MIL-101前体制备多孔铁碳材料构建高效异相电芬顿体系

王婷婷, 张国权, 周玉菲, 凌威, 杨凤林. MIL-101前体制备多孔铁碳材料构建高效异相电芬顿体系[J]. 环境工程学报, 2019, 13(1): 20-29. doi: 10.12030/j.cjee.201808051
引用本文: 王婷婷, 张国权, 周玉菲, 凌威, 杨凤林. MIL-101前体制备多孔铁碳材料构建高效异相电芬顿体系[J]. 环境工程学报, 2019, 13(1): 20-29. doi: 10.12030/j.cjee.201808051
WANG Tingting, ZHANG Guoquan, ZHOU Yufei, LING Wei, YANG Fenglin. Efficient heterogeneous electro-Fenton cathode based on the porous FeC material derived from a MIL-101 precursor[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 20-29. doi: 10.12030/j.cjee.201808051
Citation: WANG Tingting, ZHANG Guoquan, ZHOU Yufei, LING Wei, YANG Fenglin. Efficient heterogeneous electro-Fenton cathode based on the porous FeC material derived from a MIL-101 precursor[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 20-29. doi: 10.12030/j.cjee.201808051

MIL-101前体制备多孔铁碳材料构建高效异相电芬顿体系

  • 基金项目:

Efficient heterogeneous electro-Fenton cathode based on the porous FeC material derived from a MIL-101 precursor

  • Fund Project:
  • 摘要: 通过水热法合成MIL-101(Fe)材料,并在N2氛围中进行高温碳化制备多孔铁碳(N-MIL-FeC)电极材料,探究其电催化氧还原性能及阴极电芬顿降解模拟染料废水性能。将制备的N-MIL-FeC材料进行电催化氧还原反应(ORR)性能测试,结果表明,Fe/H2BDC摩尔比为2∶1,碳化温度为900 ℃,N-MIL-FeC材料CV扫描所得图形峰电位最小且峰电流最高,具有最优的ORR催化活性。在此基础上,将最佳条件下制得的N-MIL-FeC负载在碳纸上制成催化阴极应用于电芬顿反应催化降解模拟染料废水RhB。在催化剂负载量为1.5 mg·cm-2,pH为7条件下,浓度10 mg·L-1的RhB溶液经过70 min降解率达到99%以上。通过淬灭实验和电子顺磁共振(EPR)测试证明羟基自由基(·OH)是参与催化降解反应的主要活性中间体。以MIL-101(Fe)为前驱体制备的多孔铁碳材料性能较好,有一定的应用前景。
  • 加载中
  • [1] 张华春, 熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色, 2016, 53(3): 45-51.
    [2] 梁波, 徐金球, 关杰, 等. 生物法处理印染废水的研究进展[J]. 化工环保, 2015, 35(3): 259-266.
    [3] 周贤波, 李晓. 印染废水物化处理技术研究[J]. 应用化工, 2018, 47(5): 1058-1061.
    [4] 吴志敏, 韦朝海, 吴超飞. H2O2湿式氧化处理含酸性红B染料模拟废水的研究[J]. 环境科学学报, 2004, 24(5): 809-814.
    [5] 张静, 杜亚威, 茹星瑶, 等. pH对微气泡臭氧氧化处理染料废水影响[J]. 环境工程学报, 2016, 10(2):742-748.
    [6] 储金宇, 李朋博, 郭海娟, 等. 流化床-Fenton法降解亚甲基蓝废水[J]. 水处理技术, 2015, 41(12): 102-105.
    [7] 许东伟, 徐畅, 严群. Fe-Mn/ACF复合电极在生物-电芬顿系统中处理活性艳蓝KN-R[J]. 环境工程学报, 2017, 11(5): 2654-2659.
    [8] GHONEIM M M, EI-DESOKY H S, ZIDAN N M. Electro-Fenton oxidation of sunset yellow FCF azo-dye in aqueous solutions[J]. Desalination, 2011, 274(1/2/3): 22-30.
    [9] LIN H, ZHANG H, WANG X, et al. Electro-Fenton removal of orange II in a divided cell: Reaction mechanism, degradation pathway and toxicity evolution[J]. Separation and Purification Technology, 2014, 122: 533-540.
    [10] KHATAEE A, VAHID B, BEHJATI B, et al. Kinetic modeling of a triarylmethane dye decolorization by photoelectro-Fenton process in a recirculating system: Nonlinear regression analysis[J]. Chemical Engineering Research and Design, 2014, 92(2): 362-367.
    [11] GRGUR B N, MIJIN D Z. A kinetics study of the methomyl electrochemical degradation in the chloride containing solutions[J]. Applied Catalysis B: Environmental, 2014, 147: 429-438.
    [12] NIDHEESH P V, GANDHIMATHI R. Trends in electro-Fenton process for water and wastewater treatment: An overview[J]. Desalination, 2012, 299: 1-15.
    [13] LEDEZMA E A, LI Y, WANG A. Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process[J]. Journal of Hazardous Materials, 2012, 227: 41-48.
    [14] 周蕾, 周明华. 电芬顿技术的研究进展[J]. 水处理技术, 2013, 39(10): 6-11.
    [15] 吕杰婵, 窦远明, 孙猛, 等. 感应电芬顿降解二甲基砷的效果与机理研究[J]. 环境科学学报, 2017, 37(6): 2152-2157.
    [16] 汤甲. 金属有机骨架材料的催化应用研究[D]. 北京: 北京科技大学, 2017.
    [17] RICCO R, MALFATTI L, TAKAHASHI M, et al. Applications of magnetic metal-organic framework composites[J]. Journal of Materials Chemistry A, 2013, 1(42): 13033-13045.
    [18] 吕晓丽, 张春芳, 白云翔, 等. 原位生长法制备 ZIF-8/PAN 超滤膜用于染料废水处理[J]. 水处理技术, 2016, 42(7): 30-34.
    [19] TANG J, SALUNKHER R, LIU J, et al. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon[J]. American Chemical Society, 2015, 137(4): 1572-1580.
    [20] ZHANG J, HE D, SU H, et al. Porous polyanliine-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source[J]. Journal of Materials Chemistry A, 2014, 2(5): 1242-1246.
    [21] BLOCH E D, MURRAY L J, QUEEN W L, et al. Selective binding of O2 over N2 in a redox-axtive mental-organic framework with open iron(Ⅱ) coordination sites[J]. Journal of the American Chemical Society, 2011, 133(37): 14814-14822.
    [22] TIRUSEW A, MANKE J, YANG J, et al. Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance[J]. Applied Catalysis B: Environmental, 2017, 203: 768-777.
    [23] HORIKE S, SUGIMOTO M, KONGPATPANICH K, et al. Fe2+-based layered porous coordination polymersand soft encapsulation of guests via redox activity[J]. Journal of Materials Chemistry A, 2013, 11(1): 3675-3679.
    [24] 宋国强, 王志清, 王亮, 等. MOF(Fe)的制备及其氧气还原催化性能[J]. 催化学报, 2014, 35(2): 185-195.
    [25] FéREY G, SERRE C, MELLOT-DRAZNIEKS C, et al. A hybrid solid with giant pores prepared by acombination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie International Edition, 2004, 43(46): 6296-6301.
    [26] FéREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2043.
    [27] 刘蕾. 石墨烯和多孔碳纳米复合材料的制备及电化学性能研究[D]. 北京: 中国地质大学, 2018.
    [28] 杨阳. 基于金属有机框架化合物设计制备碳基纳米材料及其在电催化领域的应用[D]. 合肥: 中国科学技术大学, 2018.
    [29] MAKSIMCHUK N V, KOVALENKO K A, FEDIN V P, et al. Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: Superior catalytic activity and selectivity[J]. Chemical Communications, 2012, 48(54): 6812-6814.
    [30] 李彦芳. 镍铁水滑石/石墨烯复合材料的制备及催化性能研究[D]. 大连: 大连理工大学, 2016.
    [31] 程鹏. 通过不同方法产生羟基自由基加速沸石分子筛合成的研究[D]. 长春: 吉林大学, 2016.
    [32] SKOBELEV I Y, SOROKIN A B, KOVALENKO K A, et al. Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101[J]. Journal of Catalysis, 2013, 298: 61-69.
    [33] 刘晓玉. 基于Fe/FeOx/多级孔碳阴极电芬顿降解有机污染物[D]. 大连: 大连理工大学, 2017.
    [34] 白青青, 吴小宁, 王倩, 等. Fenton反应中拓展pH的研究进展[J]. 化学通报, 2018, 81(3): 217-222.
    [35] ZHAO H Y, QIAN L, GUAN X H, et al. Continuous bulk FeCuC aerogel with ultradispersed metal nanoparticles: An efficient 3D heterogeneous electro-Fenton cathode over a wide range of pH 3-9[J]. Environmental Science and Technology, 2016, 50(10): 5225-5233.
    [36] 饶秋林. Fe-MIL-101、Fe-MIL-53及Fe/MIL-125(Ti)非均相Fenton反应降解罗丹明B溶液[D]. 昆明: 云南大学, 2015.
    [37] 石申, 刘正伟, 奚吉, 等. 阴极电芬顿法电极材料的选择及处理印染废水的研究[J]. 兵器材料科学与工程, 2014, 37(1): 115-117.
    [38] 汝小瑞. 非均相电Fenton催化剂的可控制备与催化性能分析[D]. 合肥: 合肥工业大学, 2015.
  • 加载中
计量
  • 文章访问数:  4510
  • HTML全文浏览数:  4425
  • PDF下载数:  256
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

MIL-101前体制备多孔铁碳材料构建高效异相电芬顿体系

  • 1. 大连理工大学环境学院,大连 116024
基金项目:

摘要: 通过水热法合成MIL-101(Fe)材料,并在N2氛围中进行高温碳化制备多孔铁碳(N-MIL-FeC)电极材料,探究其电催化氧还原性能及阴极电芬顿降解模拟染料废水性能。将制备的N-MIL-FeC材料进行电催化氧还原反应(ORR)性能测试,结果表明,Fe/H2BDC摩尔比为2∶1,碳化温度为900 ℃,N-MIL-FeC材料CV扫描所得图形峰电位最小且峰电流最高,具有最优的ORR催化活性。在此基础上,将最佳条件下制得的N-MIL-FeC负载在碳纸上制成催化阴极应用于电芬顿反应催化降解模拟染料废水RhB。在催化剂负载量为1.5 mg·cm-2,pH为7条件下,浓度10 mg·L-1的RhB溶液经过70 min降解率达到99%以上。通过淬灭实验和电子顺磁共振(EPR)测试证明羟基自由基(·OH)是参与催化降解反应的主要活性中间体。以MIL-101(Fe)为前驱体制备的多孔铁碳材料性能较好,有一定的应用前景。

English Abstract

参考文献 (38)

目录

/

返回文章
返回