羟基铋离子改性蒙脱土的制备及其对碘离子的吸附

张良, 李佼, 高强立, 李娟, 邢兴, 徐从斌, 刘晓丹, 杨辰, 郑建中. 羟基铋离子改性蒙脱土的制备及其对碘离子的吸附[J]. 环境工程学报, 2018, 12(9): 2475-2482. doi: 10.12030/j.cjee.201803038
引用本文: 张良, 李佼, 高强立, 李娟, 邢兴, 徐从斌, 刘晓丹, 杨辰, 郑建中. 羟基铋离子改性蒙脱土的制备及其对碘离子的吸附[J]. 环境工程学报, 2018, 12(9): 2475-2482. doi: 10.12030/j.cjee.201803038
ZHANG Liang, LI Jiao, GAO Qiangli, LI Juan, XING Xing, XU Congbin, LIU Xiaodan, YANG Chen, ZHENG Jianzhong. Synthesis of hydroxybismuth polycations-impregnated montmorillonite for iodide removal from aqueous solu-tion[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2475-2482. doi: 10.12030/j.cjee.201803038
Citation: ZHANG Liang, LI Jiao, GAO Qiangli, LI Juan, XING Xing, XU Congbin, LIU Xiaodan, YANG Chen, ZHENG Jianzhong. Synthesis of hydroxybismuth polycations-impregnated montmorillonite for iodide removal from aqueous solu-tion[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2475-2482. doi: 10.12030/j.cjee.201803038

羟基铋离子改性蒙脱土的制备及其对碘离子的吸附

  • 基金项目:

    中国科学院先导专项B(XDB10030604)

    国家自然科学基金资助项目(41473098)

Synthesis of hydroxybismuth polycations-impregnated montmorillonite for iodide removal from aqueous solu-tion

  • Fund Project:
  • 摘要: 水体的碘污染问题正日益引起人们的广泛关注。以Swy-2型钠基蒙脱土为载体,利用其层间离子交换特性,简单快速制备了羟基铋离子改性蒙脱土,并通过扫描电镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对材料吸附碘前后的物化特性进行了表征,研究了材料对水体中碘离子的去除效果,探讨了相关吸附机理。结果表明:合成材料对碘离子的吸附动力学符合假二级动力学方程,吸附等温线符合Langmuir模型,其最大吸附量为107.5 mg·g-1,换算成氧化铋对碘的吸附量高达595.2mg·g-1;因此,以Swy-2型钠基蒙脱土为载体,进行羟基铋离子改性,可以大大地提高铋利用效果。对吸附碘后材料的XPS和XRD进一步分析推测,羟基铋离子改性蒙脱土对碘离子的去除,可能是经由化学吸附,生成Bi4I2O5所造成的。
  • 加载中
  • [1] GED E C, BOYER T H.Effect of seawater intrusion on formation of bromine-containing trihalomethanes and haloacetic acids during chlorination [J].Desalination,2014,345:85-93 10.1016/j.desal.2014.04.021
    [2] WATSON K, FARRéM J, KNIGHT N.Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: A critical review [J].Journal of Environmental Management,2012,110(15):276-298 10.1021/acsami. 5b07344
    [3] HARKNESS J S, DWYER G S, WARNER N R, et al.Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters:Environmental implications [J].Environmental Science & Technology,2015,49(3):1955-1963 10.1021/es504654n
    [4] PARKER K M, ZENG T, HARKNESS J, et al.Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies [J].Environmental Science & Technology,2014,48(19):11161-11169 1021/es5028184
    [5] RICHARDSON S D, FASANO F, ELLINGTON J J, et al.Occurrence and mammalian celltoxicity of iodinated disinfection byproducts in drinking water [J].Environmental Science & Technology,2008,42(22):8330-8338 10.1021/es801169k
    [6] CURTIUS H, KATTILPARAMPIL Z.Sorption of iodine on Mg-Al-layered double hydroxide[J].Clay Minerals,2005,40(4):455-461 10.1180/0009855054040183
    [7] BALSLEY S D, BRADY P V, KRUMHANSL J L, et al.Anion scavengers for low-level radioactive waste repository backfills[J].Journal of Soil Contamination,1998,7(2):125-141 10.1080/10588339891334195
    [8] SINGARE P, LOKHANDE R.Behaviour of radioactive iodide and bromide ions from aqueous solution on ion exchange resins Amberlite IRA-400 [J].Natural Science,2009,1(3):191-194 10.4236/ns.2009.13025
    [9] KHAN S, WINTGENS T, SHERMAN P, et al.A performance comparison of individual and combined treatment modules for water recycling [J].Environmental Progress,2005,24(4):383-391 10.1002/ep.10108
    [10] YING T Y, YANG K L, YIACOUMI S, et al.Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel [J].Journal of Colloid and Interface Science,2002,250(1):18-27 10.1006/jcis.2002.8314
    [11] LIU L, LIU W, ZHAO X, et al.Selective capture of iodide from solutions by microrosette-like δ-Bi2O3 [J].ACS Applied Materials & Interfaces,2014,6(18):16082-16090 10.1021/am504000n
    [12] LEFEVRE G, WALCARIUS A, EHRHARDT J J, et al.Sorption of iodide on cuprite (Cu2O) [J].Langmuir,2000,16(10):4519-4527 10.1021/la9903999
    [13] MAO P, QI B, LIU Y, et al.Ag (II) doped MIL-101 and its adsorption of iodine with high speed in solution[J].Journal of Solid State Chemistry,2016,237:274-283 10.1016/j.jssc.2016.02.030
    [14] MAO P, QI L, LIU X, et al.Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water [J].Journal of Hazardous Materials,2017,328:21-28 10.1016/j.jhazmat.2016.12.065
    [15] LU Y, LIU H, GAO R, et al.Coherent-interface-assembled Ag2O-anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture [J].ACS Applied Materials & Interfaces,2016,42(8):29179-29185 10.1021/acsami.6b10749
    [16] XIONG Y, DANG B, WANG C, et al.Cellulose fibers constructed convenient recyclable 3D graphene-formicary-like δ-Bi2O3aerogels for the selective capture of iodide [J].ACS Applied Materials & Interfaces,2017,9(24):20554-20560 10.1021/acsami.7b03516
    [17] ZHANG L, JARONIEC M.SBA-15 templating synthesis of mesoporous bismuth oxide for selective removal of iodide [J].Journal of Colloid and Interface Science,2017,501:248-255 10.1016/j.jcis.2017.04.063
    [18] ZHANG T, YUE X, GAO L, et al.Hierarchically porous bismuth oxide/layered double hydroxide composites: Preparation, characterization and iodine adsorption [J].Journal of Cleaner Production,2017,144:220-227 10.1016/j.jclepro.2017.01.030
    [19] BAES C F, MESMER R E.The hydrolysis of cations [J].Wiley,1976,85(38):2385-2387
    [20] YAMANAKA S, YAMASHITA G, HATTORI M.Reaction of hydroxybismuth polycations with montmorillonite [J].Clays and Clay Minerals,1980,28(4):281-284 10.1346/CCMN.1980.0280406
    [21] LANGMUIR I.The constitution and fundamental properties of solids and liquids.II.Liquids [J].Journal of the American Chemical Society,1917,39(9):1848-1906 10.1021/ja02254a006
    [22] IQBAL M, KHERA R A.Adsorption of copper and lead in single and binary metal system onto fumaria indica biomass [J].Chemistry International,2015,1(3):157-163
    [23] HO Y S, MCKAY G.Pseudo-second order model for sorption processes [J].Process Biochemistry, 1999, 34(5): 451-465 10.1016/S0032-9592(98)00112-5
    [24] SONG J M, MAO C J, NIU H L, et al.Hierarchical structured bismuth oxychlorides: Self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties [J].CrystEngComm,2010,12(11):3875-3881 10.1039/c003497p
    [25] XIAO X, ZHANG W D.Hierarchical Bi7O9I3 micro/nano-architecture: Facile synthesis, growth mechanism, and high visible light photocatalytic performance [J].RSC Advances,2011,1(6):1099-1105 10.1039/c1ra00323b
    [26] LIU Q C, MA D K, HU Y Y, et al.Various bismuth oxyiodide hierarchical architectures: Alcohothermal-controlled synthesis, photocatalytic activities, and adsorption capabilities for phosphate in water [J].ACS Applied Materials & Interfaces, 2013,5(22):11927-11934 10.1021/am4036702
  • 加载中
计量
  • 文章访问数:  2247
  • HTML全文浏览数:  2093
  • PDF下载数:  169
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20

羟基铋离子改性蒙脱土的制备及其对碘离子的吸附

  • 1. 中国科学院大学资源与环境学院,北京100049
  • 2. 中环联新北京环境保护有限公司,北京 100049
基金项目:

中国科学院先导专项B(XDB10030604)

国家自然科学基金资助项目(41473098)

摘要: 水体的碘污染问题正日益引起人们的广泛关注。以Swy-2型钠基蒙脱土为载体,利用其层间离子交换特性,简单快速制备了羟基铋离子改性蒙脱土,并通过扫描电镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对材料吸附碘前后的物化特性进行了表征,研究了材料对水体中碘离子的去除效果,探讨了相关吸附机理。结果表明:合成材料对碘离子的吸附动力学符合假二级动力学方程,吸附等温线符合Langmuir模型,其最大吸附量为107.5 mg·g-1,换算成氧化铋对碘的吸附量高达595.2mg·g-1;因此,以Swy-2型钠基蒙脱土为载体,进行羟基铋离子改性,可以大大地提高铋利用效果。对吸附碘后材料的XPS和XRD进一步分析推测,羟基铋离子改性蒙脱土对碘离子的去除,可能是经由化学吸附,生成Bi4I2O5所造成的。

English Abstract

参考文献 (26)

目录

/

返回文章
返回