水溶液中苯酚电离形态表征及电渗析过程迁移特征

冯雅萌, 田秉晖, 夏佰钦, 崔景科, 杨敏. 水溶液中苯酚电离形态表征及电渗析过程迁移特征[J]. 环境工程学报, 2018, 12(9): 2466-2474. doi: 10.12030/j.cjee.201804091
引用本文: 冯雅萌, 田秉晖, 夏佰钦, 崔景科, 杨敏. 水溶液中苯酚电离形态表征及电渗析过程迁移特征[J]. 环境工程学报, 2018, 12(9): 2466-2474. doi: 10.12030/j.cjee.201804091
FENG Yameng, TIAN Binghui, XIA Baiqin, CUI Jingke, YANG Min. Characterization of phenol ionization state in aqueous solution and transfer feature in electrodialysis[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2466-2474. doi: 10.12030/j.cjee.201804091
Citation: FENG Yameng, TIAN Binghui, XIA Baiqin, CUI Jingke, YANG Min. Characterization of phenol ionization state in aqueous solution and transfer feature in electrodialysis[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2466-2474. doi: 10.12030/j.cjee.201804091

水溶液中苯酚电离形态表征及电渗析过程迁移特征

  • 基金项目:

    天津市科技计划项目(16YFXTSF00390)

    清华大学环境模拟与污染控制国家重点联合实验室专项基金(16L02ESPC)

    国家科技重大专项(2012ZX07203-003-R05)

Characterization of phenol ionization state in aqueous solution and transfer feature in electrodialysis

  • Fund Project:
  • 摘要: 建立了紫外全波长扫描水溶液中苯酚电离形态的表征与定量分析方法,在此基础上,阐明了不同电离形态苯酚在电渗析过程中的迁移特征。结果表明:离子态、分子态和混合态(离子态和分子态的混合物)苯酚紫外全波长扫描在220~260 nm特征区间存在不同形状的特征峰,其浓度分别与特征波长258、236和236 nm处的吸光度有显著的线性定量关系;在电渗析过程中,离子态苯酚迁移特征为电渗迁移,分子态苯酚与酸协同迁移,混合态符合电离平衡控制迁移;离子态、分子态、混合态苯酚的迁移率分别为42%、4%和13%,在电渗析水处理过程中,有机污染物分子态和混合态的迁移也是重要的研究内容。
  • 加载中
  • [1] SATA T, YAMAGUCHI T, MATSUSAKI K.Anion exchange membranes for nitrate ion removal from groundwater by electrodialysis[J].Journal of the Chemical Society, Chemical Communications,1995,11(11):1153-1154 10.1039/C39950001153
    [2] STRATHMANN H.Electrodialysis, a mature technology with a multitude of new applications[J].Desalination,2010,264(3):268-288 10.1016/j.desal.2010.04.069
    [3] ZHANG Y, DESMIDT E, VAN L A, et al.Phosphate separation and recovery from wastewater by novel electrodialysis[J].Environmental Science & Technology,2013,47(11):5888-5895 10.1021/es4004476
    [4] CODAY B D, XU P, BEAUDRY E G et al.The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams[J].Desalination,2014,333(1):23-35 10.1016/j.desal.2013.11.014
    [5] SHAFFER D L, CHAVEZ L H A, BEN-SASSON M, et al.Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions[J].Environmental Science & Technology,2013,47(17):9569-9583 10.1021/es401966e
    [6] 张庆康, 郝瑞霞, 刘峰, 等. 不同再生水处理工艺出水水质回用途径适应性分析[J]. 环境工程学报,2013,7(1):91-96
    [7] 张燕燕, 程拥, 陈洪斌.MBR和BAF用于以家庭回用为目的的灰水净化研究[J]. 环境工程学报,2016,10(2):623-630
    [8] SHEN J Y, DUAN J R, YU L X, et al.Desalination of glutamine fermentation broth by electrodialysis[J].Process Biochemistry,2006,41(3):716-720 10.1016/j.procbio.2005.08.001
    [9] HUANG C, XU T, ZHANG Y, et al.Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments[J].Journal of Membrane Science,2007,288(1/2):1-12 10.1016/j.memsci.2006.11.026
    [10] 贾福强, 苗钧魁, 于跃芹, 等. 响应面法优化电渗析处理褐藻酸钠废水工艺[J]. 环境工程学报,2014,8(3):1041-1045
    [11] 康莹莹, 宋玉栋, 周岳溪, 等. 电渗析在丙烯酸丁酯废水预处理中的应用[J]. 环境工程学报,2011,5(3):494-498
    [12] BARAKAT M A.New trends in removing heavy metals from industrial wastewater[J].Arabian Journal of Chemistry,2011,4(4):361-377 10.1016/j.arabjc.2010.07.019
    [13] VANDEVIVERE P C, BIANCHI R ,VERSTRAETE W.Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies[J].Journal of Chemical Technology and Biotechnology,1998,72(4):289-302
    [14] LEFEBVRE O, MOLETTA R.Treatment of organic pollution in industrial saline wastewater: A literature review[J].Water Research,2006,40(20):3671-3682 10.1016/j.watres.2006.08.027
    [15] VYAS P V, SHAH B G, TRIVEDI G S, et al.Separation of inorganic and organic acids from glyoxal by electrodialysis[J].Desalination,2001,140(1):47-54 10.1016/S0011-9164(01)00353-8
    [16] LUIZ A, MCCLURE D D, LIM K, et al.Potential upgrading of bio-refinery streams by electrodialysis[J].Desalination,2017,41:520-528 10.1016/j.desal.2017.02.023
    [17] BANDINI S.Nafion membranes for conversion of sodium phenoxides into undissociated phenols[J].Journal of Membrane Science,2002,207(2):209-225 10.1016/S0376-7388(02)00249-1
    [18] 李飞, 余立新, 戴猷元. 双极性膜电渗析法处理酚钠溶液研究[J]. 化工环保,2004,24(2):79-82
    [19] 张鹏. 双极性膜电渗析法连续处理酚钠溶液研究[D]. 北京:清华大学,2009
    [20] 庞洁, 孟洪, 陆颖舟, 等. 异相膜电渗析法处理苯酚废水[J]. 北京化工大学学报(自然科学版),2010,37(5):15-20
    [21] 顾锡慧. 大孔树脂吸附-生物再生法处理高盐苯胺/苯酚废水的研究[D]. 大连:大连理工大学,2008
  • 加载中
计量
  • 文章访问数:  3204
  • HTML全文浏览数:  3056
  • PDF下载数:  133
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20

水溶液中苯酚电离形态表征及电渗析过程迁移特征

  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院大学,北京 100049
  • 3. 天津城建大学环境与市政工程学院,天津 300384
  • 4. 兰州交通大学环境与市政工程学院,兰州 730070
基金项目:

天津市科技计划项目(16YFXTSF00390)

清华大学环境模拟与污染控制国家重点联合实验室专项基金(16L02ESPC)

国家科技重大专项(2012ZX07203-003-R05)

摘要: 建立了紫外全波长扫描水溶液中苯酚电离形态的表征与定量分析方法,在此基础上,阐明了不同电离形态苯酚在电渗析过程中的迁移特征。结果表明:离子态、分子态和混合态(离子态和分子态的混合物)苯酚紫外全波长扫描在220~260 nm特征区间存在不同形状的特征峰,其浓度分别与特征波长258、236和236 nm处的吸光度有显著的线性定量关系;在电渗析过程中,离子态苯酚迁移特征为电渗迁移,分子态苯酚与酸协同迁移,混合态符合电离平衡控制迁移;离子态、分子态、混合态苯酚的迁移率分别为42%、4%和13%,在电渗析水处理过程中,有机污染物分子态和混合态的迁移也是重要的研究内容。

English Abstract

参考文献 (21)

目录

/

返回文章
返回