小球藻生长及其净化猪场废水条件的优化

余宗苡, 魏东, 刘鹭, 李焕垲, 王琴. 小球藻生长及其净化猪场废水条件的优化[J]. 环境工程学报, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010
引用本文: 余宗苡, 魏东, 刘鹭, 李焕垲, 王琴. 小球藻生长及其净化猪场废水条件的优化[J]. 环境工程学报, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010
YU Zongyi, WEI Dong, LIU Lu, LI Huankai, WANG Qin. Optimization for Chlorella pyrenoidosa growth and purification of piggery sewage[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010
Citation: YU Zongyi, WEI Dong, LIU Lu, LI Huankai, WANG Qin. Optimization for Chlorella pyrenoidosa growth and purification of piggery sewage[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010

小球藻生长及其净化猪场废水条件的优化

  • 基金项目:

    广州市科技计划项目(201704030084)

    国家高技术研究发展计划(863)项目(2013AA065802)

Optimization for Chlorella pyrenoidosa growth and purification of piggery sewage

  • Fund Project:
  • 摘要: 为提高小球藻净化猪场废水的效果,在户外条件下系统比较了预处理方式、管道光反应器的种类和光径对蛋白核小球藻生长及其对猪场废水净化效果的影响。结果表明,猪场原废水COD、NH4+、PO43-、TN、TP含量分别为710、491、54、590和108 mg·L-1 时,蛋白核小球藻对经过3级过滤预处理后的猪场废水净化效果最好,其中脱色率及NH4+去除率分别高达88.56%和83.48%,显著高于对原废水的处理效果(P-1。采用直径为5 cm的立式光生物反应器培养蛋白核小球藻,通过循环采收,藻粉产量可达到0.93 g·L-1,其蛋白质含量最高达到58.9%,汞、砷、镉、铅含量分别小于0.1、1.0、0.5和4.0 mg·kg-1,符合《饲料用小球藻粉》(DB32/T 564-2010)标准。采收小球藻后的出水中,NH4+、PO43-、色度的去除率均高达90%以上,基本达到国家排放要求。该研究结果可为制定猪场废水的净化及蛋白核小球藻的工业化生产方案提供参考。
  • 加载中
  • [1] 刘文涛, 顾立伟. 关于中国与美国养猪业的比较研究[J]. 中国畜牧杂志, 2016, 52(6): 3-7.
    [2] 施洁莹, 翟竟余, 王泉源, 等. 规模化养猪废水处理工程设计与运行研究[J]. 环境科学与管理, 2017, 42(3): 74-78.
    [3] SUZUKI K, WAKI M, YASUDA T, et al. Distribution of phosphorus, copper and zinc in activated sludge treatment process of swine wastewater[J]. Bioresource Technology, 2010, 101(23): 9399-9404.
    [4] VIANCELL I, ALINEKUN Z, AIRTONESTEVE S, et al. Bacterial biodiversity from an anaerobic up flow bioreactor with ANAMMOX activity inoculated with swine sludge[J]. Brazilian Archives of Biology & Technology, 2011, 54(5): 1035-1041.
    [5] 中华人民共和国国家质量监督检验检疫总局, 国家环境保护总局. 畜牧养殖业污染物排放标准: GB 18596-2001[S]. 北京: 中国环境科学出版社, 2009.
    [6] PARK J, JIN H F, LIM B R, et al. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp[J]. Bioresource Technology, 2010, 101(22): 8649-8657.
    [7] WANG L, LI Y, CHEN P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp[J]. Bioresource Technology, 2010, 101(8): 2623-2628.
    [8] RUIZMARIN A, MENDOZAESPINOSA L G, STEPHENSON T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater[J]. Bioresource Technology, 2010, 101(1): 58-64.
    [9] 魏东, 张会贞, 陈娇敏. 优化营养方式强化蛋白核小球藻生物量及蛋白质和叶绿素生产[J]. 现代食品科技, 2017(4): 160-167.
    [10] OGBONNA J C, MASUIC H, TANAKA H. Sequential heterotrophic/autotrophic cultivation: An efficient method of producing Chlorella biomass for health food and animal feed[J]. Journal of Applied Phycology, 1997, 9(4): 359-366.
    [11] 国家环境保护总局. 水质铜、锌、铅、镉的测定 原子吸收分光光度法: GB 7475-1987 [S]. 北京: 中国环境科学出版社, 1987.
    [12] SOPHONSIRI C, MORGENROTH E. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters[J]. Chemosphere, 2004, 55(5): 691-703.
    [13] DJILANI C, ZAGHDOUDI R, DJAZI F, et al. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53(1): 112-121.
    [14] 张会贞, 陈娇敏, 魏东. 活性炭脱色糖蜜酵母废水混合营养培养蛋白核小球藻净化水质[J]. 现代食品科技, 2017(8): 221-227.
    [15] ZHOU W, LI Y, MIN M, et al. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production[J]. Bioresource Technology, 2011, 102(13): 6909-6919.
    [16] KIM M K, PARK J W, PARK C S, et al. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater[J]. Bioresource Technology, 2007, 98(11): 2220-2228.
    [17] BHATNAGAR A, BHATNAGAR M, CHINNASAMY S, et al. Chlorella minutissima: A promising fuel alga for cultivation in municipal wastewaters[J]. Applied Biochemistry & Biotechnology, 2010, 161: 523-536.
    [18] SEEPRATOOMROSH J, POKETHITIYOOK P, MEETAM M, et al. The effect of light stress and other culture conditions on photoinhibition and growth of Dunaliella tertiolecta[J]. Applied Biochemistry & Biotechnology, 2015, 178(2): 1-12.
    [19] DAHMANI S, ZERROKI D, RAMANNA L, et al. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region[J]. Bioresource Technology, 2016, 219(1): 749-752.
    [20] CHEN Y H, WALKER T H. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol[J]. Biotechnology Letters, 2011, 33(10): 1973-1983.
    [21] MICHELEGREQUE D M, JORGEALBERTOVIEIRA C. Carbon dioxide fixation by Chlorella kessleri, vulgaris C. , Scenedesmusobliquus and Spirulina sp.cultivated in flasks and vertical tubular photobioreactors[J]. Biotechnology Letters, 2007, 29(9): 1349-1352.
    [22] 孔维宝, 汪洋, 杨红, 等. 不同营养方式对普通小球藻生长代谢及生化组分的影响[J]. 微生物学报, 2015, 55(3): 299-310.
    [23] CHENG P, WANG Y, LIU T, et al. Biofilm attached cultivation of Chlorella pyrenoidosa is a developed system for swine wastewater treatment and lipid production[J]. Frontiers in Plant Science, 2017, 8(1): 15-24.
    [24] 中华人民共和国国家质量监督检验检疫总局, 国家环境保护总局. 饲用小球藻粉标准: GB 32/T 564-2010[S].北京: 中国环境科学出版社, 2010.
  • 加载中
计量
  • 文章访问数:  3726
  • HTML全文浏览数:  3649
  • PDF下载数:  160
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08
余宗苡, 魏东, 刘鹭, 李焕垲, 王琴. 小球藻生长及其净化猪场废水条件的优化[J]. 环境工程学报, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010
引用本文: 余宗苡, 魏东, 刘鹭, 李焕垲, 王琴. 小球藻生长及其净化猪场废水条件的优化[J]. 环境工程学报, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010
YU Zongyi, WEI Dong, LIU Lu, LI Huankai, WANG Qin. Optimization for Chlorella pyrenoidosa growth and purification of piggery sewage[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010
Citation: YU Zongyi, WEI Dong, LIU Lu, LI Huankai, WANG Qin. Optimization for Chlorella pyrenoidosa growth and purification of piggery sewage[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 213-221. doi: 10.12030/j.cjee.201807010

小球藻生长及其净化猪场废水条件的优化

  • 1. 华南理工大学食品科学与工程学院,广州 510640
  • 2. 仲恺农业工程学院环境科学与工程学院,广州 510225
基金项目:

广州市科技计划项目(201704030084)

国家高技术研究发展计划(863)项目(2013AA065802)

摘要: 为提高小球藻净化猪场废水的效果,在户外条件下系统比较了预处理方式、管道光反应器的种类和光径对蛋白核小球藻生长及其对猪场废水净化效果的影响。结果表明,猪场原废水COD、NH4+、PO43-、TN、TP含量分别为710、491、54、590和108 mg·L-1 时,蛋白核小球藻对经过3级过滤预处理后的猪场废水净化效果最好,其中脱色率及NH4+去除率分别高达88.56%和83.48%,显著高于对原废水的处理效果(P-1。采用直径为5 cm的立式光生物反应器培养蛋白核小球藻,通过循环采收,藻粉产量可达到0.93 g·L-1,其蛋白质含量最高达到58.9%,汞、砷、镉、铅含量分别小于0.1、1.0、0.5和4.0 mg·kg-1,符合《饲料用小球藻粉》(DB32/T 564-2010)标准。采收小球藻后的出水中,NH4+、PO43-、色度的去除率均高达90%以上,基本达到国家排放要求。该研究结果可为制定猪场废水的净化及蛋白核小球藻的工业化生产方案提供参考。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回