从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展

王凯军, 房阔, 宫徽, 何文妍. 从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展[J]. 环境工程学报, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064
引用本文: 王凯军, 房阔, 宫徽, 何文妍. 从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展[J]. 环境工程学报, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064
WANG Kaijun, FANG Kuo, GONG Hui, HE Wenyan. Review on research of capacitive deionization technology in field of environment from low energy consumption desalination to resource recovery[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064
Citation: WANG Kaijun, FANG Kuo, GONG Hui, HE Wenyan. Review on research of capacitive deionization technology in field of environment from low energy consumption desalination to resource recovery[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064

从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展

  • 基金项目:

    中国博士后科学基金资助项目(2017M620799)

    国家自然科学基金资助项目(51608298)

    国家水体污染控制与治理科技重大专项(2017ZX07102-003, 2017ZX07103)

Review on research of capacitive deionization technology in field of environment from low energy consumption desalination to resource recovery

  • Fund Project:
  • 摘要: 电容去离子(CDI)技术因具有高效、节能、环保、经济等优异性能,自20世纪60年代发明至今,一直得到研究者的广泛关注。在查阅资料的基础上,从理论研究、工程应用、材料研究3个方面介绍了CDI技术的发展历程,并分析了其理论原理、电化学反应过程、能耗与经济性,并从运行条件和电极优化2个方面对效率的优化提升进行了深入探讨,介绍了CDI技术装置国内外产业化应用情况,提出了CDI技术不仅在脱盐及污水处理领域具有较大发展空间,在环境废物资源化回收方面同样具有广阔的应用前景。
  • 加载中
  • [1] PORADA S, ZHAO R, VANDERWAL A, et al.Review on the science and technology of water desalination by capacitive deionization[J].Progress in Materials Science,2013,58(8):1388-1442 10.1016/j.pmatsci.2013.03.005
    [2] 王婷, 朱春山, 胡承志. 镍铝层状氧化物薄膜电极的制备及其除盐性能[J]. 环境科学,2016,37(2):602-608
    [3] COHEN I, AVRAHAM E, NOKED M, et al.Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode[J].Journal of Physical Chemistry C,2011,115(40):19856-19863 10.1021/jp206956a
    [4] JOHNSON A M, VENOLIA A W, WILBOURNE R G, et al.The Electrosorb Process for Desalting Water[M].Washington, D.C.: United States Department of the Interior,1970
    [5] VONHELMHOLTZ H.Some laws of the distribution of electric currents in physical conductors[J].Journal of Physics and Chemistry,1853,89:211-233
    [6] GOUY G.Sur la constitution de la charge électrique à la surface d'un électrolyte[J].Journal de Physique Archives,1910,9:457-468
    [7] CHAPMAN D L.A contribution to the theory of electrocapillarity[J].Philosophical Magazine 1913,25(148):457-481 10.1080/14786440408634187
    [8] MCLAUGHLIN S.Experimental tests of the Gouy-Chapman-Stern theory[J].Abstracts of Papers of the American Chemical Society,1983,186(8):69
    [9] KAMRAN K, VANSOESTBERGEN M, PEL L.Electrokinetic salt removal from porous building materials using ion exchange membranes[J].Transport in Porous Media,2013,96(2):221-235
    [10] DYKSTRA J E, KEESMAN K J, BIESHEUVEL P M, et al.Theory of pH changes in water desalination by capacitive deionization[J].Water Research,2017,119:178-186 10.1016/j.watres.2017.04.039
    [11] BIESHEUVEL P M, FU Y, BAZANT M Z.Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes[J].Russian Journal of Electrochemistry,2012,48(6):580-592
    [12] LEE J H, BAE W S, CHOI J H.Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J].Desalination,2010,258(1/2/3):159-163 10.1016/j.desal.2010.03.020
    [13] BOUHADANA Y, AVRAHAM E, NOKED M, et al.Capacitive deionization of NaCl solutions at non-steady-state conditions: Inversion functionality of the carbon electrodes[J].Journal of Physical Chemistry C,2011,115(33):16567-16573 10.1021/jp2047486
    [14] BOUHADANA Y, BEN-TZION M, SOFFER A, et al.A control system for operating and investigating reactors: The demonstration of parasitic reactions in the water desalination by capacitive deionization[J].Desalination,2011,268(1/2/3):253-261 10.1016/j.desal.2010.10.037
    [15] SEMIAT R.Energy issues in desalination processes[J].Environmental Science & Technology,2008,42(22):8193-8201
    [16] WELGEMOED T J, SCHUTTE C F.Capacitive delonization technology (TM) : An alternative desalination solution[J].Desalination,2005,183(1/2/3):327-340 10.1016/j.desal.2005.02.054
    [17] LI H, GAO Y, PAN L, et al.Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes[J].Water Research,2008,42(20):4923-4928 10.1016/j.watres.2008.09.026
    [18] HOU C H, HUANG C Y, HU C Y.Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions[J].International Journal of Environmental Science and Technology,2013,10(4)753-760
    [19] LI H, ZOU L, PAN L, et al.Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization[J].Separation and Purification Technology,2010,75(1):8-14 10.1016/j.seppur.2010.07.003
    [20] SUSS M E, BAUMANN T F, WILLIAM L B, et al.Capacitive desalination with flow-through electrodes[J].Energy & Environmental Science,2012,5(11):9511-9519
    [21] PORADA S, SALES B B, HAMELERS H V M, et al.Water desalination with wires[J].Journal of Physical Chemistry Letters,2012,3(12):1613–1618 10.1021/jz3005514
    [22] KIM Y J, CHOI J H.Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J].Separation and Purification Technology,2010,71(1):70-75 10.1016/j.seppur.2009.10.026
    [23] LEE J Y, SEO S J, YUN S H, et al.Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI)[J].Water Research,2011,45(17):5375-5380 10.1016/j.watres.2011.06.028
    [24] LIANG P, YUAN L, YANG X, et al.Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination[J].Water Research,2013,47(7):2523-2530 10.1016/j.watres.2013.02.037
    [25] KIM Y J, CHOI J H.Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization[J].Water Research,2012,46(18):6033-6039 10.1016/j.watres.2012.08.031
    [26] XIE J Z, XUE Y F, HE M, et al.Organic-inorganic hybrid binder enhances capacitive deionization performance of activated-carbon electrode[J].Carbon,2017,123:574-582 10.1016/j.carbon.2017.08.011
    [27] PENG Z, ZHANG D S, SHI L Y, et al.Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures[J].Journal of Physical Chemistry C,2011,115(34):17068-17076 10.1021/jp2047618
    [28] LI J, WANG X Y, HUANG Q H, et al.Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J].Journal of Power Sources,2006,158(1):784-788 10.1016/j.jpowsour.2005.09.045
    [29] ZHANG D S, SHI L Y, FANG J H, et al.Preparation and desalination performance of multiwall carbon nanotubes[J].Materials Chemistry and Physics,2006,97(2/3):415-419 10.1016/j.matchemphys.2005.08.036
    [30] 李海红, 李红艳. 预处理方法对活性炭结构及吸附性能的影响[J]. 粉末冶金材料科学与工程,2014(4):647-653
    [31] ZOU L, MORRIS G, QI D.Using activated carbon electrode in electrosorptive deionisation of brackish water[J].Desalination,2008,225(1/2/3):329-340 10.1016/j.desal.2007.07.014
    [32] AHN H J, LEE J H, JEONG Y, et al.Nanostructured carbon cloth electrode for desalination from aqueous solutions[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,449:841-845 10.1016/j.msea.2006.02.448
    [33] OH H J, LEE J H, AHN H J, et al.Nanoporous activated carbon cloth for capacitive deionization of aqueous solution[J].Thin Solid Films,2006,515(1):220-225 10.1016/j.tsf.2005.12.146
    [34] ZOU L, LI L, SONG H, et al.Using mesoporous carbon electrodes for brackish water desalination[J].Water Research, 2008,42(8/9):2340-2348 10.1016/j.watres.2007.12.022
    [35] OREN Y.Capacitive delonization (CDI) for desalination and water treatment:Past, present and future (a review) [J].Desalination,2008,228(1/2/3):10-29 10.1016/j.desal.2007.08.005
    [36] YANG C M, CHOI W H, NA B K, et al.Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes[J].Desalination,2005,174(2):125-133 10.1016/j.desal.2004.09.006
    [37] GABELICH C J, TRAN T D,SUFFET I H.Electrosorption of inorganic salts from aqueous solution using carbon aerogels[J].Environmental Science & Technology,2002,36(13):3010-3019 10.1021/es0112745
    [38] IIJIMA S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58
    [39] NIE C, PAN L, LIU Y, et al.Electrophoretic deposition of carbon nanotubes-polyacrylic acid composite film electrode for capacitive deionization[J].Electrochimica Acta,2012,66:106-109 10.1016/j.electacta.2012.01.064
    [40] BIESHEUVEL P M, ZHAO R, PORADA S, et al.Theory of membrane capacitive deionization including the effect of the electrode pore space[J].Journal of Colloid and Interface Science,2011,360(1):239-248 10.1016/j.jcis.2011.04.049
    [41] LI L, ZOU L, SONG H, et al.Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride[J].Carbon,2009,47(3):775-781 10.1016/j.carbon.2008.11.012
    [42] PENG Z, ZHANG D, SHI L, et al.High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization[J].Journal of Materials Chemistry,2012,22(14):6603-6612
    [43] TSAI Y C, DOONG R A.Hierarchically ordered mesoporous carbons and silver nanoparticles as asymmetric electrodes for highly efficient capacitive deionization[J].Desalination,2016,398:171-179 10.1016/j.desal.2016.07.029
    [44] FARMER J C, FIX D V, MACK G V, et al.Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J].Journal of the Electrochemical Society,1996,143(1):159-169
    [45] XU P, DREWES J E, HEIL D, et al.Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology[J].Water Research,2008,42(10/11):2605-2617 10.1016/j.watres.2008.01.011
    [46] AVRAHAM E, NOKED M, BOUHADANA Y, et al.Limitations of charge efficiency in capacitive deionization II.On the behavior of CDI cells comprising two activated carbon electrodes[J].Journal of the Electrochemical Society,2009,156(10):157-162
    [47] RASINES G, LAVELA P, MACIAS C, et al.N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions[J].Carbon,2015,83:262-274 10.1016/j.carbon.2014.11.015
    [48] DAI K, SHI L Y, FANG J H, et al.NaCl adsorption in multi-walled carbon nanotubes[J].Materials Letters,2005,59(16):1989-1992 10.1016/j.matlet.2005.01.042
    [49] WANG S, WANG D, JI L, et al.Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes[J].Separation and Purification Technology,2007,58(1):12-16 10.1016/j.seppur.2007.07.005
    [50] LI H, PAN L, LU T, et al.A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization[J].Journal of Electroanalytical Chemistry,2011,653(1/2):40-44 10.1016/j.jelechem.2011.01.012
    [51] LI H, LIANG S, LI J, et al.The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite[J].Journal of Materials Chemistry A,2013,21(1):6335-6341
    [52] JEON S I, PARK H R, YEO J G, et al.Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J].Energy & Environmental Science,2013,6(5):1471-1475
    [53] GENDEL Y, ROMMERSKIRCHEN A K E, DAVID O, et al.Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J].Electrochemistry Communications,2014,46:152-156 10.1016/j.elecom.2014.06.004
    [54] HATZELL K B, IWAMA E, FERRIS A, et al.Capacitive deionization concept based on suspension electrodes without ion exchange membranes[J].Electrochemistry Communications,2014,43:18-21 10.1016/j.elecom.2014.03.003
    [55] JEON S I, YEO J G, YANG S, et al.Ion storage and energy recovery of a flow-electrode capacitive deionization process[J].Journal of Materials Chemistry A,2014,2(18):6378-6383
    [56] DOORNBUSCH G J, DYKSTRA J E, BIESHEUVEL P M, et al.Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J].Journal of Materials Chemistry A,2016,4(10):3642-3647
    [57] 杨玉成, 孙晓慰, 朱国富.EST技术及其住宅直饮水设备[J]. 节能与环保,2002(6):26-29
    [58] 刘海静, 张鸿涛, 孙晓慰. 电吸附法去除地下水中离子的试验研究[J]. 中国给水排水,2003,19(11):36-38
    [59] 孙晓慰. 电吸附技术在饮用水深度处理中的应用[J]. 中国水利,2006(1):68-69
    [60] 朱广东, 郭洪飞, 孙晓慰. 电吸附除盐技术在中水回用中的应用研究[J]. 中国建筑信息(水工业市场),2010(12):55-58
    [61] 陈兆林, 孙晓慰, 郭洪飞, 等. 电吸附技术处理首钢污水厂二级出水的中试研究[J]. 中国给水排水,2010,26(9):115-116
    [62] LINNARTZ C J, ROMMERSKIRCHEN A, WESSLING M, et al.Flow-electrode capacitive deionizat-ion for double displacement reactions[J].ACS Sustainable Chemistry & Engineering,2017,5(5):3906-3912 10.1021/acssuschemeng.6b03086
    [63] CHOI J, LEE H, HONG S.Capacitive deionization (CDI) integrated with monovalentcation selective membrane for producing divalent cation-rich solution[J].Desalination,2016,400:38-46 10.1016/j.desal.2016.09.016
    [64] SIEKIERKA A, WOLSKA J, BRYJAK M, et al.Anion-exchange membranes in lithium extraction by means of capacitive deionization system[J].Desalination and Water Treatment,2017,75:331-341
    [65] KIM S J, CHOI J H, KIM J H.Removal of acetic acid and sulfuric acid from biomass hydrolyzate using a lime addition-capacitive deionization (CDI) hybrid process[J].Process Biochemistry,2012,47(12):2051-2057 10.1016/j.procbio.2012.07.020
    [66] WANG Z J, GONG H, ZHANG Y, et al.Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process[J].Chemical Engineering Journal,2017,316:1-6
  • 加载中
计量
  • 文章访问数:  10425
  • HTML全文浏览数:  10038
  • PDF下载数:  492
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17
王凯军, 房阔, 宫徽, 何文妍. 从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展[J]. 环境工程学报, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064
引用本文: 王凯军, 房阔, 宫徽, 何文妍. 从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展[J]. 环境工程学报, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064
WANG Kaijun, FANG Kuo, GONG Hui, HE Wenyan. Review on research of capacitive deionization technology in field of environment from low energy consumption desalination to resource recovery[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064
Citation: WANG Kaijun, FANG Kuo, GONG Hui, HE Wenyan. Review on research of capacitive deionization technology in field of environment from low energy consumption desalination to resource recovery[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2141-2152. doi: 10.12030/j.cjee.201805064

从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展

  • 1. 清华大学环境学院,环境模拟与污染控制国家重点实验室,北京 100084
基金项目:

中国博士后科学基金资助项目(2017M620799)

国家自然科学基金资助项目(51608298)

国家水体污染控制与治理科技重大专项(2017ZX07102-003, 2017ZX07103)

摘要: 电容去离子(CDI)技术因具有高效、节能、环保、经济等优异性能,自20世纪60年代发明至今,一直得到研究者的广泛关注。在查阅资料的基础上,从理论研究、工程应用、材料研究3个方面介绍了CDI技术的发展历程,并分析了其理论原理、电化学反应过程、能耗与经济性,并从运行条件和电极优化2个方面对效率的优化提升进行了深入探讨,介绍了CDI技术装置国内外产业化应用情况,提出了CDI技术不仅在脱盐及污水处理领域具有较大发展空间,在环境废物资源化回收方面同样具有广阔的应用前景。

English Abstract

参考文献 (66)

返回顶部

目录

/

返回文章
返回