γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂

高寒, 董艳春, 周术元. γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂[J]. 环境工程学报, 2019, 13(5): 1148-1156. doi: 10.12030/j.cjee.201811039
引用本文: 高寒, 董艳春, 周术元. γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂[J]. 环境工程学报, 2019, 13(5): 1148-1156. doi: 10.12030/j.cjee.201811039
GAO Han, DONG Yanchun, ZHOU Shuyuan. Thermocatalytic decomposition of a sarin simulating agent by metal oxides supported on γ-Al2O3[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1148-1156. doi: 10.12030/j.cjee.201811039
Citation: GAO Han, DONG Yanchun, ZHOU Shuyuan. Thermocatalytic decomposition of a sarin simulating agent by metal oxides supported on γ-Al2O3[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1148-1156. doi: 10.12030/j.cjee.201811039

γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂

  • 基金项目:

    国家自然科学基金资助项目21701186国家自然科学基金资助项目(21701186)

Thermocatalytic decomposition of a sarin simulating agent by metal oxides supported on γ-Al2O3

  • Fund Project:
  • 摘要: 为了考察负载型金属氧化物催化剂对毒剂的热催化分解性能,以γ-Al2O3为载体,金属氧化物(Mn、Ni、Fe、Co、Cu和Ce)为活性组分,采用等体积浸渍法制备了负载型金属氧化物催化剂,对沙林毒剂模拟剂——甲基膦酸二甲酯(DMMP)进行了热催化分解评价实验,分别研究了不同反应温度、空速条件下热催化分解性能的变化规律。结果表明,在几种负载型金属氧化物催化剂中,CuO/γ-Al2O3表现出了最佳的防护性能。通过调控CuO负载量(1%~20%),发现5% CuO/γ-Al2O3具有较高的分散度和比表面积,热催化分解性能最好。磷物种的沉积造成催化剂比表面积的降低和晶体结构的破坏,是催化剂活性下降的主要原因。
  • 加载中
  • [1] GUPTA R C. Handbook of Toxicology of Chemical Warfare Agents[M]. London: Academic Press, 2009.
    [2] MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2011, 376(1/2): 119-131.
    [3] GRAVEN W M, WELLER S W, PETERS D L. Catalytic conversion of an organophosphate vapor over platinum-alumina[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(2): 183-189.
    [4] MONJI M, CIORA R, LIU P K T, et al. Thermocatalytic decomposition of dimethyl methylphosphonate (DMMP) in a multi-tubular, flow-through catalytic membrane reactor[J]. Journal of Membrane Science, 2015, 482: 42-48.
    [5] MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Flow-through catalytic membrane reactors for the destruction of a chemical warfare simulant: Dynamic performance aspects[J]. Catalysis Today, 2016, 268:130-141.
    [6] LIM K I, SONG Y I, NAM I S, et al. Effect of support on the decomposition of DMMP over Pt based catalysts[C]//National Technical Information Service. Proceedings of the ERDEC scientific conference on chemical and biological defense research. Harford County, 1996: 761-766.
    [7] MOTAMEDHASHEMI M M Y, MONJI M, EGOLFOPOULOS F, et al. A hybrid catalytic membrane reactor for destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2015, 473: 1-7.
    [8] TZOU T Z, WELLER S W. Catalytic oxidation of dimethyl methylphosphonate[J]. Journal of Catalysis, 1994, 146(2): 370-374.
    [9] RYU S G, YANG J K, LEE H W, et al. Decomposition of dimethyl methylphosphonate over alumina-supported precious metal catalysts[J]. Hwahak Konghak, 1995, 33(4): 462-470.
    [10] RATLIFF J S, TENNEY S A, HU X, et al. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110)[J]. Langmuir, 2009, 25(1): 216-225.
    [11] PANAYOTOV D A, MORRIS J R. Catalytic degradation of a chemical warfare agent simulant: Reaction mechanisms on TiO2-supported Au nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(19): 7496-7502.
    [12] HENDERSON M A, WHITE J M. Adsorption and decomposition of dimethyl methylphosphonate on platinum(111)[J]. Journal of the American Chemical Society, 1988, 110(21): 6939-6947.
    [13] TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1): 97-108.
    [14] RUSU C N, YATES J T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2[J]. Journal of Physical Chemistry B, 2000, 104(51): 12292-12298.
    [15] PANAYOTOV D A, MORRIS J R. Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: Adsorbate reactions with lattice oxygen as studied by infrared spectroscopy[J]. Journal of Physical Chemistry C, 2009, 113(35): 15684-15691.
    [16] MITCHELL M B, SHEINKER V N, MINTZ E A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides[J]. Journal of Physical Chemistry B, 1997, 101(51): 11192-11203.
    [17] CHEN D A, RATLIFF J S, HU X, et al. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films[J]. Surface Science, 2010, 604(5/6): 574-587.
    [18] TESFAI T M, SHEINKER V N, MITCHELL M B. Decomposition of dimethyl methylphosphonate (DMMP) on alumina-supported iron oxide[J]. Journal of Physical Chemistry B, 1998, 102(38): 7299-7302.
    [19] ZHOU J, MA S, KANG Y C, et al. Dimethyl methylphosphonate decomposition on titania-supported Ni clusters and films: A comparison of chemical activity on different Ni surfaces[J]. Journal of Physical Chemistry B, 2004, 108(31): 11633-11644.
    [20] CAO L, SUIB S L, TANG X, et al. Thermocatalytic decomposition of dimethyl methylphosphonate on activated carbon[J]. Journal of Catalysis, 2001, 197(2): 236-243.
    [21] WAN H, WANG Z, ZHU J, et al. Influence of CO pretreatment on the activities of CuO/gama-Al2O3 catalysts in CO + O2 reaction[J]. Applied Catalysis B: Environmental, 2008, 79(3): 254-261.
    [22] LUO M, FANG P, HE M, et al. In-situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2005, 239(1): 243-248.
    [23] FANG P, XIE Y, LUO M, et al. In-situ XRD and Raman spectroscopic study on the solid state reaction of CuO/Al2O3 catalysts at high temperature[J]. Acta Physico Chimica Sinica, 2005, 21(1): 102-105.
    [24] LI Y X, SCHLUP J R, KLABUNDE K J. Fourier-transform infrared photoacoustic-spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium-oxide[J]. Langmuir, 1991, 7(7): 1394-1399.
    [25] LI Y X, KOPER O, ATTEYA M, et al. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. Insitu GC-MS studies of pulsed microreactions over magnesium oxide[J]. Chemistry of Materials, 1992, 4(2): 323-330.
    [26] MA S, ZHOU J, KANG Y C, et al. Dimethyl methylphosphonate decomposition on Cu surfaces: Supported Cu nanoclusters and films on TiO2(110)[J]. Langmuir, 2004, 20(22): 9686-9694.
    [27] LEE K Y, HOUALLA M, HERCULES D M, et al. Catalytic oxidative decomposition of dimethyl methylphosphonate over Cu-substituted hydroxyapatite[J]. Journal of Catalysis, 1994, 145(1): 223-231.
  • 加载中
计量
  • 文章访问数:  3021
  • HTML全文浏览数:  2957
  • PDF下载数:  90
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂

  • 1. 军事科学院防化研究院,国民核生化灾害防护国家重点实验室,北京 100191
基金项目:

国家自然科学基金资助项目21701186国家自然科学基金资助项目(21701186)

摘要: 为了考察负载型金属氧化物催化剂对毒剂的热催化分解性能,以γ-Al2O3为载体,金属氧化物(Mn、Ni、Fe、Co、Cu和Ce)为活性组分,采用等体积浸渍法制备了负载型金属氧化物催化剂,对沙林毒剂模拟剂——甲基膦酸二甲酯(DMMP)进行了热催化分解评价实验,分别研究了不同反应温度、空速条件下热催化分解性能的变化规律。结果表明,在几种负载型金属氧化物催化剂中,CuO/γ-Al2O3表现出了最佳的防护性能。通过调控CuO负载量(1%~20%),发现5% CuO/γ-Al2O3具有较高的分散度和比表面积,热催化分解性能最好。磷物种的沉积造成催化剂比表面积的降低和晶体结构的破坏,是催化剂活性下降的主要原因。

English Abstract

参考文献 (27)

目录

/

返回文章
返回