还原稳定剂配伍对铬污染土壤的稳定化效果

周斌, 黄道友, 吴金水, 朱奇宏, 朱捍华, 李静. 还原稳定剂配伍对铬污染土壤的稳定化效果[J]. 环境工程学报, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233
引用本文: 周斌, 黄道友, 吴金水, 朱奇宏, 朱捍华, 李静. 还原稳定剂配伍对铬污染土壤的稳定化效果[J]. 环境工程学报, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233
ZHOU Bin, HUANG Daoyou, WU Jinshui, ZHU Qihong, ZHU Hanhua, LI Jing. Effect of reducing amendments combination on stabilization remediation of chromium contaminated soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233
Citation: ZHOU Bin, HUANG Daoyou, WU Jinshui, ZHU Qihong, ZHU Hanhua, LI Jing. Effect of reducing amendments combination on stabilization remediation of chromium contaminated soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233

还原稳定剂配伍对铬污染土壤的稳定化效果

  • 基金项目:

    国家科技攻关计划(2015BAD05B02)

    现代农业产业技术体系建设专项资金(CARS-16-E09)

Effect of reducing amendments combination on stabilization remediation of chromium contaminated soil

  • Fund Project:
  • 摘要: 以某铬盐生产场地内的铬(Cr)污染土壤为研究对象,探讨了多硫化钙(CPS)、硫酸亚铁(FeSO4)、零价铁粉(Fe0)、葡萄糖和淀粉单用或复配对土壤中六价铬(CrⅥ))含量和浸出毒性的影响。结果表明:添加质量比3%的CPS和FeSO4对土壤Cr(Ⅵ)的还原率分别为81.5%和46.4%,而Fe0无显著还原作用,但FeSO4和Fe0对Cr(Ⅵ)的稳定效率分别为95.2%和90.9%,明显高于CPS(83.0%);养护5 d时,CPS+FeSO4对土壤Cr(Ⅵ)的还原率和稳定效率分别为99.8%和97.0%,但养护30 d时,其还原率和稳定效率分别显著降低1.3和8.0个百分点;与CPS+FeSO4类似,CPS+Fe0对土壤Cr(Ⅵ)的还原率随养护时间增加而显著降低,但其稳定效率并未随养护时间增加而显著降低;此外,与CPS-6相比,Fe0参与的复配处理对土壤总Cr和Cr(Ⅵ)的稳定效率显著增加,均达到99.8%以上,浸出浓度均小于0.05 mg·L-1;有机碳源参与的复配处理的还原率和稳定效率均随养护时间的增加而增加,其中CPS+Fe0+葡萄糖处理养护30 d时土壤Cr(Ⅵ)为0.24 mg·kg-1,总Cr和Cr(Ⅵ) 浸出浓度均小于0.05 mg·L-1,满足《重金属污染场地土壤修复标准》(DB 43 1165-2016-T)要求。同等药剂添加比例下,还原稳定剂复配可以取长补短,提高药剂对土壤Cr(Ⅵ)的还原率和稳定效率。
  • 加载中
  • [1] 董广霞, 李莉娜, 唐桂刚, 等. 中国含铬废物的来源区域分布和处理现状及监管建议[J]. 中国环境监测,2013,29(6):196-199
    [2] 张厚坚, 王兴润, 陈春云, 等. 高原地区铬渣污染场地污染特性研究[J]. 环境工程学报,2010,4(4):915-918
    [3] 罗建峰, 曲东. 青海海北化工厂铬渣堆积场土壤铬污染状况研究[J]. 西北农业学报,2006,15(6):244-247
    [4] 张文, 杨勇, 马泉智, 等. 铬污染土壤还原-固化稳定化过程研究[J]. 环境工程,2014,32(S1):1028-1030
    [5] 裴廷权, 王里奥, 钟山, 等. 典型铬渣简易掩埋场铬渣及土壤铬污染特征和处置分析[J]. 环境工程学报,2008,2(7):994-999
    [6] NARIN I, SURME Y, SOYLAK M, et al.Speciation of Cr(III) and Cr(VI) in environmental samples by solid phase extraction on Ambersorb 563 resin[J].Journal of Hazardous Materials,2006,136(3):579-584 10.1016/j.jhazmat.2005.12.034
    [7] 姜苹红, 陈灿, 向仁军. 铬污染土壤的单一/复合还原处理及其长期稳定性研究[J]. 环境工程学报,2015,9(10):5091-5095
    [8] 蒋婷婷, 喻恺, 罗启仕, 等.HDTMA 改性蒙脱土对土壤Cr(Ⅵ) 的吸附稳定化研究[J]. 环境科学,2016,37(3):1039-1047
    [9] 李培中, 吕晓健, 王海见, 等. 某电镀厂六价铬污染土壤还原稳定化试剂筛选与过程监测[J]. 环境科学,2017,38(1):368-373 10.13227/j.hjkx.201604098
    [10] 杨放, 陈倩, 毛志强, 等. 不同化学还原体系下铬污染土壤的处理效率[J]. 环境工程学报,2017,11(6):3832-3838 10.12030/j.cjee.201604024
    [11] 王旌, 罗启仕, 张长波, 等. 铬污染土壤的稳定化处理及其长期稳定性研究[J]. 环境科学,2013,34(10):4036-4041
    [12] CUNDY A B, HOPKINSON L, WHITBY R L D.Use of iron-based technologies in contaminated land and groundwater remediation: A review[J].Science of the Total Environment,2008,400(1/2/3):42-51 10.1016/j.scitotenv.2008.07.002
    [13] ASTRUP T, STIPP S L S, CHRISTENSEN T H.Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron[J].Environmental Science and Technology,2000,34(19):4163-4168 10.1021/es0009424
    [14] 马少云, 祝方, 商执峰, 等. 纳米零价铁铜双金属对铬污染土壤中Cr(Ⅵ) 的还原动力学[J]. 环境科学,2016,37(5):1953-1959
    [15] TSENG J K, BIELEFELDT A R.Low-temperature chromium (VI) biotransformation in soil with varying electron acceptors[J].Journal of Environmental Quality,2002,31(6):1831-1841
    [16] 粟海锋, 孙英云, 文衍宣, 等. 废糖蜜还原浸出低品位软锰矿[J]. 过程工程学报,2007,7(6):1089-1093
    [17] CHRYSOCHOOU M, JOHNSTON C P.Polysulfide speciation and reactivity in chromate-contaminated soil[J].Journal of Hazardous Materials,2015,251:87-94 10.1016/j.jhazmat.2014.07.022
    [18] KANTAR C.Heterogeneous processes affecting metal ion transport in the presence of organic ligands: Reactive transport modeling[J].Earth-Science Reviews,2007,81(3/4):175-198 10.1016/j.earscirev.2006.11.001
    [19] 刘雪, 王兴润, 张增强.pH 和有机质对铬渣污染土壤中Cr 赋存形态的影响[J]. 环境工程学报,2010,4(6):1436-1440
    [20] 范琴, 王海燕,AO C L, LIU Y B, et al.The hazardous hexavalent chromium formed on trivalent chromium conversion coating: The origin, influence factors and control measures[J].Journal of Hazardous Materials,2012,221-222:56-61 10.1016/j.jhazmat.2012.04.004
    [21] PALMER C D, WITTBRODT P R.Processes affecting the remediation of chromium-contaminated sites[J].Environmental Health Perspectives,1991,92:25-40
    [22] 杨俊香, 兰叶青. 硫化物还原Cr(Ⅵ) 的反应动力学研究[J]. 环境科学学报,2005,25(3):356-360
    [23] 黄莹, 徐民民, 李书鹏, 等. 还原稳定化法修复六价铬污染土壤的中试研究[J]. 环境工程学报,2015,9(2):951-958
    [24] 张辉, 付融冰, 郭小品, 等. 铬污染土壤的还原稳定化修复[J]. 环境工程学报,2017,11(11):6163-6168 10.12030/j.cjee.201702022
    [25] LEE T, LIM H, LEE Y, et al.Use of waste iron metal for removal of Cr(Ⅵ) from water[J].Chemosphere,2003,53(5):479-485 10.1016/S0045-6535(03)00548-4
  • 加载中
计量
  • 文章访问数:  2365
  • HTML全文浏览数:  2204
  • PDF下载数:  147
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11
周斌, 黄道友, 吴金水, 朱奇宏, 朱捍华, 李静. 还原稳定剂配伍对铬污染土壤的稳定化效果[J]. 环境工程学报, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233
引用本文: 周斌, 黄道友, 吴金水, 朱奇宏, 朱捍华, 李静. 还原稳定剂配伍对铬污染土壤的稳定化效果[J]. 环境工程学报, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233
ZHOU Bin, HUANG Daoyou, WU Jinshui, ZHU Qihong, ZHU Hanhua, LI Jing. Effect of reducing amendments combination on stabilization remediation of chromium contaminated soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233
Citation: ZHOU Bin, HUANG Daoyou, WU Jinshui, ZHU Qihong, ZHU Hanhua, LI Jing. Effect of reducing amendments combination on stabilization remediation of chromium contaminated soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233

还原稳定剂配伍对铬污染土壤的稳定化效果

  • 1. 中国科学院亚热带农业生态研究所,亚热带农业生态过程重点实验室,长沙 410125
  • 2. 中国科学院大学,北京 100049
  • 3. 永清环保股份有限公司研究设计院,长沙 410330
基金项目:

国家科技攻关计划(2015BAD05B02)

现代农业产业技术体系建设专项资金(CARS-16-E09)

摘要: 以某铬盐生产场地内的铬(Cr)污染土壤为研究对象,探讨了多硫化钙(CPS)、硫酸亚铁(FeSO4)、零价铁粉(Fe0)、葡萄糖和淀粉单用或复配对土壤中六价铬(CrⅥ))含量和浸出毒性的影响。结果表明:添加质量比3%的CPS和FeSO4对土壤Cr(Ⅵ)的还原率分别为81.5%和46.4%,而Fe0无显著还原作用,但FeSO4和Fe0对Cr(Ⅵ)的稳定效率分别为95.2%和90.9%,明显高于CPS(83.0%);养护5 d时,CPS+FeSO4对土壤Cr(Ⅵ)的还原率和稳定效率分别为99.8%和97.0%,但养护30 d时,其还原率和稳定效率分别显著降低1.3和8.0个百分点;与CPS+FeSO4类似,CPS+Fe0对土壤Cr(Ⅵ)的还原率随养护时间增加而显著降低,但其稳定效率并未随养护时间增加而显著降低;此外,与CPS-6相比,Fe0参与的复配处理对土壤总Cr和Cr(Ⅵ)的稳定效率显著增加,均达到99.8%以上,浸出浓度均小于0.05 mg·L-1;有机碳源参与的复配处理的还原率和稳定效率均随养护时间的增加而增加,其中CPS+Fe0+葡萄糖处理养护30 d时土壤Cr(Ⅵ)为0.24 mg·kg-1,总Cr和Cr(Ⅵ) 浸出浓度均小于0.05 mg·L-1,满足《重金属污染场地土壤修复标准》(DB 43 1165-2016-T)要求。同等药剂添加比例下,还原稳定剂复配可以取长补短,提高药剂对土壤Cr(Ⅵ)的还原率和稳定效率。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回