铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A

张明明, 李静, 龚焱, 李一兵, 赵旭. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19. doi: 10.12030/j.cjee.201807189
引用本文: 张明明, 李静, 龚焱, 李一兵, 赵旭. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19. doi: 10.12030/j.cjee.201807189
ZHANG Mingming, LI Jing, GONG Yan, LI Yibing, ZHAO Xu. Photocatalytic degradation of BPA by a MnFe2O4 manosphere modified graphite carbon nitride composite photocatalyst with peroxymonosulfate activation ability[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 9-19. doi: 10.12030/j.cjee.201807189
Citation: ZHANG Mingming, LI Jing, GONG Yan, LI Yibing, ZHAO Xu. Photocatalytic degradation of BPA by a MnFe2O4 manosphere modified graphite carbon nitride composite photocatalyst with peroxymonosulfate activation ability[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 9-19. doi: 10.12030/j.cjee.201807189

铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A

  • 基金项目:

    国家自然科学基金资助项目(51578532)

    河北省住房和城乡建设厅科研项目(2014-230)

Photocatalytic degradation of BPA by a MnFe2O4 manosphere modified graphite carbon nitride composite photocatalyst with peroxymonosulfate activation ability

  • Fund Project:
  • 摘要: 采用水热法制备了铁酸锰(MnFe2O4)纳米球修饰的石墨相氮化碳(g-C3N4)复合光催化剂(MnFe2O4/g-C3N4),并对其光催化活化过一硫酸盐(PMS)去除内分泌干扰物双酚A(BPA)的性能进行探究。考察了PMS浓度、MnFe2O4负载量、催化剂投加量及pH对双酚A去除的影响。XRD、SEM、TEM及FT-IR等结果证明,MnFe2O4纳米球已成功负载于g-C3N4。光催化实验结果表明,与单独g-C3N4相比,MnFe2O4/g-C3N4光催化活性有明显提升。同时,PMS的加入可进一步大幅提高该复合光催化剂的光催化性能。当PMS浓度为1 mmol·L-1、MnFe2O4负载量为20%及催化剂投加量为0.5 g·L-1时,复合催化剂光催化活性最佳,反应2 h后,BPA的去除率达到98%。光电化学测试结果表明,引入MnFe2O4后可提升g-C3N4光生载流子分离能力。重复性实验结果表明该复合光催化剂具备较好的稳定性。本研究可为新型高效光催化体系的开发及其在环境污染控制领域的应用提供参考。
  • 加载中
  • [1] DIAMANTI-KANDARAKIS E, BOURGUIGNON J P, GIUDICE L C, et al. Endocrine-disrupting chemicals: An endocrine society scientific statement[J]. Endocrine Reviews, 2009, 30: 293-342.
    [2] KANG J H, KONDO F, KATAYAMA Y. Human exposure to bisphenol A [J]. Toxicology, 2006, 226: 79-89.
    [3] CHEN M Y, IKE M, FUJITA M. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols[J]. Environmental Toxicology, 2002, 17: 80-86.
    [4] STAPLES C A, DORN P B, KLECKA G M, et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere, 1998, 36: 2149-2173.
    [5] HU J Y, AIZAWA T, OOKUBO S. Products of aqueous chlorination of bisphenol A and their estrogenic activity[J]. Environmental Science & Technology, 2002, 36: 1980-1987.
    [6] ZOELLER R T, BANSAL R, PARRIS C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain[J]. Endocrinology, 2005, 146: 607-612.
    [7] SHEN T, GAO M L, DING F, et al. Organo-vermiculites with biphenyl and dipyridylgemini surfactants for adsorption of bisphenol A: Structure, mechanism and regeneration[J]. Chemosphere, 2018, 207: 489-496.
    [8] KANG J H, KONDO F. Bisphenol A degradation by bacteria isolated from river water[J]. Archives of Environment Contamination and Toxicology, 2002, 45: 265-269.
    [9] ZHU Y P, ZHU R L, XI Y F, et al. Heterogeneous photo-Fenton degradation of bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light[J]. Chemical Engineering Journal, 2018, 346: 567-577.
    [10] CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Review, 2010, 110: 6503-6570.
    [11] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: Possibilities and challenges[J]. Advanced Materials, 2012, 24: 229-251.
    [12] WANG X C, MAEDA K, THOMAS A, et al. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Nature Materials, 2009, 8: 76-80.
    [13] DONG G P, ZHANG Y H, PAN Q W, et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20: 33-50.
    [14] CHEN D M, WANG K W, HONG W Z, et al. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite[J]. Applied Catalysis B: Environmental, 2015, 166-167: 366-373.
    [15] HE Y M, ZHANG L H, TENG B T,et al. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel[J]. Environmental Science & Technology, 2015, 49: 649-656.
    [16] ZHANG Z Y, HUANG J D, ZHANG M Y,et al. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 163: 298-305.
    [17] OH W, DONG Z, LIM T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201.
    [18] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62.
    [19] ANTONIOU M G, DELARUZ A A, DIONYSIOU D D. Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals[J]. Environmental Science & Technology, 2010, 44: 7238-7244.
    [20] GONG Y, ZHAO X, ZHANG H,et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation[J]. Applied Catalysis B: Environmental, 2018, 233: 35-45.
    [21] WEI M Y, GAO L, LI J, et al. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation[J]. Journal of Hazardous materials, 2016, 31: 660-668.
    [22] ZENG H B, LIU S S, CHAI B Y,et al. Enhanced photoelectrocatalytic decomplexation of Cu-EDTA and Cu recovery by persulfate activated by UV and cathodic reduction[J]. Environmental Science & Technology, 2016, 50: 6459-6466.
    [23] DENG J, FENG S F, MA X Y,et al. Heterogeneous degradation of orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4 [J]. Separation and Purification Technology, 2016, 167: 181-189.
    [24] HUANG G X, WANG C Y, W C, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51: 12611-12618.
    [25] ZHAO Y S, LI Q, REN H J. Activation of persulfate by magnetic MnFe2O4-bentonite for catalytic degradation of 2, 4-dichlorophenol in aqueous solutions[J]. Chemical Research in Chinese Universities, 2017, 33: 415-421.
    [26] WANG X Y, WANG A Q, MA J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites[J]. Journal of Hazardous Materials, 2017, 336: 81-92.
    [27] YU L, ZHANG G, LIU C L,et al. Interface stabilization of undercoordinated iron centers on manganese oxides for nature-inspired peroxide activation[J]. ACS Catalysis, 2018, 8: 1090-1096.
  • 加载中
计量
  • 文章访问数:  4014
  • HTML全文浏览数:  3911
  • PDF下载数:  175
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A

  • 1. 河北工业大学土木与交通学院,天津 300401
  • 2. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
基金项目:

国家自然科学基金资助项目(51578532)

河北省住房和城乡建设厅科研项目(2014-230)

摘要: 采用水热法制备了铁酸锰(MnFe2O4)纳米球修饰的石墨相氮化碳(g-C3N4)复合光催化剂(MnFe2O4/g-C3N4),并对其光催化活化过一硫酸盐(PMS)去除内分泌干扰物双酚A(BPA)的性能进行探究。考察了PMS浓度、MnFe2O4负载量、催化剂投加量及pH对双酚A去除的影响。XRD、SEM、TEM及FT-IR等结果证明,MnFe2O4纳米球已成功负载于g-C3N4。光催化实验结果表明,与单独g-C3N4相比,MnFe2O4/g-C3N4光催化活性有明显提升。同时,PMS的加入可进一步大幅提高该复合光催化剂的光催化性能。当PMS浓度为1 mmol·L-1、MnFe2O4负载量为20%及催化剂投加量为0.5 g·L-1时,复合催化剂光催化活性最佳,反应2 h后,BPA的去除率达到98%。光电化学测试结果表明,引入MnFe2O4后可提升g-C3N4光生载流子分离能力。重复性实验结果表明该复合光催化剂具备较好的稳定性。本研究可为新型高效光催化体系的开发及其在环境污染控制领域的应用提供参考。

English Abstract

参考文献 (27)

目录

/

返回文章
返回