二沉池出水有机物表征及膜污染机理分析

熊雪君, 徐慧, 吴晓晖, 贺昶, 王东升. 二沉池出水有机物表征及膜污染机理分析[J]. 环境工程学报, 2019, 13(6): 1272-1281. doi: 10.12030/j.cjee.201902079
引用本文: 熊雪君, 徐慧, 吴晓晖, 贺昶, 王东升. 二沉池出水有机物表征及膜污染机理分析[J]. 环境工程学报, 2019, 13(6): 1272-1281. doi: 10.12030/j.cjee.201902079
XIONG Xuejun, XU Hui, WU Xiaohui, HE Chang, WANG Dongsheng. Characterization of organic matters in secondary effluent and investigation of membrane fouling mechanism[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1272-1281. doi: 10.12030/j.cjee.201902079
Citation: XIONG Xuejun, XU Hui, WU Xiaohui, HE Chang, WANG Dongsheng. Characterization of organic matters in secondary effluent and investigation of membrane fouling mechanism[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1272-1281. doi: 10.12030/j.cjee.201902079

二沉池出水有机物表征及膜污染机理分析

  • 基金项目:

    国家自然科学基金资助项目51338010,51608515,21677156

    华中科技大学自主创新研究基金资助项目2016YXMS284国家自然科学基金资助项目(51338010,51608515,21677156)

    华中科技大学自主创新研究基金资助项目(2016YXMS284)

Characterization of organic matters in secondary effluent and investigation of membrane fouling mechanism

  • Fund Project:
  • 摘要: 采用树脂分级将二沉池出水有机物(effluent organic matter, EfOM)根据官能团分类,采用红外光谱、荧光光谱、排阻色谱等多种表征方式对EfOM及其分级组成的化学组成进行分析。考察了EfOM及其分级组成的膜通量随时间的变化曲线,研究了二沉池出水主要的膜污染组分以及膜污染模型机理。结果表明,憎水性有机物组分(hydrophobic, HPO)主要为芳香烃类有机酸,胶体有机物组分(organic colloidal, OC)主要为蛋白质类有机物,过渡亲水性有机物组分(transphilic,TPI)主要是有机酸和多糖。膜污染严重程度依次为OC>EfOM>HPO>TPI,在过滤初期,OC和EfOM中的大分子有机物会快速堵塞膜孔并引起膜通量的剧烈下降。另外,OC和TPI组分会与膜表面发生相互作用,导致不可逆膜污染偏高。对于实际水体EfOM及其各分级组分,滤饼层过滤是超滤后期主要膜污染机理,超滤实验初期的膜污染可能是多种膜污染机理共同作用的结果。研究识别了EfOM的主要污染成分和主要膜污染机理,为超滤工艺深度处理二沉池出水提供了理论指导。
  • 加载中
  • [1] JIN P, JIN X, WANG X C, et al. An analysis of the chemical safety of secondary effluent for reuse purposes and the requirement for advanced treatment[J]. Chemosphere, 2013, 91(4): 558-562.
    [2] MICHAEL I, MICHAEL C, DUAN X, et al. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications[J]. Water Research, 2015, 77: 213-248.
    [3] HABERKAMP J, ERNST M, B?CKELMANN U, et al. Complexity of ultrafiltration membrane fouling caused by macromolecular dissolved organic compounds in secondary effluents[J]. Water Research, 2008, 42(12): 3153-3161.
    [4] FILLOUX E, LABANOWSKI J, CROUE J P. Understanding the fouling of UF/MF hollow fibres of biologically treated wastewaters using advanced EfOM characterization and statistical tools[J]. Bioresource Technology, 2012, 118: 460-468.
    [5] SHON H K, VIGNESWARAN S, SNYDER S A. Effluent organic matter (EfOM) in wastewater: Constituents, effects, and treatment[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(4): 327-374.
    [6] ZHENG X, KHAN M T, CROUE J P. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions[J]. Water Research, 2014, 65: 414-424.
    [7] KIM H C, DEMPSEY B A. Effects of wastewater effluent organic materials on fouling in ultrafiltration[J]. Water Research, 2008, 42(13): 3379-3384.
    [8] SHON H K, VIGNESWARAN S, KIM I S, et al. Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater[J]. Journal of Membrane Science, 2006, 278(1/2): 232-238.
    [9] 肖萍, 肖峰, 赵锦辉, 等. 采用膜污染指数评估天然有机物在低压超滤膜中的污染行为[J]. 环境科学, 2012, 33(12): 4322-4328.
    [10] NGUYEN A H, TOBIASON J E, HOWE K J. Fouling indices for low pressure hollow fiber membrane performance assessment[J]. Water Research, 2011, 45(8): 2627-2637.
    [11] PETER V M, MARGOT J, TRABER J, et al. Mechanisms of membrane fouling during ultra-low pressure ultrafiltration[J]. Journal of Membrane Science, 2011, 377(1/2): 42-53.
    [12] MATILAINEN A, VEPSALAINEN M, SILLANPAA M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197.
    [13] XIONG X, WU X, ZHANG B, et al. The interaction between effluent organic matter fractions and Al2(SO4)3 identified by fluorescence parallel factor analysis and FT-IR spectroscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 418-428.
    [14] WANG Z, TEYCHENE B, ABBOTT T E, et al. Aluminum-humic colloid formation during pre-coagulation for membrane water treatment: Mechanisms and impacts[J]. Water Research, 2014, 61: 171-180.
    [15] HUANG H, SCHWAB K, JACANGELO J G. Development of a robust bench-scale testing unit for low-pressure membranes used in water treatment[J]. Membrane Water Treatment, 2011, 2(2): 121-136.
    [16] HUANG H, YOUNG T A, JACANGELO J G. Unified membrane fouling index for low pressure membrane filtration of natural waters: Principles and methodology[J]. Environmental Science & Technology, 2008, 42(3): 714-720.
    [17] ZHENG X, ERNST M, HUCK P M, et al. Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater[J]. Water Research, 2010, 44(18): 5212-5221.
    [18] HERMIA J. Constant pressure blocking filtration law application to powder-law non-newtonian fluid[J]. Institution of Chemical Engineers Transactions, 1982, 60: 183-187.
    [19] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
    [20] BARBER L B, LEENHEER J A, NOYES T I, et al. Nature and transformation of dissolved organic matter in treatment wetlands[J]. Environmental Science & Technology, 2001, 35(24): 4805-4816.
    [21] LEENHEER J A. Systematic approaches to comprehensive analyses of natural organic matter[J]. Annals of Environmental Science, 2009, 3: 1-130.
    [22] JIN P, JIN X, BJERKELUND V A, et al. A study on the reactivity characteristics of dissolved effluent organic matter (EfOM) from municipal wastewater treatment plant during ozonation[J]. Water Research, 2016, 88: 643-652.
    [23] FILLOUX E, GALLARD H, CROUE J P. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling[J]. Water Research, 2012, 46(17): 5531-5540.
    [24] XIAO K, WANG X, HUANG X, et al. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration[J]. Journal of Membrane Science, 2011, 373(1): 140-151.
  • 加载中
计量
  • 文章访问数:  4373
  • HTML全文浏览数:  4253
  • PDF下载数:  142
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

二沉池出水有机物表征及膜污染机理分析

  • 1. 华中科技大学环境科学与工程学院,武汉 430074
  • 2. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
基金项目:

国家自然科学基金资助项目51338010,51608515,21677156

华中科技大学自主创新研究基金资助项目2016YXMS284国家自然科学基金资助项目(51338010,51608515,21677156)

华中科技大学自主创新研究基金资助项目(2016YXMS284)

摘要: 采用树脂分级将二沉池出水有机物(effluent organic matter, EfOM)根据官能团分类,采用红外光谱、荧光光谱、排阻色谱等多种表征方式对EfOM及其分级组成的化学组成进行分析。考察了EfOM及其分级组成的膜通量随时间的变化曲线,研究了二沉池出水主要的膜污染组分以及膜污染模型机理。结果表明,憎水性有机物组分(hydrophobic, HPO)主要为芳香烃类有机酸,胶体有机物组分(organic colloidal, OC)主要为蛋白质类有机物,过渡亲水性有机物组分(transphilic,TPI)主要是有机酸和多糖。膜污染严重程度依次为OC>EfOM>HPO>TPI,在过滤初期,OC和EfOM中的大分子有机物会快速堵塞膜孔并引起膜通量的剧烈下降。另外,OC和TPI组分会与膜表面发生相互作用,导致不可逆膜污染偏高。对于实际水体EfOM及其各分级组分,滤饼层过滤是超滤后期主要膜污染机理,超滤实验初期的膜污染可能是多种膜污染机理共同作用的结果。研究识别了EfOM的主要污染成分和主要膜污染机理,为超滤工艺深度处理二沉池出水提供了理论指导。

English Abstract

参考文献 (24)

目录

/

返回文章
返回