流化床中煤与稻秆混烧污染物排放特性

谢兴旺, 仲兆平, 薛则禹. 流化床中煤与稻秆混烧污染物排放特性[J]. 环境工程学报, 2018, 12(9): 2572-2579. doi: 10.12030/j.cjee.201804004
引用本文: 谢兴旺, 仲兆平, 薛则禹. 流化床中煤与稻秆混烧污染物排放特性[J]. 环境工程学报, 2018, 12(9): 2572-2579. doi: 10.12030/j.cjee.201804004
XIE Xingwang, ZHONG Zhaoping, XUE Zeyu. Characteristics of pollutant emissions from co-combustion of straw and coal in fluidized bed[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2572-2579. doi: 10.12030/j.cjee.201804004
Citation: XIE Xingwang, ZHONG Zhaoping, XUE Zeyu. Characteristics of pollutant emissions from co-combustion of straw and coal in fluidized bed[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2572-2579. doi: 10.12030/j.cjee.201804004

流化床中煤与稻秆混烧污染物排放特性

  • 基金项目:

    国家自然科学基金资助项目(51276040,U1361115)

    国家重点基础研究发展计划资助项目(2013CB228106)

Characteristics of pollutant emissions from co-combustion of straw and coal in fluidized bed

  • Fund Project:
  • 摘要: 在自主设计的流化床上开展煤与稻秆混烧的实验。通过对燃烧过程中烟气成分及飞灰含碳量的分析,研究了质量掺混比、燃烧温度、流化风速及二次风率对混烧的影响。实验结果表明,掺混稻秆有效改善了煤的燃烧特性,随着质量掺混比的增加,NOx、SO2及CO的排放浓度降低,飞灰含碳量降低。当掺混比由0%增加至30%、温度为850 ℃时,NOx排放浓度由506.25 mg·m-3降低至404.33 mg·m-3,SO2排放浓度由762.86 mg·m-3降低至522.86 mg·m-3。随着燃烧温度的增加,NOx与SO2排放浓度增加,而CO排放浓度和飞灰含碳量降低。随着流化速度的增加,NOx与SO2排放浓度增加,CO排放浓度和飞灰含碳量先降低后增加,并分别在流化速度0.234 m·s-1和0.26 m·s-1时达到最低。随着二次风率的增加,SO2排放浓度与飞灰含碳量降低,NOx排放浓度与CO排放浓度先减小后增加,均在20%二次风率时达到最低。
  • 加载中
  • [1] 马文超, 陈冠益, 颜蓓蓓,等. 生物质燃烧技术综述[J]. 生物质化学工程, 2007, 41(1):43-48
    [2] ELDENSTEN L, KUCINSKI A, EL-DORGHAMY A, et al.Introduction of co-combustion of coal and biomass in a 315 MW CFB boiler[J].International Waste Management and Landfill Symposium, 2005, 4(6):18-25
    [3] 刘豪, 邱建荣, 吴昊,等. 生物质和煤混合燃烧污染物排放特性研究[J]. 环境科学学报, 2002, 22(4):484-488
    [4] PROMPUBESS C, MEKASUT L, PIUMSOMBOON P, et al.Co-combustion of coal and biomass in a circulating fluidized bed combustor[J].Korean Journal of Chemical Engineering, 2007, 24(6):989-995. 10.1007/s11814-007-0109-4
    [5] SONG Q.Numerical simulation and combustion analysis of biomass gas and coal co-firing process[J].Journal of Henan Science & Technology, 2016, 12(4): 227-236
    [6] 马爱玲, 谌伦建, 黄光许,等. 生物质与煤混烧的热重-红外实验研究[J]. 煤炭学报, 2011, 36(1):124-128
    [7] MADHIYANON T, SATHITRUANGSAK P, SOPONRONNARIT S.Co-combustion of rice husk with coal in a cyclonic fluidized-bed combustor (ψ-FBC)[J].Fuel, 2009, 88(1):132-138 10.1016/j.fuel.2008.08.008
    [8] SHEN B X, YAO Q, LIU D C.Emission of N2O and NOx by co-combustion of biomass and coal in fluidized bed boiler[J].Power System Engineering, 2002, 12(8):124-132
    [9] LU W Q, FANG D Y, YANG Z Y.Study on burnout and SO2 emission characteristics during co-combustion of petroleum coke and oil shale in a fluidized bed[J].Applied Mechanics & Materials, 2011, 55-57:1547-1553 10.4028/www.scientific.net/AMM.55-57.1547
    [10] 罗娟, 侯书林, 赵立欣, 等. 典型生物质颗粒燃料燃烧特性实验[J]. 农业工程学报, 2010,26(5):220-226
    [11] ZHOU W, ZHAO C S, DUAN L B, et al.Two-dimensional computational fluid dynamics simulation of coal combustion in a circulating fluidized bed combustor[J].Chemical Engineering Journal, 2011, 166(1):306-314 10.1016/j.cej.2010.09.048
    [12] PATIL D J, SMIT J, VAN S A M, et al.Wall-to-bed heat transfer in gas-solid bubbling fluidized beds[J].AIChE Journal, 2010, 52(1):58-74 10.1002/aic.10590
    [13] FU W, ZHANG Y, HAN H, et al.A general model of pulverized coal devolatilization[J].Fuel, 1989, 68(4):505-510 10.1016/0016-2361(89)90274-3
    [14] GUNGOR A.Two-dimensional biomass combustion modeling of CFB[J].Fuel, 2008, 87(8/9):1453-1468 10.1016/j.fuel.2007.08.013
    [15] GOYAL A, REHMAT A.Modeling of a fluidized-bed coal carbonizer[J].Industrial & Engineering Chemistry Research, 1993, 32(7):1396-1410 10.1021/ie00019a014
    [16] 胡满银, 乔欢, 杜欣, 等. 烟气再循环对炉内氮氧化物生成影响的数值模拟[J]. 华北电力大学学报(自然科学版),2007,34(6):77-82
    [17] FRYDA L, SOBRINO C, CIEPLIK M, et al.Study on ash deposition under oxyfuel combustion of coal/biomass blends [J].Fuel, 2010, 89(8):1889-1902 10.1016/j.fuel.2009.11.022
    [18] WANG X, SI J, TAN H, et al.Kinetics investigation on the reduction of NO using straw char based on physicochemical characterization[J].Bioresource Technology, 2011, 102(16):7401-7409 10.1016/j.biortech.2011.05.038
  • 加载中
计量
  • 文章访问数:  2210
  • HTML全文浏览数:  2068
  • PDF下载数:  145
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20

流化床中煤与稻秆混烧污染物排放特性

  • 1. 东南大学能源与环境学院,南京 210096
基金项目:

国家自然科学基金资助项目(51276040,U1361115)

国家重点基础研究发展计划资助项目(2013CB228106)

摘要: 在自主设计的流化床上开展煤与稻秆混烧的实验。通过对燃烧过程中烟气成分及飞灰含碳量的分析,研究了质量掺混比、燃烧温度、流化风速及二次风率对混烧的影响。实验结果表明,掺混稻秆有效改善了煤的燃烧特性,随着质量掺混比的增加,NOx、SO2及CO的排放浓度降低,飞灰含碳量降低。当掺混比由0%增加至30%、温度为850 ℃时,NOx排放浓度由506.25 mg·m-3降低至404.33 mg·m-3,SO2排放浓度由762.86 mg·m-3降低至522.86 mg·m-3。随着燃烧温度的增加,NOx与SO2排放浓度增加,而CO排放浓度和飞灰含碳量降低。随着流化速度的增加,NOx与SO2排放浓度增加,CO排放浓度和飞灰含碳量先降低后增加,并分别在流化速度0.234 m·s-1和0.26 m·s-1时达到最低。随着二次风率的增加,SO2排放浓度与飞灰含碳量降低,NOx排放浓度与CO排放浓度先减小后增加,均在20%二次风率时达到最低。

English Abstract

参考文献 (18)

目录

/

返回文章
返回