生物炭加速餐厨垃圾厌氧消化的机理

石笑羽, 王宁, 陈钦冬, 吴华南, 徐期勇. 生物炭加速餐厨垃圾厌氧消化的机理[J]. 环境工程学报, 2018, 12(11): 3204-3212. doi: 10.12030/j.cjee.201807055
引用本文: 石笑羽, 王宁, 陈钦冬, 吴华南, 徐期勇. 生物炭加速餐厨垃圾厌氧消化的机理[J]. 环境工程学报, 2018, 12(11): 3204-3212. doi: 10.12030/j.cjee.201807055
SHI Xiaoyu, WANG Ning, CHEN Qindong, WU Huanan, XU Qiyong. Mechanisms for enhancement of biogas generation from food waste anaerobic digestion with biochar supplement[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3204-3212. doi: 10.12030/j.cjee.201807055
Citation: SHI Xiaoyu, WANG Ning, CHEN Qindong, WU Huanan, XU Qiyong. Mechanisms for enhancement of biogas generation from food waste anaerobic digestion with biochar supplement[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3204-3212. doi: 10.12030/j.cjee.201807055

生物炭加速餐厨垃圾厌氧消化的机理

  • 基金项目:

    国家自然科学基金资助项目(31500655)

    深圳市科技计划(KJYY20171012103638606)

Mechanisms for enhancement of biogas generation from food waste anaerobic digestion with biochar supplement

  • Fund Project:
  • 摘要: 为考察生物炭对餐厨垃圾厌氧消化的影响并探究其影响机理,采用批次实验,以餐厨垃圾为基质,设置污泥空白组、餐厨垃圾对照组和生物炭实验组。检测系统的甲烷日产量、甲烷浓度、渗滤液pH、电导率、挥发性脂肪酸(乙酸、丙酸和丁酸)和氨氮浓度,并对生物炭进行了表征(pH、表面元素、表面形态和官能团)。结果表明,生物炭的添加使体系的最大日甲烷产量提高24.09%,并保持较高的pH,乙酸、丙酸、丁酸峰值分别降低了10.46%、9.96%和13.79%。生物炭丰富的孔结构为微生物提供了生长位点;生物炭的表面金属元素(K、Ca、Mg)和官能团(—OH、C≡C、—NH、C=O(C—O)、 CO 3 2 - )使其具有较高的碱度,从而提高厌氧消化系统的缓冲能力和产甲烷菌活性,进而提高产甲烷速率。
  • 加载中
  • [1] 余杰,杨红军. 我国城市餐厨垃圾特性及资源化利用途径[J]. 低碳世界,2018(5):22-23 10.16844/j.cnki.cn10-1007/tk.2018.05.015
    [2] CAPSON-TOJO G, ROUEZ M, CREST M, et al.Food waste valorization via anaerobic processes: A review[J].Reviews in Environmental Science and Bio/Technology,2016,15(3):499-547 10.1007/s11157-016-9405-y
    [3] 胡新军,张敏,余俊锋,等. 中国餐厨垃圾处理的现状、问题和对策[J]. 生态学报,2012,32(14):4575-4584 10.5846/stxb201106210914
    [4] XU C, SHI W, HONG J, et al.Life cycle assessment of food waste-based biogas generation[J].Renewable and Sustainable Energy Reviews,2015,49:169-177 10.1016/j.rser.2015.04.164
    [5] KHOO H H, LIM T Z, TAN R B H.Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective[J].Science of the Total Environment,2010,408(6):1367-1373 10.1016/j.scitotenv.2009.10.072
    [6] BERNSTAD A, LA COUR JANSEN J.A life cycle approach to the management of household food waste:A Swedish full-scale case study[J].Waste Management,2011,31(8):1879-1896 10.1016/j.wasman.2011.02.026
    [7] LI L, PENG X, WANG X, et al.Anaerobic digestion of food waste: A review focusing on process stability[J].Bioresource Technology,2018,248:20-28 10.1016/j.biortech.2017.07.012
    [8] REN Y, YU M, WU C, et al.A comprehensive review on food waste anaerobic digestion: Research updates and tendencies[J].Bioresource Technology,2018,247:1069-1076 10.1016/j.biortech.2017.09.109
    [9] LUO C, Lü F, SHAO L, et al.Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes[J].Water Research,2015,68:710-718 10.1016/j.watres.2014.10.052
    [10] JAN M, FRANZISKA S, KATHRIN H, et al.Use of biochars in anaerobic digestion[J].Bioresource Technology,2014,164:189-197 10.1016/j.biortech.2014.05.008
    [11] TORRI C, FABBRI D.Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass[J].Bioresource Technology,2014,172:335-341 10.1016/j.biortech.2014.09.021
    [12] 江定钦,徐志平,阮琳. 园林垃圾堆肥化过程中理化性质的变化及堆肥对几种园林植物生长的影响[J]. 中国园林,2004,20(8):63-65 10.3969/j.issn.1000-6664.2004.08.021
    [13] ZHAO Z, ZHANG Y, WOODARD T L, et al.Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J].Bioresource Technology,2015,191:140-145 10.1016/j.biortech.2015.05.007
    [14] Lü F, LUO C, SHAO L, et al.Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[J].Water Research,2016,90:34-43 10.1016/j.watres.2015.12.029
    [15] FAGBOHUNGBE M O, HERBERT B M J, HURST L, et al.The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion[J].Waste Management,2017,61:236-249 10.1016/j.wasman.2016.11.028
    [16] LUO C, Lü F, SHAO L, et al.Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes[J].Water Research,2015,68:710-718 10.1016/j.watres.2014.10.052
    [17] LI Q, XU M, WANG G, et al.Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J].Bioresource Technology,2018,249:1009-1016 10.1016/j.biortech.2017.11.002
    [18] SHEN Y, LINVILLE J L, IGNACIO-DE LEON P A A, et al.Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar[J].Journal of Cleaner Production,2016,135:1054-1064 10.1016/j.jclepro.2016.06.144
    [19] YUAN J, XU R, ZHANG H.The forms of alkalis in the biochar produced from crop residues at different temperatures[J].Bioresource Technology,2011,102(3):3488-3497 10.1016/j.biortech.2010.11.018
    [20] FIDEL R B, LAIRD D A, THOMPSON M L, et al.Characterization and quantification of biochar alkalinity[J].Chemosphere,2017,167:367-373 10.1016/j.chemosphere.2016.09.151
    [21] HOBBS S R, LANDIS A E, RITTMANN B E, et al.Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate : inoculum ratios[J].Waste Management,2018,71:612-617 10.1016/j.wasman.2017.06.029
    [22] ACEVES-LARA C, LATRILLE E, CONTE T, et al.Online estimation of VFA, alkalinity and bicarbonate concentrations by electrical conductivity measurement during anaerobic fermentation[J].Water Science & Technology,2012,65(7):1281-1289 10.2166/wst.2012.703
    [23] KO J H, WANG N, YUAN T, et al.Effect of nickel-containing activated carbon on food waste anaerobic digestion[J].Bioresource Technology,2018,266:516-523 10.1016/j.biortech.2018.07.015
    [24] 王婷,曹磊,薛明霞. 纳氏试剂分光光度法测定氨氮中常见问题与解决办法[J]. 分析试验室,2008,27(b12):346-349
    [25] CAI J, HE P, WANG Y, et al.Effects and optimization of the use of biochar in anaerobic digestion of food wastes[J].Waste Management & Research,2016,34(5):409-416 10.1177/0734242X16634196
    [26] FAGBOHUNGBE M O, HERBERT B M J, HURST L, et al.Impact of biochar on the anaerobic digestion of citrus peel waste[J].Bioresource Technology,2016,216:142-149 10.1016/j.biortech.2016.04.106
    [27] HEO N H, PARK S C, KANG H.Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge[J].Journal of Environmental Science and Health,2004,39(7):1739-1756 10.1081/ESE-120037874
    [28] YANG Y, ZHANG Y, LI Z, et al.Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J].Journal of Cleaner Production,2017,149:1101-1108 10.1016/j.jclepro.2017.02.156
    [29] ZHANG T, MAO C, ZHAI N, et al.Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk[J].Waste Management,2015,35:119-126 10.1016/j.wasman.2014.09.004
    [30] AMAYA O M, BARRAGáN M T C, TAPIA F J A.Biomass Now: Sustainable Growth and Use[M].London, the United Kingdom: InTech-Open Access Publisher,2013:449-480
    [31] KONG X, YU S, XU S, et al.Effect of Fe0addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates[J].Waste Management,2018,71:719-727 10.1016/j.wasman.2017.03.019
    [32] SUNYOTO N M S, ZHU M, ZHANG Z, et al.Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J].Bioresource Technology,2016,219:29-36 10.1016/j.biortech.2016.07.089
    [33] CHEN S, ROTARU A, SHRESTHA P M, et al.Promoting interspecies electron transfer with biochar[J].Scientific Reports,2015,4(1):1-7 10.1038/srep05019
    [34] XU S, HE C, LUO L, et al.Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester[J].Bioresource Technology,2015,196:606-612 10.1016/j.biortech.2015.08.018
    [35] WARD A J, HOBBS P J, HOLLIMAN P J, et al.Optimisation of the anaerobic digestion of agricultural resources[J].Bioresource Technology,2008,99(17):7928-7940 10.1016/j.biortech.2008.02.044
    [36] WANG G, LI Q, GAO X, et al.Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms[J].Bioresource Technology,2018,250:812-820 10.1016/j.biortech.2017.12.004
    [37] LUO C, Lü F, SHAO L, et al.Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes[J].Water Research,2015,68:710-718 10.1016/j.watres.2014.10.052
    [38] HUNG C, TSAI W, CHEN J, et al.Characterization of biochar prepared from biogas digestate[J].Waste Management,2017,66:53-60 10.1016/j.wasman.2017.04.034
    [39] LAMMERS K, ARBUCKLE-KEIL G, DIGHTON J.FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning[J].Soil Biology and Biochemistry,2009,41(2):340-347 10.1016/j.soilbio.2008.11.005
    [40] ZHENG X, YANG Z, XU X, et al.Distillers’ grains anaerobic digestion residue biochar used for ammonium sorption and its effect on ammonium leaching from an Ultisol[J].Environmental Science and Pollution Research,2018,25(15):14563-14574 10.1007/s11356-018-1681-3
    [41] KATAKI S, HAZARIKA S, BARUAH D C.Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test[J].Journal of Environmental Management,2017,196:201-216 10.1016/j.jenvman.2017.02.058
    [42] BARTELS T.The Sadtler Handbook of Infrared Spectra[M].Philadelphia, America:Sadtler Research Laboratories,1978
    [43] MORENO-CASTILLA C.Adsorption of organic molecules from aqueous solutions on carbon materials[J].Carbon,2004,42(1):83-94 10.1016/j.carbon.2003.09.022
  • 加载中
计量
  • 文章访问数:  3258
  • HTML全文浏览数:  3135
  • PDF下载数:  138
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12

生物炭加速餐厨垃圾厌氧消化的机理

  • 1. 北京大学深圳研究生院环境与能源学院,聚硅酸盐复合环保材料工程实验室,深圳 518055
基金项目:

国家自然科学基金资助项目(31500655)

深圳市科技计划(KJYY20171012103638606)

摘要: 为考察生物炭对餐厨垃圾厌氧消化的影响并探究其影响机理,采用批次实验,以餐厨垃圾为基质,设置污泥空白组、餐厨垃圾对照组和生物炭实验组。检测系统的甲烷日产量、甲烷浓度、渗滤液pH、电导率、挥发性脂肪酸(乙酸、丙酸和丁酸)和氨氮浓度,并对生物炭进行了表征(pH、表面元素、表面形态和官能团)。结果表明,生物炭的添加使体系的最大日甲烷产量提高24.09%,并保持较高的pH,乙酸、丙酸、丁酸峰值分别降低了10.46%、9.96%和13.79%。生物炭丰富的孔结构为微生物提供了生长位点;生物炭的表面金属元素(K、Ca、Mg)和官能团(—OH、C≡C、—NH、C=O(C—O)、 CO 3 2 - )使其具有较高的碱度,从而提高厌氧消化系统的缓冲能力和产甲烷菌活性,进而提高产甲烷速率。

English Abstract

参考文献 (43)

目录

/

返回文章
返回