电絮凝同步去除水中铜(Ⅱ)和铬(Ⅵ)复合污染物的影响因素及其作用机理

郝雅荣, 吕建波, 高雪, 孙力平, 陈茜敏, 张劲. 电絮凝同步去除水中铜(Ⅱ)和铬(Ⅵ)复合污染物的影响因素及其作用机理[J]. 环境工程学报, 2018, 12(2): 460-467. doi: 10.12030/j.cjee.201708076
引用本文: 郝雅荣, 吕建波, 高雪, 孙力平, 陈茜敏, 张劲. 电絮凝同步去除水中铜(Ⅱ)和铬(Ⅵ)复合污染物的影响因素及其作用机理[J]. 环境工程学报, 2018, 12(2): 460-467. doi: 10.12030/j.cjee.201708076
HAO Yarong, LYU Jianbo, GAO Xue, SUN Liping, CHEN Ximin, ZHANG Jin. Influencing factors and mechanisms of simultaneous removal of copper(Ⅱ) and chromium(Ⅵ) from aqueous solutions by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 460-467. doi: 10.12030/j.cjee.201708076
Citation: HAO Yarong, LYU Jianbo, GAO Xue, SUN Liping, CHEN Ximin, ZHANG Jin. Influencing factors and mechanisms of simultaneous removal of copper(Ⅱ) and chromium(Ⅵ) from aqueous solutions by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 460-467. doi: 10.12030/j.cjee.201708076

电絮凝同步去除水中铜(Ⅱ)和铬(Ⅵ)复合污染物的影响因素及其作用机理

  • 基金项目:

    国家自然科学基金资助项目(51478292)

    天津市水质科学与技术重点实验室开放基金资助项目(TJKLAST-PT-2016-05)

Influencing factors and mechanisms of simultaneous removal of copper(Ⅱ) and chromium(Ⅵ) from aqueous solutions by electrocoagulation

  • Fund Project:
  • 摘要: 铜(Cu(Ⅱ))和铬(Cr(Ⅵ))是水和废水中一类重要的重金属复合污染物。电絮凝(electrocoagulation, EC)是目前很有效的重金属深度处理技术,因此,采用电絮凝静态反应器对水中Cu(Ⅱ)和Cr(Ⅵ) 的复合污染物的同步去除进行研究。在单极式连接条件下,考察电极材料、电流密度、初始pH、极板间距和电导率等因素对电絮凝效果的影响。结果表明,与铁电极相比,铝电极显示出更好的Cu(Ⅱ)和Cr(Ⅵ)同步去除效果。因此,采用铝电极进行因素筛选实验,筛选出的实验条件为:Cu(Ⅱ)的进水浓度为18.73~20.08 mg·L-1,Cr(Ⅵ)的进水浓度为12.98~14.35 mg·L-1,在初始pH为3~6,电流密度为11.57 A·m-2,极板间距为1 cm,电导率在899~2 000 μS·cm-1的范围内。去除结果表明,总铬(TCr)、Cr(Ⅵ)和Cu(Ⅱ)的去除率均在94%以上,出水Cu(Ⅱ)、TCr和Cr(Ⅵ)的浓度分别为0.081.24、0.491.21和0.120.49 mg·L-1,出水pH在6~9之间,可以满足《污水综合排放标准》(GB 8978-7996)要求。
  • 加载中
  • [1] 刘玉玲,陆君,马晓云,等.电絮凝过程处理含铬废水的工艺及机理[J].环境工程学报,2014,8(9):3640-3644
    [2] 罗志勇,张胜涛,郑泽根,等.电化学法处理重金属废水的研究进展[J].中国给水排水,2009,5(16):6-10
    [3] GONG Y, GAI L, TANG J, et al.Reduction of Cr(Ⅵ) in simulated groundwater by FeS-coated iron magnetic nanoparticles[J].Science of The Total Environment,2017,5(9):743-751
    [4] HEIDMANN I, CALMANO W.Removal of Ni, Cu and Cr from a galvanic wastewater in an electrocoagulation system with Fe- and Al-electrodes[J].Separation and Purification Technology,2010,1(3):308-314
    [5] ALAJI B, YAVUZ Y, KOPARAL A.S.Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes[J].Separation And Purification Technology,2012,6(8):248-254
    [6] AOUDJ S, KHELIFA A, DROUICHE N.Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation[J].Chemosphere,2017,0(9):379-387
    [7] AOUDJ S, KHELIFA A, DROUICHE N, et al.Removal of fluoride and turbidity from semiconductor industry wastewater by combined coagulation and electroflotation[J].Desalination And Water Treatment,2016,7(39):18398-18405
    [8] DELUNA M D G, WARMADEWANTHI, LIU J C.Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer[J].Colloids And Surfaces A:Physicochemical And Engineering Aspects,2009,7(1/2/3):64-68
    [9] JIN W, DU H, ZHENG S, et al.Electrochemical processes for the environmental remediation of toxic Cr(Ⅵ):A review[J].Electrochimica Acta,2016,1:1044-1055
    [10] PAN C, TROYER L D, CATALANO J G, et al.Dynamics of chromium(Ⅵ) removal from drinking water by iron electrocoagulation[J].Environmental Science & Technology,2016,0(24):13502-13510
    [11] HU C, WANG S, SUN J, et al.An effective method for improving electrocoagulation process: Optimization of Al13 polymer formation[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,9:234-240
    [12] AOUDJ S, KHELIFA A, DROUICHE N, et al.Simultaneous removal of chromium(Ⅵ) and fluoride by electrocoagulation-electroflotation: Application of a hybrid Fe-Al anode[J].Chemical Engineering Journal,2015,7(1):153-162
    [13] AOUDJ S, KHELIFA A, DROUICHE N, et al.HF wastewater remediation by electrocoagulation process[J].Desalination and Water Treatment,2013,1(7/8/9):1596-1602
    [14] KESHMIRIZADEH E, YOUSEFI S, ROFOUEI M K.An investigation on the new operational parameter effective in Cr(Ⅵ) removal efficiency: A study on electrocoagulation by alternating pulse current[J].Journal of Hazardous Materials,2011,0(1/2/3):119-124
    [15] KABDASLI I, ARSLAN T, OELMEZ-HANCI T, et al.Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes[J].Journal of Hazardous Materials,2009,5(1/2/3):838-845
    [16] HEIDMANN I, CALMANO W.Removal of Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Ag(I) and Cr(Ⅵ) present in aqueous solutions by aluminium electrocoagulation[J].Journal of Hazardous Materials,2008,2(3):934-941
    [17] SONG P, YANG Z, ZENG G, et al.Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review[J].Chemical Engineering Journal,2017,7(1):707-725
    [18] DANESHVAR N, OLADEGARAGOZE A, DJAFARZADEH N.Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters[J].Journal of Hazardous Materials,2006,9(1/2/3):116-122
  • 加载中
计量
  • 文章访问数:  2299
  • HTML全文浏览数:  1848
  • PDF下载数:  523
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08

电絮凝同步去除水中铜(Ⅱ)和铬(Ⅵ)复合污染物的影响因素及其作用机理

  • 1. 天津城建大学环境与市政工程学院,天津300384
  • 2. 天津市水质科学与技术重点实验室,天津300384
  • 3. 烟台大学土木工程学院,烟台264005
基金项目:

国家自然科学基金资助项目(51478292)

天津市水质科学与技术重点实验室开放基金资助项目(TJKLAST-PT-2016-05)

摘要: 铜(Cu(Ⅱ))和铬(Cr(Ⅵ))是水和废水中一类重要的重金属复合污染物。电絮凝(electrocoagulation, EC)是目前很有效的重金属深度处理技术,因此,采用电絮凝静态反应器对水中Cu(Ⅱ)和Cr(Ⅵ) 的复合污染物的同步去除进行研究。在单极式连接条件下,考察电极材料、电流密度、初始pH、极板间距和电导率等因素对电絮凝效果的影响。结果表明,与铁电极相比,铝电极显示出更好的Cu(Ⅱ)和Cr(Ⅵ)同步去除效果。因此,采用铝电极进行因素筛选实验,筛选出的实验条件为:Cu(Ⅱ)的进水浓度为18.73~20.08 mg·L-1,Cr(Ⅵ)的进水浓度为12.98~14.35 mg·L-1,在初始pH为3~6,电流密度为11.57 A·m-2,极板间距为1 cm,电导率在899~2 000 μS·cm-1的范围内。去除结果表明,总铬(TCr)、Cr(Ⅵ)和Cu(Ⅱ)的去除率均在94%以上,出水Cu(Ⅱ)、TCr和Cr(Ⅵ)的浓度分别为0.081.24、0.491.21和0.120.49 mg·L-1,出水pH在6~9之间,可以满足《污水综合排放标准》(GB 8978-7996)要求。

English Abstract

参考文献 (18)

目录

/

返回文章
返回