产铁载体菌对龙葵修复土壤Cd污染的促进效应

王东升, 王立立, 李取生, 周婷, 周雪芳, 高琼. 产铁载体菌对龙葵修复土壤Cd污染的促进效应[J]. 环境工程学报, 2018, 12(8): 2311-2319. doi: 10.12030/j.cjee.201803103
引用本文: 王东升, 王立立, 李取生, 周婷, 周雪芳, 高琼. 产铁载体菌对龙葵修复土壤Cd污染的促进效应[J]. 环境工程学报, 2018, 12(8): 2311-2319. doi: 10.12030/j.cjee.201803103
WANG Dongsheng, WANG Lili, LI Qusheng, ZHOU Ting, ZHOU Xuefang, GAO Qiong. Enhancing effect of siderophore-producting bacteria on remediation of cadmium-contaminated soil by Solanum nigrum L[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2311-2319. doi: 10.12030/j.cjee.201803103
Citation: WANG Dongsheng, WANG Lili, LI Qusheng, ZHOU Ting, ZHOU Xuefang, GAO Qiong. Enhancing effect of siderophore-producting bacteria on remediation of cadmium-contaminated soil by Solanum nigrum L[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2311-2319. doi: 10.12030/j.cjee.201803103

产铁载体菌对龙葵修复土壤Cd污染的促进效应

  • 基金项目:

    国家重点研发计划项目(2017YFD0801305)

    广东省科技计划项目(2017A010105005)

Enhancing effect of siderophore-producting bacteria on remediation of cadmium-contaminated soil by Solanum nigrum L

  • Fund Project:
  • 摘要: 通过CAS筛选培养基从龙葵根系土中筛选出2株产铁载体菌T1、Y2,经生理生化鉴定和16S rDNA序列分析,初步确定T1、Y2分别为铜绿假单胞菌和阴沟肠杆菌。将2株细菌接种至溶镉溶磷培养基中进行实验室培养,并对溶镉、溶磷结果和2株菌的胞外分泌物进行分析。结果表明,接种T1、Y2菌培养基中的有效镉、有效磷与不接菌对照相比显著增加(P0.05),接种T1、Y2菌处理的转运系数与未接菌对照相比未显著性变化(P>0.05)。接种菌处理有效促进了龙葵根系土壤难溶性形态Cd向可交换态Cd的转化。同时,研究发现接种T1、Y2菌可显著促进(P<0.05)龙葵对土壤Cd的吸收,强化了龙葵修复土壤镉污染的能力。
  • 加载中
  • [1] WANG X, LIANG C H, YIN Y.Distribution and transformation of cadmium formations amended with serpentine and lime in contaminated meadow soil[J].Journal of Soils & Sediments,2015,15(7):1531-1537
    [2] GARAU G, CASTALDI P, SANTONA L, et al.Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J].Geoderma,2007,142(1):47-57 10.1016/j.geoderma.2007.07.011
    [3] LIU W, YANG Y S, LI P J, et al.Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices[J].Journal of Hazardous Materials,2009,161(2):878-883 10.1016/j.jhazmat.2008.04.038
    [4] BRUNETTO G, G W B D M, TERZANO R, et al.Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity[J].Chemosphere,2016,162:293-307 10.1016/j.chemosphere.2016.07.104
    [5] 陈圣安. 镉污染对水稻生理生化的影响[J]. 农技服务,2011, 28(7):1033-1035
    [6] ZENG X W, QIU R L, YING R R, et al.The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch in response to Zn and Cd[J].Chemosphere,2011,82(3):321-328 10.1016/j.chemosphere.2010.10.030
    [7] KUPPER H, LOMBI E, ZHAO F J, et al.Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri[J].Planta,2000,212(1):75-84 10.1007/s004250000366
    [8] SATARUG S, BAKER J R, URBENJAPOL S, et al.A global perspective on cadmium pollution and toxicity in non-occupationally exposed population[J].Toxicology Letters,2003,137(1):65-83
    [9] 张金彪, 黄维南. 镉对植物的生理生态效应的研究进展[J]. 生态学报,2000,20(3):514-523
    [10] 张春荣, 李红, 夏立江,等. 镉、锌对紫花苜蓿种子萌发及幼苗的影响[J]. 华北农学报,2005,20(1):96-99
    [11] 孙光闻, 朱祝军, 陈日远,等. 镉对小白菜根细胞质膜氧化还原系统的影响[J]. 华北农学报,2007,22(3):65-67
    [12] 李取生, 楚蓓, 石雷,等. 珠江口滩涂湿地土壤重金属分布及其对围垦的影响[J]. 农业环境科学学报,2007,26(4):224-228
    [13] 魏树和, 周启星, 王新,等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J]. 科学通报,2004,49(24):2568-2573
    [14] PUSCHENREITER M, STOGER G, LOMBI E, et al.Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate[J].Journal of Plant Nutrition and Soil Science,2015,164(6):615-621
    [15] KHAN N, BANO A.Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater[J].International Journal of Phytoremediation,2016,18(12):1258-1269 10.1080/15226514.2016.1203287
    [16] 马莹, 骆永明, 滕应,等. 根际促生菌及其在污染土壤植物修复中的应用[J]. 土壤学报,2013,50(5):1021-1031
    [17] DIMKPA C O, SVATOS A, DABROWSKA P, et al.Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.[J].Chemosphere,2008,74(1):19-25 10.1016/j.chemosphere.2008.09.079
    [18] BRAUD A, JEZEQUEL K, BAZOT S, et al.Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria[J].Chemosphere,2009,74(2):280-286 10.1016/j.chemosphere.2008.09.013
    [19] 魏树和, 周启星, 王新. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学,2005,26(3):167-171
    [20] 于彩莲. 生长调节剂强化龙葵修复镉污染土壤能力的研究[D]. 哈尔滨:哈尔滨理工大学,2011
    [21] 殷永超, 吉普辉, 宋雪英,等. 龙葵(Solanum nigrum L.)野外场地规模Cd污染土壤修复试验[J]. 生态学杂志,2014,33(11):3060-3067
    [22] 刘京. 龙葵对土壤中十溴联苯醚—镉复合污染的修复研究[D]. 广州:暨南大学,2013
    [23] 林天兴, 唐梅, 黄明远,等. 高产铁载体棉田土壤细菌SS05的筛选与鉴定[J]. 微生物学通报,2012,39(5):668-676
    [24] 魏本杰, 曾晓希, 刘志成,等. 产铁载体菌的筛选鉴定及活化镉的性能探究[J]. 环境科学与技术,2014(11):26-31
    [25] 李艳梅, 王琼瑶, 涂卫国,等. 镍胁迫下产铁载体细菌对花生的促生性[J]. 微生物学通报,2017,44(8):1882-1890
    [26] JIANG C Y, SHENG X F, QIAN M, et al.Isolation and characterization of a heavy metal-resistant Burkholderia sp.from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil[J].Chemosphere,2008,72(2):157-164 10.1016/j.chemosphere.2008.02.006
    [27] ADESEMOYE A O, OBINI M, UGOJI E O.Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables[J].Brazilian Journal of Microbiology,2008,39(3):423-426 10.1590/S1517-83822008000300003
    [28] SUPRAPTA D N, Ni M I M, KHALIMI K.Effectiveness of enterobacter cloacae to promote the growth and increase the yield of rice[J].Journal of Biology Agriculture & Healthcare,2014,4(1):44-50
    [29] TESSIER A, CAMPBELL P G C, BISSON M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851
    [30] 赵翔, 陈绍兴, 谢志雄,等. 高产铁载体荧光假单胞菌Pseudomonas fluorescens sp-f的筛选鉴定及其铁载体特性研究[J]. 微生物学报,2006,46(5):691-695
    [31] ZENG X X, TANG J X, JIANG P, et al.Isolation, characterization and extraction of mer gene of Hg(superscript 2+) resisting strain D2[J].Transactions of Nonferrous Metals Society of China,2010,20(3):507-512
    [32] RIBEIRO C M, CAIDOSO E J.Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia)[J].Microbiological Research,2012,167(2):69-78 10.1016/j.micres.2011.03.003
    [33] 郭世鸿. 盐分胁迫对苋菜(Amaranthus mangostanus L.)活化和吸收土壤重金属Cd的影响机制[D]. 广州: 暨南大学,2017
    [34] 朱彭玲. 新疆棉花根际土壤铁载体产生菌的遗传多样性及系统发育研究[D].成都: 四川农业大学,2008
    [35] KIM J O, LEE Y W, CHUNG J.The role of organic acids in the mobilization of heavy metals from soil[J].KSCE Journal of Civil Engineering,2013,17(7):1596-1602
    [36] 杜彩艳, 祖艳群, 李元. 石灰配施猪粪对Cd、Pb和Zn污染土壤中重金属形态和植物有效性的影响[J]. 植物科学学报,2008,26(2):170-174
    [37] 魏佳, 李取生, 徐智敏,等. 多种有机酸对土壤中碳酸镉的活化效应[J]. 环境工程学报,2017,11(9):5298-5306 10.12030/j.cjee.201612218
    [38] 陆文龙, 曹一平, 张福锁. 低分子量有机酸对不同磷酸盐的活化作用[J]. 华北农学报,2001,16(1):99-104
    [39] SHI P, ZHU K, ZHANG Y, et al.Growth and cadmium accumulation of Solanum nigrum L.seedling were enhanced by heavy metal-tolerant strains of Pseudomonas aeruginosa[J].Water, Air & Soil Pollution,2016,227(12):459 10.1007/s11270-016-3167-6
    [40] SINGH R P, JHA P, JHA P N.Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant ( Triticum aestivum L.)[J].Journal of Plant Growth Regulation,2017,36(3):783-798 10.1007/s00344-017-9683-9
    [41] 胡晓峰. 溶磷菌的筛选、溶磷条件优化及对玉米的促生作用研究[D].南京: 南京农业大学,2010
    [42] ISRAR D, MUSTAFA G, KHAN K S, et al.Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation[J].Plant Physiology & Biochemistry,2016,108:304-312 10.1016/j.plaphy.2016.07.023
  • 加载中
计量
  • 文章访问数:  2013
  • HTML全文浏览数:  1737
  • PDF下载数:  174
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17

产铁载体菌对龙葵修复土壤Cd污染的促进效应

  • 1. 暨南大学环境学院,广东省环境污染与健康重点实验室,广州510632
基金项目:

国家重点研发计划项目(2017YFD0801305)

广东省科技计划项目(2017A010105005)

摘要: 通过CAS筛选培养基从龙葵根系土中筛选出2株产铁载体菌T1、Y2,经生理生化鉴定和16S rDNA序列分析,初步确定T1、Y2分别为铜绿假单胞菌和阴沟肠杆菌。将2株细菌接种至溶镉溶磷培养基中进行实验室培养,并对溶镉、溶磷结果和2株菌的胞外分泌物进行分析。结果表明,接种T1、Y2菌培养基中的有效镉、有效磷与不接菌对照相比显著增加(P0.05),接种T1、Y2菌处理的转运系数与未接菌对照相比未显著性变化(P>0.05)。接种菌处理有效促进了龙葵根系土壤难溶性形态Cd向可交换态Cd的转化。同时,研究发现接种T1、Y2菌可显著促进(P<0.05)龙葵对土壤Cd的吸收,强化了龙葵修复土壤镉污染的能力。

English Abstract

参考文献 (42)

目录

/

返回文章
返回