不同增强剂的电动技术对土壤中镉去除及土壤酶活性的影响

李文娟, 王平, 徐海音, 朱姗姗, 尹静玄. 不同增强剂的电动技术对土壤中镉去除及土壤酶活性的影响[J]. 环境工程学报, 2018, 12(8): 2320-2327. doi: 10.12030/j.cjee.201803231
引用本文: 李文娟, 王平, 徐海音, 朱姗姗, 尹静玄. 不同增强剂的电动技术对土壤中镉去除及土壤酶活性的影响[J]. 环境工程学报, 2018, 12(8): 2320-2327. doi: 10.12030/j.cjee.201803231
LI Wenjuan, WANG Ping, XU Haiyin, ZHU Shanshan, YIN Jingxuan. Effects of electrokinetic technology with different enhancing agents on cadmium removal and enzyme activity in soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2320-2327. doi: 10.12030/j.cjee.201803231
Citation: LI Wenjuan, WANG Ping, XU Haiyin, ZHU Shanshan, YIN Jingxuan. Effects of electrokinetic technology with different enhancing agents on cadmium removal and enzyme activity in soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2320-2327. doi: 10.12030/j.cjee.201803231

不同增强剂的电动技术对土壤中镉去除及土壤酶活性的影响

  • 基金项目:

    基金项目湖南省重点研发项目(2016SK2030)

    湖南省教育厅一般项目(湘财教指[2016]40号)

Effects of electrokinetic technology with different enhancing agents on cadmium removal and enzyme activity in soil

  • Fund Project:
  • 摘要: 为了探讨基于不同增强剂的电动技术对重金属污染土壤的修复效果,采用0.1% 浓度的草酸、柠檬酸、已二胺四乙酸(EDTA)、甲基甘氨酸二乙酸(MGDA)作为阴极电解液,电压梯度3 V·cm-1连续通电10 d,同时考查土壤中Cd的电迁移效果以及土壤酶(脲酶、酸性磷酸酶、过氧化氢酶)活性的变化。结果表明:相对于传统电动法(清水组),增强剂明显提高了Cd在土壤中的迁移效果,且人工螯合剂效果优于有机酸,对总Cd去除率为MGDA(63.08%)>EDTA(23.75%)>柠檬酸(18.43%)>草酸(16.41%)>清水(8.73%)。相比于清水组,EDTA抑制了土壤中3种酶活性,柠檬酸、草酸可以改善脲酶和过氧化氢酶的活性,MGDA显著提高了3种酶的活性。结合Cd去除率和酶的影响分析,MGDA不仅能显著提高电动修复效率,且具备较低的土壤环境风险。
  • 加载中
  • [1] ESPERANZA M R, JOSé V J, MANUEL-ANDRéS R R, et al.Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient[J].Chemical Engineering Journal, 2016,299:30-36 10.1016/j.cej.2016.04.049
    [2] FIGUEROA A, CAMESELLE C, GOUVEIA S, et al.Electrokinetic treatment of an agricultural soil contaminated with heavy metals[J].Journal of Environmental Science and Health, 2016, 51(9):691-700 10.1080/10934529.2016.1170425
    [3] 安浩,詹茂华,程寒飞,等.乙酸强化下通电方式对电动修复受重金属污染高岭土的影响[J].环境工程学报, 2017,11(9):5283-5290 10.12030/j.cjee.201609176
    [4] 徐龙云,张英杰,董鹏,等.阴极电解液对Cd污染红壤电动修复的影响[J].环境科学研究,2017,30(2):267-274
    [5] 樊广萍,朱海燕,郝秀珍,等.不同的增强试剂对重金属污染场地土壤的电动修复影响[J].中国环境科学, 2015, 35(5):1458-1465
    [6] 丁玲,吕文英,姚琨,等.电动增强技术修复镉污染土壤及其修复机理[J].环境工程学报,2017,11(4):2554-2559 10.12030/j.cjee.201602043
    [7] SONG Y, AMMAMI M T, BENAMAR A, et al.Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment[J].Environmental Science and Pollution Research, 2016, 23(11):10577-10586 10.1007/s11356-015-5966-5
    [8] HOSSEINI S S, LAKZIAN A, HALAJNIA A.The effect of EDTA and citric acid on soil enzymes activity, substrate induced respiration and Pb availability in a contaminated soil[J].Majallah-i āb va Khāk, 2017, 30(6):2032-2045
    [9] 郭晓方,卫泽斌,吴启堂. 乙二胺四乙酸在重金属污染土壤修复过程的降解及残留[J].农业工程学报, 2015, 31(7):272-278
    [10] 武丽丽. 甲基甘氨酸二乙酸及其在清洗剂中的应用[J].中国洗涤用品工业, 2015, 32(7): 36-40
    [11] BRETTI C, CIGALA R M, STEFANO C D, et al.Thermodynamic solution properties of a biodegradable chelant (MGDA) and its interaction with the major constituents of natural fluids[J].Fluid Phase Equilibria, 2017, 434:463-473 10.1016/j.fluid.2016.11.027
    [12] BRETTI C, CIGALA R M, STEFANO C D, et al.Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant MGDA in biological fluids and natural waters[J].Chemosphere, 2017, 183:107-118 10.1016/j.chemosphere.2017.05.099
    [13] 王雷,何闪英,李阿南,等.MGDA与DA-6强化黑麦草对Cd污染土壤的修复作用[J].水土保持学报, 2016, 30(3):134-140
    [14] GONZáLEZ I, CORTES A, NEAMAN A, et al.Biodegradable chelate enhances the phytoextraction of copper by Oenothera picensis grown in copper-contaminated acid soils[J].Chemosphere, 2011, 84(4): 490-496 10.1016/j.chemosphere.2011.03.015
    [15] 戴凌,黄志宏,文丽. 长沙市不同森林类型土壤养分含量与土壤酶活性[J].中南林业科技大学学报, 2014, 34(6):100-105
    [16] CIARKOWSKA K.Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: A case study from Zakopane (Poland)[J].Environmental Science and Pollution Research, 2018, 25(8):1-10 10.1007/s11356-018-1589-y
    [17] 王学锋,尚菲,刘修和,等.Cd、Ni单一及复合污染对土壤酶活性的影响[J].环境工程学报,2014, 8(9): 4027-4034
    [18] 线郁,王美娥,陈卫平. 土壤酶和微生物量碳对土壤低浓度重金属污染的响应及其影响因子研究[J].生态毒理学报, 2014, 9(1): 63-70
    [19] 郭星亮,谷洁,陈智学,等.铜川煤矿区重金属污染对土壤微生物群落代谢和酶活性的影响[J].应用生态学报, 2012, 23(3): 798-806
    [20] 李强,胡清菁,张超兰,等.基于土壤酶总体活性评价铅锌尾矿砂坍塌区土壤重金属污染[J].生态环境学报, 2014, 23(11): 1839-1844
    [21] 王友保. 土壤污染与生态修复实验指南[M]. 4版.合肥:安徽师范大学出版社, 2015
    [22] 龙江,张荣, 陈念. 比重计法测定土壤质地温度控制重要性的研究[J].安徽地质, 2014, 24(1):63-65
    [23] 张朝阳,彭平安,宋建中,等.改进BCR法分析国家土壤标准物质中重金属化学形态[J].生态环境学报, 2012, 21(11):1881-1884
    [24] 吴丹亚,仓龙,周东美,等.EDDS应用于Cu/Zn污染土壤电动处理的基础研究[J].农业环境科学学报, 2007, 26(2):436-442
    [25] 周东美,仓龙,邓昌芬. 络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学, 2005, 25(1): 11-15
    [26] 王家,赵阳阳,代潭,等.Cu、Cd污染对土壤脲酶活性的影响研究[J].环境科学与管理, 2014, 39(11):45-48
    [27] 谭林立,陈红燕,袁旭音. 毒性金属Cd和Pb对土壤酶活性的胁迫效应研究[J].环境科技, 2016, 29(5): 6-10
  • 加载中
计量
  • 文章访问数:  1886
  • HTML全文浏览数:  1677
  • PDF下载数:  164
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17

不同增强剂的电动技术对土壤中镉去除及土壤酶活性的影响

  • 1. 中南林业科技大学生命科学与技术学院,长沙 410004
  • 2. 中南林业科技大学环境科学与工程学院,长沙 410004
基金项目:

基金项目湖南省重点研发项目(2016SK2030)

湖南省教育厅一般项目(湘财教指[2016]40号)

摘要: 为了探讨基于不同增强剂的电动技术对重金属污染土壤的修复效果,采用0.1% 浓度的草酸、柠檬酸、已二胺四乙酸(EDTA)、甲基甘氨酸二乙酸(MGDA)作为阴极电解液,电压梯度3 V·cm-1连续通电10 d,同时考查土壤中Cd的电迁移效果以及土壤酶(脲酶、酸性磷酸酶、过氧化氢酶)活性的变化。结果表明:相对于传统电动法(清水组),增强剂明显提高了Cd在土壤中的迁移效果,且人工螯合剂效果优于有机酸,对总Cd去除率为MGDA(63.08%)>EDTA(23.75%)>柠檬酸(18.43%)>草酸(16.41%)>清水(8.73%)。相比于清水组,EDTA抑制了土壤中3种酶活性,柠檬酸、草酸可以改善脲酶和过氧化氢酶的活性,MGDA显著提高了3种酶的活性。结合Cd去除率和酶的影响分析,MGDA不仅能显著提高电动修复效率,且具备较低的土壤环境风险。

English Abstract

参考文献 (27)

目录

/

返回文章
返回