氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响

孟晓山, 张玉秀, 隋倩雯, 王子月, 郁达伟, 王亚炜, 魏源送. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064
引用本文: 孟晓山, 张玉秀, 隋倩雯, 王子月, 郁达伟, 王亚炜, 魏源送. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064
MENG Xiaoshan, ZHANG Yuxiu, SUI Qianwen, WANG Ziyue, YU Dawei, WANG Yawei, WEI Yuansong. Effects of ammonia concentration on anaerobic digestion of swine manure and community structure of methanogens[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064
Citation: MENG Xiaoshan, ZHANG Yuxiu, SUI Qianwen, WANG Ziyue, YU Dawei, WANG Yawei, WEI Yuansong. Effects of ammonia concentration on anaerobic digestion of swine manure and community structure of methanogens[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064

氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响

  • 基金项目:

    国家重点研发计划项目(2016YFD0501405)

    国家水体污染控制与治理科技重大专项(2015ZX07203-007)

    国家自然科学基金资助项目(21677161)

    中国矿业大学(北京)中央高校基本科研业务费专项基金资助项目(2010YH05)

Effects of ammonia concentration on anaerobic digestion of swine manure and community structure of methanogens

  • Fund Project:
  • 摘要: 氨氮抑制是影响高含固厌氧消化推广应用的主要因素之一。通过批式实验,采用外源氨氮投加方式,考察了厌氧消化过程中不同氨氮浓度对鲜猪粪产甲烷效果和产甲烷菌群结构的影响。结果表明:氨氮添加量为2 000 mg·L-1(TAN≈3 596.7 mg·L-1)时,日产甲烷速率及累积产甲烷量均明显下降;添加量大于4 000 mg·L-1(TAN≈5 618.7 mg·L-1)时,氨氮抑制加剧,出现VFAs累积、产甲烷高峰期后移、丙酸降解失败。不同氨氮投加量下猪粪中挥发性固体(VS)产甲烷率分别为(369.0 ± 17.3)、(318.5 ± 7.6)、(234.7 ± 2.5)、(165.4 ± 19.4)mL·g-1,产甲烷效率较对照组分别下降14%、36%和55%。超过4 000 mg·L-1的外源氨氮投加促使产甲烷菌群结构发生显著变化,乙酸利用型产甲烷优势菌Methanosaeta 逐渐被Methanosarcina代替,而氢利用型产甲烷菌属中Methanospirillum的优势性逐渐被Methanoculleus和Methanomassiliicoccus取代,说明后者均有较强的氨氮耐受性。主成分分析和冗余分析表明,高浓度氨氮会促使产甲烷途径由乙酸利用型为主向氢利用型为主转变。
  • 加载中
  • [1] 张玉秀, 孟晓山, 王亚炜, 等. 畜禽废弃物厌氧消化过程的氨氮抑制及其应对措施研究进展[J]. 环境工程学报, 2018, 12(4): 985-998 10.12030/j.cjee.201706043
    [2] 张彤, 翟宁宁, 王晓娇, 等. 初始pH值和物料配比对高温混料厌氧发酵进程的影响[J]. 环境科学学报, 2016, 36(7): 2571-2579 10.13671/j.hjkxxb.2015.0664
    [3] 高文萱, 张克强, 梁军锋, 等. 氨胁迫对猪粪厌氧消化性能的影响[J]. 农业环境科学学报, 2015, 34(10): 1997-2003
    [4] 沈飞, 李汉广, 钟斌, 等. 碳氮比对稻草和猪粪生物处理及厌氧消化的影响[J]. 环境科学学报, 2017, 37(11): 4212-4219 10.13671/j.hjkxxb.2017.0212
    [5] 戴晓虎, 何进, 严寒, 等. 游离氨调控对污泥高含固厌氧消化反应器性能的影响[J]. 环境科学, 2017, 38(2): 679-687 10.13227/j.hjkx.201607137
    [6] WU J, HU Y Y, WANG S F, et al.Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis[J].Waste Management, 2017, 62: 69-75 10.1016/j.wasman.2017.02.022
    [7] 郭建斌, 董仁杰, 程辉彩, 等. 温度与有机负荷对猪粪厌氧发酵过程的影响[J]. 农业工程学报, 2011, 27(12): 217-222
    [8] TIAN H, FOTIDIS I A, MANCINI E, et al.Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics[J].Bioresource Technology, 2018, 247: 616-623 10.1016/j.biortech.2017.09.148
    [9] AKINDELE A A, SARTAJ M.The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste[J].Waste Management, 2018, 71: 757-766 10.1016/j.wasman.2017.07.026
    [10] RAJAGOPAL R, MASSE D I, SINGH G.A critical review on inhibition of anaerobic digestion process by excess ammonia[J].Bioresource Technology, 2013, 143: 632-641 10.1016/j.biortech.2013.06.030
    [11] YENIG N O, DEMIREL B.Ammonia inhibition in anaerobic digestion: A review[J].Process Biochemistry, 2013, 48(5/6): 901-911 10.1016/j.procbio.2013.04.012
    [12] AMHA Y M, ANWAR M Z, BROWER A, et al.Inhibition of anaerobic digestion processes: Applications of molecular tools[J].Bioresource Technology, 2018, 247: 999-1014 10.1016/j.biortech.2017.08.210
    [13] ZIGANSHINA E E, IBRAGIMOV E M, VANKOV P Y, et al.Comparison of anaerobic digestion strategies of nitrogen-rich substrates: Performance of anaerobic reactors and microbial community diversity[J].Waste Management, 2017, 59: 160-171 10.1016/j.wasman.2016.10.038
    [14] POIRIER S, MADIGOU C, BOUCHEZ T, et al.Improving anaerobic digestion with support media: Mitigation of ammonia inhibition and effect on microbial communities[J].Bioresource Technology, 2017, 235: 229-239 10.1016/j.biortech.2017.03.099
    [15] SUNG S, LIU T.Ammonia inhibition on thermophilic anaerobic digestion[J].Chemosphere, 2003, 53(1): 43-52 10.1016/S0045-6535(03)00434-X
    [16] PROCHAZKA J, DOLEJS P, MACA J, et al.Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen[J].Applied Microbiology and Biotechnology, 2012, 93(1): 439-447 10.1007/s00253-011-3625-4
    [17] MAHDY A, FOTIDIS I A, MANCINI E, et al.Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process[J].Bioresource Technology, 2017, 225(Supplement C): 272-278 10.1016/j.biortech.2016.11.086
    [18] 国家环境保护总局.水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002
    [19] 孙志岩, 张君枝, 刘翌晨, 等. 牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学[J]. 环境工程学报, 2016, 10(3): 1468-1474
    [20] NIU Q, QIAO W, QIANG H, et al.Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia[J].Bioresource Technology, 2013, 146: 223-233 10.1016/j.biortech.2013.07.038
    [21] 王瑞, 魏源送, 赵高峰, 等. 四环素类抗生素和铜复合污染对猪粪厌氧消化的影响[J]. 生态毒理学报, 2015, 10(5): 108-114
    [22] SHI X, LIN J, ZUO J, et al.Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J].Journal of Environmental Sciences, 2017, 55: 49-57 10.1016/j.jes.2016.07.006
    [23] 许之扬, 赵明星, 缪恒峰, 等. 氨氮质量浓度对餐厨垃圾厌氧消化产沼气的影响[J]. 食品与生物技术学报, 2014, 33(3): 282-287
    [24] 李颖. 丙酸产甲烷菌系的驯化过程及生物强化作用研究[D]. 北京:中国农业大学, 2017
    [25] LI Y, ZHANG Y, SUN Y, et al.The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition[J].Bioresource Technology, 2017, 231: 94-100 10.1016/j.biortech.2017.01.068
    [26] LI Y, ZHANG Y, KONG X, et al.Effects of ammonia on propionate degradation and microbial community in digesters using propionate as a sole carbon source[J].Journal of Chemical Technology & Biotechnology, 2017, 92(10): 2538-2545
    [27] LE C, STUCKEY D C.Impact of feed carbohydrates and nitrogen source on the production of soluble microbial products (SMPs) in anaerobic digestion[J].Water Research, 2017, 122: 10-16 10.1016/j.watres.2017.05.061
    [28] ZHANG J, WANG Z, WANG Y, et al.Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure[J].Bioresource Technology, 2017, 245: 850-859 10.1016/j.biortech.2017.08.217
    [29] MANOSANE A, 杨朝晖, 徐锐, 等. 猪粪与污泥不同配比对其厌氧共消化与微生物多样性的影响[J]. 环境工程学报, 2017, 11(11): 6014-6021 10.12030/j.cjee.201702001
    [30] NIU Q, KUBOTA K, QIAO W, et al.Effect of ammonia inhibition on microbial community dynamic and process functional resilience in mesophilic methane fermentation of chicken manure[J].Journal of Chemical Technology & Biotechnology, 2015, 90(12): 2161-2169
    [31] RUIZ-SANCHEZ J, CAMPANARO S, GUIVERNAU M, et al.Effect of ammonia on the active microbiome and metagenome from stable full-scale digesters[J].Bioresource Technology, 2017, 250: 513-522 10.1016/j.biortech.2017.11.068
  • 加载中
计量
  • 文章访问数:  3229
  • HTML全文浏览数:  2944
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17

氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响

  • 1. 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室,北京100085
  • 2. 中国矿业大学北京化学与环境工程学院,北京100083
  • 3. 中国科学院生态环境研究中心水污染控制实验室,北京100085
  • 4. 中国科学院大学,北京100049
基金项目:

国家重点研发计划项目(2016YFD0501405)

国家水体污染控制与治理科技重大专项(2015ZX07203-007)

国家自然科学基金资助项目(21677161)

中国矿业大学(北京)中央高校基本科研业务费专项基金资助项目(2010YH05)

摘要: 氨氮抑制是影响高含固厌氧消化推广应用的主要因素之一。通过批式实验,采用外源氨氮投加方式,考察了厌氧消化过程中不同氨氮浓度对鲜猪粪产甲烷效果和产甲烷菌群结构的影响。结果表明:氨氮添加量为2 000 mg·L-1(TAN≈3 596.7 mg·L-1)时,日产甲烷速率及累积产甲烷量均明显下降;添加量大于4 000 mg·L-1(TAN≈5 618.7 mg·L-1)时,氨氮抑制加剧,出现VFAs累积、产甲烷高峰期后移、丙酸降解失败。不同氨氮投加量下猪粪中挥发性固体(VS)产甲烷率分别为(369.0 ± 17.3)、(318.5 ± 7.6)、(234.7 ± 2.5)、(165.4 ± 19.4)mL·g-1,产甲烷效率较对照组分别下降14%、36%和55%。超过4 000 mg·L-1的外源氨氮投加促使产甲烷菌群结构发生显著变化,乙酸利用型产甲烷优势菌Methanosaeta 逐渐被Methanosarcina代替,而氢利用型产甲烷菌属中Methanospirillum的优势性逐渐被Methanoculleus和Methanomassiliicoccus取代,说明后者均有较强的氨氮耐受性。主成分分析和冗余分析表明,高浓度氨氮会促使产甲烷途径由乙酸利用型为主向氢利用型为主转变。

English Abstract

参考文献 (31)

目录

/

返回文章
返回