UV/H2O2及活性炭过滤对消毒副产物和条件致病菌的控制

赵社行, 王海波, 胡春, 石宝友, 孙英杰. UV/H2O2及活性炭过滤对消毒副产物和条件致病菌的控制[J]. 环境工程学报, 2018, 12(9): 2457-2465. doi: 10.12030/j.cjee.201804052
引用本文: 赵社行, 王海波, 胡春, 石宝友, 孙英杰. UV/H2O2及活性炭过滤对消毒副产物和条件致病菌的控制[J]. 环境工程学报, 2018, 12(9): 2457-2465. doi: 10.12030/j.cjee.201804052
ZHAO Shehang, WANG Haibo, HU Chun, SHI Baoyou, SUN Yingjie. Control of disinfection by-products and opportunistic pathogens using UV/H2O2 and active carbon filtration[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2457-2465. doi: 10.12030/j.cjee.201804052
Citation: ZHAO Shehang, WANG Haibo, HU Chun, SHI Baoyou, SUN Yingjie. Control of disinfection by-products and opportunistic pathogens using UV/H2O2 and active carbon filtration[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2457-2465. doi: 10.12030/j.cjee.201804052

UV/H2O2及活性炭过滤对消毒副产物和条件致病菌的控制

  • 基金项目:

    中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC004)

    国家水体污染控制与治理科技重大专项(2017ZX07108, 2017ZX07501-002)

Control of disinfection by-products and opportunistic pathogens using UV/H2O2 and active carbon filtration

  • Fund Project:
  • 摘要: 为了考察UV/H2O2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H2O2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)、有机物不同结构组成、消毒副产物、总细菌16S rRNA、三磷酸腺苷(ATP)及条件致病菌等相关指标进行测定分析。结果表明,UV/H2O2-活性炭过滤通过去除有机物中富里酸和腐殖酸类物质可以有效控制DOC浓度和后续消毒过程中消毒副产物三卤甲烷和卤乙酸类物质特别是三氯甲烷、二氯乙酸和三氯乙酸的生成。另外,UV/H2O2高级氧化也可以有效灭活颗粒黏附态和自由悬浮态的微生物,而UV/H2O2-活性炭过滤可以很好地控制BDOC浓度,再通过后续加氯消毒后微生物再生长能力弱,微生物活性也得到有效抑制, 该工艺可以很好地控制微生物包括条件致病菌嗜肺军团菌和鸟分枝杆菌的生长。UV/H2O2-活性炭过滤可以很好地控制后续加氯消毒过程中消毒副产物的生成和条件致病菌的生长,有一定的应用前景。
  • 加载中
  • [1] EDITION F.Guidelines for drinking-water quality[J].WHO Chronicle,2011,38(4):104-108
    [2] MCGUIRE M J.Eight revolutions in the history of US drinking water disinfection[J].Journal American Water Works Association,2006,98(3):123-149 10.1002/j.1551-8833.2006.tb07612.x
    [3] 李欢,赵建夫, 王虹. 饮用水输配系统中条件致病菌的健康风险和生长因素[J]. 中国给水排水,2017,33(10):41-45
    [4] THOMAS J M, ASHBOLT N J.Do free-living amoebae in treated drinking water systems present an emerging health risk[J].Environmental Science & Technology,2010,45(3):860-869 10.1021/es102876y
    [5] WANG H, MASTERS S, HONG Y, et al.Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella, mycobacteria, Pseudomonas aeruginosa, and two amoebas[J].Environmental Science & Technology,2012,46(21):11566-11574 10.1021/es303212a
    [6] WANG H, EDWARDS M, RD F J, et al.Molecular survey of the occurrence of Legionella spp. , Mycobacterium spp. , Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems[J].Applied & Environmental Microbiology,2012,78(17):6285-6294 10.1128/AEM.01492-12
    [7] 李晓玲, 刘锐, 兰亚琼,等.J市饮用水氯消毒副产物分析及其健康风险评价[J]. 环境科学,2013,34(9):3474-3479
    [8] DONG H, QIANG Z, HU J, et al.Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes[J].Water Research, 2017, 121: 178-185 10.1016/j.watres.2017.05.030
    [9] 区永杰, 方芳, 高乃云, 等. 臭氧及其高级氧化工艺对消毒副产物的控制研究[J]. 给水排水,2013,39(1):166-172
    [10] JUNG Y, HONG E, KWON M, et al.A kinetic study of ozone decay and bromine formation in saltwater ozonation: Effect of O3 dose, salinity, pH, and temperature[J].Chemical Engineering Journal,2017,312:30-38 10.1016/j.cej.2016.11.113
    [11] 刘芳蕾, 张冬, 吕锡武. 臭氧生物活性炭工艺运行中产生溴酸盐的可能性分析[J]. 中国环境科学,2014,34(9):2299-2305
    [12] SARATHY S R, MOHSENI M.The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter[J].Environmental Science & Technology,2007,41(24):8315-8320 10.1021/es071602m
    [13] LESTER Y, AVISAR D, MAMANE H.Photodegradation of the antibiotic sulphamethoxazole in water with UV/H2O2 advanced oxidation process[J].Environmental Technology,2010,31(2):175-183 10.1080/09593330903414238
    [14] 夏萍, 张东, 周新宇,等. 紫外/过氧化氢(UV/H2O2)高级氧化工艺在饮用水处理中的应用[J]. 净水技术,2012,31(4):17-19
    [15] 苟玺莹, 张盼月, 钱锋,等.UV/H2O2降解水中磺胺嘧啶影响因素及机理[J]. 环境工程学报,2017,11(11):5810-5819 10.12030/j.cjee.201704031
    [16] SUN P, TYREE C, HUANG C H.Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/peroxydisulfate advanced disinfection conditions[J].Environmental Science & Technology,2016,50(8):4448-4458 10.1021/acs.est.5b06097
    [17] KRUITHOF J.Advanced oxidation for the control of pesticides at the PWN water treatment plant in North Holland[J].IUVA News,2005,7(2):17-20
    [18] DREWES J E, KHAN S.Water Quality and Treatment Handbook[M].Sixth Ed.New York:McGraw-Hill,2010
    [19] ESCOBAR I C, RANDALL A A.Influence of NF on distribution system biostability[J].Journal American Water Works Association,1999,91(6):76-89 10.1002/j.1551-8833.1999.tb08650.x
    [20] LIU G, LING F Q, MAGIC-KNEZEV A, et al.Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods[J].Water Research,2013,47(10):3523-3533 10.1016/j.watres.2013.03.058
    [21] BADER H, STURZENEGGER V, HOIGNE J.Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD)[J].Water Research,1988,22(9):1109-1115 10.1016/0043-1354(88)90005-X
    [22] BARALKIEWICZ D, SIEPAK J.The contents and variability of TOC, POC and DOC concentration in natural waters[J].Climate,1994,1(1):12-27
    [23] LAVONEN E E, KOTHAWALA D N, TRANVIK L J, et al.Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production[J].Water Research,2015,85:286-294 10.1016/j.watres.2015.08.024
    [24] 吴炜玮, 陈嘉珮, 董秉直. 氯对饮用水中可同化有机碳的影响[J]. 中国环境科学,2016,36(4):1067-1072
    [25] CHEN W, WESTERHOFF P, LEENHEER J A, et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology,2003,37(24):5701-5710 10.1021/es034354c
    [26] 张领国, 张克峰, 李梅,等. 饮用水水质生物稳定性研究进展[J]. 净水技术,2013,32(6):1-5
  • 加载中
计量
  • 文章访问数:  2804
  • HTML全文浏览数:  2623
  • PDF下载数:  126
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20

UV/H2O2及活性炭过滤对消毒副产物和条件致病菌的控制

  • 1. 青岛理工大学环境与市政工程学院,青岛 266033
  • 2. 中国科学院生态环境研究中心,中国科学院饮用水科学与技术重点实验室,北京 100085
  • 3. 广州大学大湾区环境研究院,广州 510006
基金项目:

中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC004)

国家水体污染控制与治理科技重大专项(2017ZX07108, 2017ZX07501-002)

摘要: 为了考察UV/H2O2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H2O2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)、有机物不同结构组成、消毒副产物、总细菌16S rRNA、三磷酸腺苷(ATP)及条件致病菌等相关指标进行测定分析。结果表明,UV/H2O2-活性炭过滤通过去除有机物中富里酸和腐殖酸类物质可以有效控制DOC浓度和后续消毒过程中消毒副产物三卤甲烷和卤乙酸类物质特别是三氯甲烷、二氯乙酸和三氯乙酸的生成。另外,UV/H2O2高级氧化也可以有效灭活颗粒黏附态和自由悬浮态的微生物,而UV/H2O2-活性炭过滤可以很好地控制BDOC浓度,再通过后续加氯消毒后微生物再生长能力弱,微生物活性也得到有效抑制, 该工艺可以很好地控制微生物包括条件致病菌嗜肺军团菌和鸟分枝杆菌的生长。UV/H2O2-活性炭过滤可以很好地控制后续加氯消毒过程中消毒副产物的生成和条件致病菌的生长,有一定的应用前景。

English Abstract

参考文献 (26)

目录

/

返回文章
返回