26(1): 104-117
    Limbu S M, Zhou L, Sun S X, et al. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk [J]. Environment International, 2018, 115: 205-219
    Zhou L, Limbu S M, Shen M L, et al. Environmental concentrations of antibiotics impair zebrafish gut health [J]. Environmental Pollution, 2018, 235: 245-254
    Zhang H B, Wang J Q, Zhou B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243(Pt B): 1550-1557
    Li L, Geng S X, Wu C X, et al. Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin [J]. Environmental Pollution, 2019, 254(Pt A): 112951
    Zhao S Y, Zhu L X, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution [J]. Marine Pollution Bulletin, 2014, 86(1-2): 562-568
    Wang W F, Ndungu A W, Li Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China [J]. The Science of the Total Environment, 2017, 575: 1369-1374
    Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano-and microplastics: A review of the literature [J]. Particle and Fibre Toxicology, 2020, 17(1): 57
    Xiong X, Chen X C, Zhang K, et al. Microplastics in the intestinal tracts of East Asian finless porpoises(Neophocaena asiaeorientalis sunameri)from Yellow Sea and Bohai Sea of China [J]. Marine Pollution Bulletin, 2018, 136: 55-60
    Su L, Deng H, Li B W, et al. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of East China [J]. Journal of Hazardous Materials, 2019, 365: 716-724
    Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China [J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187
    Zhu J M, Yu X Y, Zhang Q, et al. Cetaceans and microplastics: First report of microplastic ingestion by a coastal Delphinid, Sousa chinensis [J]. The Science of the Total Environment, 2019, 659: 649-654
    Jin Y X, Xia J Z, Pan Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish [J]. Environmental Pollution, 2018, 235: 322-329
    Qiao R X, Deng Y F, Zhang S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish [J]. Chemosphere, 2019, 236: 124334
    Qiao R X, Sheng C, Lu Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish [J]. The Science of the Total Environment, 2019, 662: 246-253
    Wang W F, Gao H, Jin S C, et al. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review [J]. Ecotoxicology and Environmental Safety, 2019, 173: 110-117
    Jin Y X, Xia J Z, Pan Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish [J]. Environmental Pollution, 2018, 235: 322-329
    Wan Z Q, Wang C Y, Zhou J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish [J]. Chemosphere, 2019, 217: 646-658
    Qiao R X, Sheng C, Lu Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish [J]. Science of the Total Environment, 2019, 662: 246-253
    Yuan L, Wang L, Li Z H, et al. Antibiotic resistance and microbiota in the gut of Chinese four major freshwater carp from retail markets [J]. Environmental Pollution, 2019, 255: 113327
    Han Y, Zhou W S, Tang Y, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects [J]. The Science of the Total Environment, 2021, 770: 145273
    Zhou L, Limbu S M, Shen M L, et al. Environmental concentrations of antibiotics impair zebrafish gut health [J]. Environmental Pollution, 2018, 235: 245-254
    刘湧滨, 李香琴. 微塑料对淡水鱼生长性能的影响[J]. 渔业致富指南, 2021(21): 70-72
    Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano-and microplastics: A review of the literature [J]. Particle and Fibre Toxicology, 2020, 17(1): 57
    Hoogenboom L. Presence of microplastics and nanoplastics in food, with particular focus on seafood [J]. EFSA Journal, 2016, 14(6): e04501
    Revel M, Lagarde F, Ettajani H P, et al. Tissue-specific biomarker responses in the blue mussel Mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations [J]. Frontiers in Environmental Science, 2019, 7: 33
    Deng J M, Mai K S, Chen L Q, et al. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia(Oreochromis niloticus×O. aureus)[J]. Fish & Shellfish Immunology, 2015, 44(2): 436-444
    余晓玲. 猪场废水中四环素类抗生素对斑马鱼抗氧化效应毒理研究[D]. 南昌: 南昌大学, 2019: 43-45 Yu X L. Toxicological study on antioxidant effects of tetracycline antibiotics on zebrafish in swine wastewater [D]. Nanchang: Nanchang University, 2019: 43

    -45 (in Chinese)

    Qiao R X, Sheng C, Lu Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish [J]. The Science of the Total Environment, 2019, 662: 246-253
    Zmora N, Suez J, Elinav E. You are what you eat: Diet, health and the gut microbiota [J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(1): 35-56
    肖亮. 土霉素对异育银鲫毒性和残留研究[D]. 武汉: 华中农业大学, 2008: 33-37 Xiao L. Study on toxicity and tissue elimination of oxytetracycline in allogynogenetic crucian [D]. Wuhan: Huazhong Agricultural University, 2008: 33

    -37 (in Chinese)

    Wen B, Zhang N, Jin S R, et al. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid [J]. Aquatic Toxicology, 2018, 195: 67-76
    Huang J N, Wen B, Zhu J G, et al. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy(Poecilia reticulata)[J]. The Science of the Total Environment, 2020, 733: 138929
    Ahmadifar E, Sadegh T H, Dawood M A, et al. The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp(Cyprinus carpio)[J]. Aquaculture, 2020, 516(C): 734656
    Lu T H, Chen C Y, Liao C M. Aeromonas hydrophila as an environmental indicator to detect TiLV-infected tilapia under coinfection threat [J]. Environmental and Sustainability Indicators, 2021, 11: 100135
    Zhang M L, Sun Y H, Liu Y K, et al. Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference [J]. Aquaculture, 2016, 454: 72-80
    Parker-Graham C A, Eetemadi A, Yazdi Z, et al. Effect of oxytetracycline treatment on the gastrointestinal microbiome of critically endangered white abalone(Haliotis sorenseni)treated for withering syndrome [J]. Aquaculture, 2020, 526: 735411
  • 加载中
计量
  • 文章访问数:  1141
  • HTML全文浏览数:  1141
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-24

环境浓度氧四环素与聚苯乙烯微塑料对黄颡鱼幼鱼肠道的联合毒性效应

    通讯作者: 原居林, E-mail: yuanjulin1982@163.com ;  余丽琴, E-mail: yuliqin@mail.hzau.edu.cn
    作者简介: 孔娟(1995—),女,硕士研究生,研究方向为生态毒理学,E-mail:1109424059@qq.com
  • 1. 华中农业大学水产学院, 武汉 430070;
  • 2. 浙江省淡水水产研究所, 湖州 313000;
  • 3. 教育部长江经济带大宗水生生物产业绿色发展教育部工程研究中心, 武汉 430070
基金项目:

农业农村部淡水渔业健康养殖重点实验室开放课题(ZJK202010);中央高校基本科研业务费专项资金(2662021SCPY003)

摘要: 近年来,氧四环素(oxytetracycline, OTC)和聚苯乙烯微塑料(polystyrene microplastics, PS-MPs)在水环境中被广泛检出。为了探究PS-MPs与OTC对鱼类的联合毒性效应,选取黄颡鱼(Pelteobagrus fulvidraco)幼鱼为研究对象,将其暴露于CON(对照)组、环境浓度OTC(500 ng·L-1)单独组、MPs-L(100 μg·L-1 PS-MPs)单独组、MPs-L+OTC(100 μg·L-1 PS-MPs+500 ng·L-1 OTC)复合组、MPs-H(1 000 μg·L-1 PS-MPs)单独组和MPs-H+OTC(1 000 μg·L-1 PS-MPs+500 ng·L-1 OTC)复合组中28 d,研究了OTC和PS-MPs单独以及联合暴露对幼鱼生长、肠道结构和肠道菌群的影响。研究结果表明,与对照组相比,OTC单独暴露和MPs-L单独暴露对黄颡鱼幼鱼体长、体质量及体质量增长率,肠道氧化应激酶(超氧化物歧化酶(superoxide dismutase, SOD)和过氧化氢酶(catalase, CAT))活性及消化酶(胰蛋白酶(trypsin, TRS)、淀粉酶(amylase, AMS)和脂肪酶(lipase, LPS))活性,肠道微生物组成(OTU数目、α多样性、β多样性以及门、属水平上物种组成的相对丰度)均无显著性影响。但MPs-L+OTC复合暴露导致SOD和CAT活性显著升高,引起肠道空泡化、肠上皮细胞轻微缺失,变形菌门的相对丰度显著升高,且与OTC单独暴露组相比,肠道CAT活性显著性升高。MPs-H单独暴露抑制了黄颡鱼幼鱼体质量和体质量增长率,引起了肠道空泡化,导致其肠道SOD和CAT活性显著升高,消化酶TRS和LPS活性显著降低,厚壁菌门相对丰度显著降低。与MPs-H单独组和OTC单独组相比,MPs-H+OTC组进一步加剧肠道氧化酶活性升高、消化酶活性降低、肠道损伤和肠道菌群紊乱。相关性分析表明,肠道葡萄球菌属和体长显著负相关;鲸杆菌属和SOD显著正相关;气单胞菌属与LPS显著负相关,与AMS显著正相关。上述结果显示PS-MPs高浓度单独以及与OTC复合暴露可能通过肠道损伤以及肠道菌群的改变,进而影响肠道消化酶活性,导致黄颡鱼幼鱼生长抑制。此外,PS-MPs和OTC的复合肠道毒性表现出显著的协同效应。本实验结果将为水环境中抗生素和微塑料的生态风险评价提供新的视角和理论依据。

English Abstract

参考文献 (50)

目录

/

返回文章
返回