异化铁还原细菌Klebsiella sp. KB52还原重金属Cr(VI)

刘洪艳, 王珊. 异化铁还原细菌Klebsiella sp. KB52还原重金属Cr(VI)[J]. 环境工程学报, 2019, 13(5): 1113-1118. doi: 10.12030/j.cjee.201811087
引用本文: 刘洪艳, 王珊. 异化铁还原细菌Klebsiella sp. KB52还原重金属Cr(VI)[J]. 环境工程学报, 2019, 13(5): 1113-1118. doi: 10.12030/j.cjee.201811087
LIU Hongyan, WANG Shan. Chromate reduction by Fe(III)-reducing bacterium Klebsiella sp. KB52[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1113-1118. doi: 10.12030/j.cjee.201811087
Citation: LIU Hongyan, WANG Shan. Chromate reduction by Fe(III)-reducing bacterium Klebsiella sp. KB52[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1113-1118. doi: 10.12030/j.cjee.201811087

异化铁还原细菌Klebsiella sp. KB52还原重金属Cr(VI)

  • 基金项目:

    国家自然科学基金资助项目41606157

    天津市自然科学基金资助项目16JCYBJC20900国家自然科学基金资助项目(41606157)

    天津市自然科学基金资助项目(16JCYBJC20900)

Chromate reduction by Fe(III)-reducing bacterium Klebsiella sp. KB52

  • Fund Project:
  • 摘要: 以分离自海洋沉积物中异化铁还原细菌Klebsiella sp. KB52为研究对象,分析微生物异化铁还原过程对还原 Cr(VI)的影响。菌株KB52是一株非典型耐铬细菌,在Cr(VI)浓度10~50 mg·L-1范围内,该菌株生长受到明显抑制。当将Fe(OH)3添加至培养体系,菌株KB52能够良好生长并具有铁还原性质,同时提高了Cr(VI)还原效率。Fe(OH)3浓度为 300 mg·L-1时,菌株KB52细胞生长指标OD600和累积产生Fe(II)浓度最高,分别是1.4760±0.04和(39.79±1.45) mg·L-1,Cr(VI)还原率(42%)是对照组的5.25倍。当柠檬酸铁作为电子受体,菌株KB52还原Fe(III)效率最高,Fe(II)累积浓度达到(109.87±1.27) mg·L-1,Cr(VI)还原率提高至67%。上述结果表明,菌株KB52能够利用可溶性和不可溶性Fe(III)作为电子受体进行生长,同时其异化铁还原过程偶联Cr(VI)还原。研究结果可为利用异化铁还原细菌还原Cr(VI)提供理论依据,拓宽微生物治理重金属污染的应用范围。
  • 加载中
  • [1] 杨宇, 高宇, 程潜, 等. 一株铬还原菌的分离鉴定及铬还原特性研究[J]. 生态环境学报, 2018, 27(2): 322-329.
    [2] KANCHINADHAM S B K, LOGANATHAN V D, KALYANARAMAN C. A preliminary study on leachability of chromium from a contaminated site[J]. Environmental Progress & Sustainable Energy, 2013, 32(4): 1096-1100.
    [3] RAJYALAXMI K, MERUGU R, GIRISHAM S, et al. Chromate reduction by purple non sulphur phototrophic bacterium Rhodobacter, sp. GSKRLMBKU-03 isolated from pond water[J]. Proceedings of the National Academy of Sciences India, 2017, 89(1): 259-265.
    [4] 郑建中, 石美, 李娟, 等. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085.
    [5] 胡静, 李东, 胡思扬, 等. 牺牲铁阳极法修复铬(VI)污染土壤实验研究[J]. 重庆工商大学学报(自然科学版), 2017, 34(4): 95-100.
    [6] AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH)[J]. Environmental Science & Technology, 2010, 44(1): 102-108.
    [7] SHEN Y, ZHENG X, WANG X, et al. The biomineralization process of uranium (VI) by Saccharomyces cerevisiae: Transformation from amorphous U(VI) to crystalline chernikovite[J]. Applied Microbiology & Biotechnology, 2018, 102(9): 4217-4229.
    [8] 段骏, 贾蓉, 曲东. 厌氧培养体系中V(Ⅴ)与Fe(III)还原之间的电子竞争[J]. 水土保持学报, 2014, 28(3): 264-270.
    [9] ZHANG J, DONG H, ZHAO L, et al. Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens[J]. Chemical Geology, 2014, 370(4): 29-39.
    [10] 司友斌, 王娟. 异化铁还原对土壤中重金属形态转化及其有效性影响[J]. 环境科学, 2015, 36(9): 3533-3542.
    [11] XU W, LIU Y, ZENG G, et al. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena[J]. Journal of Hazardous Materials, 2005, 126(1/2/3): 17-22.
    [12] 李义纯, 李永涛, 李林峰, 等. 水稻土中铁-氮循环耦合体系影响镉活性机理研究[J]. 环境科学学报, 2018, 38(1): 328-335.
    [13] 陈鹏程, 李晓敏, 李芳柏. 硝酸盐还原和亚铁氧化对贪铜菌还原砷的影响[J]. 生态环境学报, 2017, 26(2): 328-334.
    [14] 刘洪艳, 王红玉, 谢丽霞, 等. 海洋沉积物中一株铁还原细菌分离及Fe(Ⅲ)还原性质[J]. 海洋科学, 2016, 40(3): 65-70.
    [15] LIU H Y, WANG H Y. Characterization of Fe(III)-reducing enrichment culture and isolation of Fe(III)-reducing bacterium Enterobacter sp. L6 from marine sediment [J]. Journal of Bioscience & Bioengineering, 2016, 122(1): 92-96.
    [16] 王伟民, 曲东, 徐佳. 水稻土中铁还原菌的分离纯化及铁还原能力分析[J]. 西北农林科技大学学报, 2008, 36(10): 103-109.
    [17] PENG L, LIU Y, GAO S H, et al. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling[J]. Chemosphere, 2015, 139: 334-339.
    [18] ZHANG H, LIU L, CHANG Q, et al. Biosorption of Cr(VI) ions from aqueous solutions by a newly isolated Bosea sp. strain Zer-1 from soil samples of a refuse processing plant[J]. Canadian Journal of Microbiology, 2015, 61(6): 399-408.
    [19] 洪霞, 张馨荃, 严君华, 等. Pseudomonas S2-3菌株对Cr(VI)的耐受性及去除[J]. 环境工程学报, 2016, 10(3): 1539-1545.
    [20] HUANG B, GU L, HE H, et al. Enhanced biotic and abiotic transformation of Cr(VI) by quinone-reducing bacteria/dissolved organic matters/Fe(III) in anaerobic environment[J]. Environmental Science Processes & Impacts, 2016, 18(9): 1185-1192.
    [21] LEHOURS A C, RABIET M, MOREL-DESROSIERS N, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France)[J]. Geomicrobiology Journal, 2010, 27(8): 714-722.
    [22] DALLA V E, SUVOROVA I, MAILLARD J, et al. Fe (III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1[J]. Geobiology, 2014, 12(1): 48-61.
    [23] 伍迪, 陈晓明, 肖伟, 等. 粘质沙雷氏菌对U(VI)、Co(II)、Cr(VI)的耐受性研究[J]. 安全与环境工程, 2017, 24(2): 53-57.
    [24] LIU C, ZACHARA J M, GORBY Y A, et al. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32[J]. Environmental Science & Technology, 2001, 35(7): 1385-1393.
    [25] 郭琼, 肖琳, 于忆潇, 等. 以圆币草发酵液为碳源时硫酸盐还原菌处理重金属废水[J]. 微生物学通报, 2017, 44(9): 2019-2028.
    [26] WHITAKER A H, PE?A J, AMOR M, et al. Cr(VI) uptake and reduction by biogenic iron (oxyhydr)oxides[J]. Environmental Science Processes & Impacts, 2018, 20(7): 1056-1068.
    [27] GR?HLICH A, LANGER M, MITRAKAS M, et al. Effect of organic matter on Cr(VI) removal from groundwater by Fe(II) reductive precipitation for groundwater treatment[J]. Water, 2017, 9(6): 389-404.
    [28] ZHOU Z, JING G, ZHENG X. Reduction of Fe (III) EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions[J]. Bioresource Technology, 2013, 132(3): 210-216.
  • 加载中
计量
  • 文章访问数:  4574
  • HTML全文浏览数:  4510
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

异化铁还原细菌Klebsiella sp. KB52还原重金属Cr(VI)

  • 1. 天津科技大学海洋与环境学院,天津 300457
基金项目:

国家自然科学基金资助项目41606157

天津市自然科学基金资助项目16JCYBJC20900国家自然科学基金资助项目(41606157)

天津市自然科学基金资助项目(16JCYBJC20900)

摘要: 以分离自海洋沉积物中异化铁还原细菌Klebsiella sp. KB52为研究对象,分析微生物异化铁还原过程对还原 Cr(VI)的影响。菌株KB52是一株非典型耐铬细菌,在Cr(VI)浓度10~50 mg·L-1范围内,该菌株生长受到明显抑制。当将Fe(OH)3添加至培养体系,菌株KB52能够良好生长并具有铁还原性质,同时提高了Cr(VI)还原效率。Fe(OH)3浓度为 300 mg·L-1时,菌株KB52细胞生长指标OD600和累积产生Fe(II)浓度最高,分别是1.4760±0.04和(39.79±1.45) mg·L-1,Cr(VI)还原率(42%)是对照组的5.25倍。当柠檬酸铁作为电子受体,菌株KB52还原Fe(III)效率最高,Fe(II)累积浓度达到(109.87±1.27) mg·L-1,Cr(VI)还原率提高至67%。上述结果表明,菌株KB52能够利用可溶性和不可溶性Fe(III)作为电子受体进行生长,同时其异化铁还原过程偶联Cr(VI)还原。研究结果可为利用异化铁还原细菌还原Cr(VI)提供理论依据,拓宽微生物治理重金属污染的应用范围。

English Abstract

参考文献 (28)

目录

/

返回文章
返回