生物滴滤法净化低浓度磷化氢及其微生物群落分析

刘树根, 苏福家, 李婷, 宁平. 生物滴滤法净化低浓度磷化氢及其微生物群落分析[J]. 环境工程学报, 2018, 12(12): 3406-3414. doi: 10.12030/j.cjee.201807167
引用本文: 刘树根, 苏福家, 李婷, 宁平. 生物滴滤法净化低浓度磷化氢及其微生物群落分析[J]. 环境工程学报, 2018, 12(12): 3406-3414. doi: 10.12030/j.cjee.201807167
LIU Shugen, SU Fujia, LI Ting, NING Ping. Purification of low concentration phosphine by bio-trickling filter system and analysis of microbial community[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3406-3414. doi: 10.12030/j.cjee.201807167
Citation: LIU Shugen, SU Fujia, LI Ting, NING Ping. Purification of low concentration phosphine by bio-trickling filter system and analysis of microbial community[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3406-3414. doi: 10.12030/j.cjee.201807167

生物滴滤法净化低浓度磷化氢及其微生物群落分析

  • 基金项目:

    国家自然科学基金资助项目(51868029)

    云南省科技计划项目面上项目(2016FB093)

Purification of low concentration phosphine by bio-trickling filter system and analysis of microbial community

  • Fund Project:
  • 摘要: 采用生物滴滤法净化低浓度磷化氢气体,探讨填料种类、进气量、氧浓度、进气磷化氢浓度等因素对净化过程的影响。复合填料能促进气态磷化氢的吸附,但微生物对磷化氢的净化起决定性作用。进气负荷高于300 mL·min-1 (空间速度为8.2 h-1)时,滴滤塔内磷化氢去除率下降明显;进气中氧含量不足时,生物氧化进程受到抑制,磷化氢净化效果变差。在进气流量200 mL·min-1、氧体积分数8.2%、磷化氢入口浓度20 mg·m-3条件下,磷化氢脱除率可高达76.8%,定期废弃的吸收液中总磷含量均低于1.0 mg·L-1。生物滴滤塔内具有较高的微生物种群多样性,细菌以变形菌门(Proteobacteria)最为丰富,主要的细菌种属有:鞘氨醇单胞菌(Sphingomonas)、甲醇杆菌(Methylobacterium)、嗜甲基菌(Methylophilus)及伯克氏菌(Burkholderia)。
  • 加载中
  • [1] ROELS J, VERSTRAETE W.Occurrence and origin of phosphine in landfill gas[J].Communications in Agricultural & Applied Biological Sciences,2003,327(1):185-196 10.1016/j.scitotenv.2003.11.016
    [2] CHEN W, NIU X, AN S, et al.Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases[J].Science of the Total Environment,2017,599-600:952-959 10.1016/j.scitotenv.2017.04.228
    [3] SONG X X, MORRISON R J, YU Z M, et al.Matrix-bound phosphine in sediments from Lake Illawarra, New South Wales, Australia [J].Marine Pollution Bulletin,2011,62:1744-1750 10.1016/j.marpolbul.2011.05.025
    [4] 宁平, 易玉敏, 瞿广飞, 等.PdCl2-CuCl2液相催化氧化净化黄磷尾气中PH3[J].中南大学学报(自然科学版),2009,40(2):340-345
    [5] QU G F, ZHAO Q, JIAN R L, et al.Mechanism of PH3 absorption by Cu+-ILs/H2O two-liquid phase system[J].Separation and Purification Technology,2017,187:255-263 10.1016/j.seppur.2017.06.020
    [6] TAN Z W, SUN J, WU C Y, et al.Phosphorus-containing polymers from THPS.IV: Synthesis and properties of phosphorus-containing polybenzoxazines as a green route for recycling toxic phosphine (PH3) tail gas[J].Journal of Hazardous Material,2017,322:540-550 10.1016/j.jhazmat.2016.10.021
    [7] LEBRERO R, RODRIGUEZ E, ESTRADA J M, et al.Odor abatement in biotrickling filters: Effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal[J].Bioresource Technology,2012,109(2):38-45 10.1016/j.biortech.2012.01.052
    [8] 周学霞. 强化生物滴滤塔处理二甲苯废气研究[D]. 杭州: 浙江大学, 2012
    [9] 刘涉江, 李鑫钢, 纪志永, 等. 甲基叔丁基醚高效降解菌的分离鉴定及其生物强化技术[J]. 天津大学学报(自然科学与工程技术版),2010,43(5):435-439
    [10] DENG J, CHEN L, WEI W.The study on removal the PH3 in CO by dephosphorization dacteria[J].Advanced Materials Research,2013,781-784:861-868
    [11] 王瑾丰, 牛晓君, 马金玲, 等. 厌氧条件下微生物将磷还原为磷化氢[J]. 微生物学通报,2015,42(1):34-41
    [12] 曹建平, 张朝升, 赵丽敏, 等. 无机磷源及酶活性与厌氧污泥产磷化氢的关系[J].中国给水排水,2017,33(1):110-113
    [13] 肖瑢, 刘树根, 杨希,等. 活性污泥体系中磷化氢生物降解特性[J]. 环境工程学报,2018,12(3):855-862 10.12030/j.cjee.201707088
    [14] 曹海峰, 刘季昂, 庄亚辉. 环境中磷化氢的源及厌氧条件下前体物类型的研究 [J]. 中国环境科学,2000,30(1):63-68
    [15] 李丽. 环境中磷化氢对水稻根际土壤性质以及有效磷的影响探究 [D]. 广州: 华南理工大学,2015
    [16] 白志燕.高效转化天然纤维素生产ABE的菌群筛选与性能研究[D].北京:中国农业大学,2017
    [17] 张会来, 王丽萍, 李育松, 等. 生物滴滤塔净化甲苯启动性能研究[J]. 环境工程学报,2013,7(5):1889-1893
    [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版北京: 中国环境科学出版社,2002
    [19] MA Q, QU Y Y, SHEN W L.Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J].Bioresource Technology 2015,179:436-443 10.1016/j.biortech.2014.12.041
    [20] YANG K, YUE Q, KONG J, et al.Microbial diversity in combined UAF–UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment [J].Chemical Engineering Journal,2016,285:319-330 10.1016/j.cej.2015.10.019
    [21] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al.QIIME allows analysis of high-throughput community sequencing data [J].Nature Methods,2010,7(5):335-336
    [22] 陈英. 生物滴滤法处理甲苯和硫化氢混合废气的研究[D]. 北京:北京工业大学,2013
    [23] 陈东之, 缪孝平, 欧阳杜娟,等. 生物滴滤塔净化氯代烃混合废气的研究[J]. 环境科学,2015,36(9):3168-3174
    [24] 冯志华. 海洋沉积物中磷化氢的分布、释放与转化研究[D]. 北京:中国科学院研究生院,2008
    [25] 王宁宁, 赵阳国, 孙文丽, 等. 溶解氧含量对人工湿地去除污染物效果的影响[J]. 中国海洋大学学报(自然科学版),2018,48(6):24-30
    [26] WANG C, WANG X, WANG P, et al.Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905[J].Ecotoxicology & Environmental Safety,2016,132(9):231-239 10.1016/j.ecoenv.2016.06.010
    [27] PAOLO B, LUCA S, RAFFAELE C, et al.Mitochondria and cell death [J].European Journal of Biochemistry,1999,264(3):687-701
    [28] 彭党聪. 水污染控制工程[M]. 北京:冶金工业出版社, 2010:412-413
    [29] 杨松霖. 采用不同菌群挂膜的生物膜填料塔对甲醛废气降解性能及群落结构比对研究[D]. 昆明: 云南大学,2016
    [30] 杨海君, 杨成建, 肖启明. 十二烷基聚氧乙烯醚降解菌的分离、鉴定及降解特性[J]. 中国环境科学,2007,27(6):768-772
  • 加载中
计量
  • 文章访问数:  2993
  • HTML全文浏览数:  2775
  • PDF下载数:  148
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-29

生物滴滤法净化低浓度磷化氢及其微生物群落分析

  • 1. 昆明理工大学环境科学与工程学院,昆明 650500
基金项目:

国家自然科学基金资助项目(51868029)

云南省科技计划项目面上项目(2016FB093)

摘要: 采用生物滴滤法净化低浓度磷化氢气体,探讨填料种类、进气量、氧浓度、进气磷化氢浓度等因素对净化过程的影响。复合填料能促进气态磷化氢的吸附,但微生物对磷化氢的净化起决定性作用。进气负荷高于300 mL·min-1 (空间速度为8.2 h-1)时,滴滤塔内磷化氢去除率下降明显;进气中氧含量不足时,生物氧化进程受到抑制,磷化氢净化效果变差。在进气流量200 mL·min-1、氧体积分数8.2%、磷化氢入口浓度20 mg·m-3条件下,磷化氢脱除率可高达76.8%,定期废弃的吸收液中总磷含量均低于1.0 mg·L-1。生物滴滤塔内具有较高的微生物种群多样性,细菌以变形菌门(Proteobacteria)最为丰富,主要的细菌种属有:鞘氨醇单胞菌(Sphingomonas)、甲醇杆菌(Methylobacterium)、嗜甲基菌(Methylophilus)及伯克氏菌(Burkholderia)。

English Abstract

参考文献 (30)

目录

/

返回文章
返回